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Preface

Artificial Intelligence is a branch of computer science aimed at providing the com-
puter elements of human-like behavior such as ability to think, learn by example,
doubt, act, see, and speak. Since its beginning artificial intelligence research has been
influenced and inspired by nature—in the first place, by the way human being accom-
plishes such tasks. Recently, the repertoire of artificial intelligence methods was en-
riched by other naturally inspired optimization techniques, such as genetic algorithms,
swarm intelligence, or ant colony optimization. In addition to creating human-like-
behaving machines, modern artificial intelligence provides a very powerful platform
for solving a wide range of super-complex optimization problems.

This volume presents original research papers on the internal art and craft of artifi-
cial intelligence research: its theoretical foundations, specific techniques, and research
methodologies. It is structured into eight thematic fields representative of the main
current areas of interest within the Al community: Knowledge Representation and
Logic; Constraint Satisfaction; Multiagent Systems and Distributed Al; Computer
Vision and Pattern Recognition, Machine Learning and Neural Networks;
Evolutionary Computation and Genetic Algorithms; Natural Language Processing;
Modeling and Intelligent Control. The next volume of this journal presents original
papers devoted to application of artificial intelligence techniques to practical real-life
problems, from economy and education to creating of physical intelligent robots.

Total of 59 full papers by 145 authors from 20 different countries were submitted
for evaluation, see Tables 1 and 2. Each submission was reviewed by three independ-
ent members of the Editorial Board of the volume. This volume contains revised ver-
sions of 26 papers, by 64 authors, selected for publication after thorough evaluation.
Thus the acceptance rate was 44%. In Table 1, the number of papers by country was
calculated by the shares of all authors of the paper: e.g., if a paper has three authors:
two from Mexico and one from USA, then we incremented the counter for Mexico by
0.66 (two authors of three) and the counter for USA by 0.33. Table 2 presents the
statistics of papers by topics according to the topics indicated by the authors; note that
a paper can be assigned more than one topic.

Table 1. Statistics of authorsand papers by country.

Submitted Accepted Submitted Accepted

Country Auth Pap Auth Pap Country Auth Pap Auth Pap
Algeria 2 06 2 06 Lebanon 2 1 2 1
Argentina 1 1 - - Mexico 43 168 30 12
Brazil 11 4 - - Netherlands I 02 — -
China 24 10 5 2 Poland 4 1
France 8 33 I 03 Russia 2 2 - -
Germany 1 1 - - Spain 8 1 4 1
India 4 2 2 1 Sweden 4 1 -

Italy 2 1 2 1 Tunisia 2 1 - —
Japan 5 2 5 2 UK 2 1 2 1
Korea, South 9 4 2 1 USA 10 4 7 3

total: 145 59 64 26



Table 2. Statistics of submitted and accepted papers by topic.

Topic Submitted  Accepted
Expert Systems / KBS 2 -
Multiagent systems and Distributed Al 10 6
Knowledge Management 3 1
Intelligent Interfaces: Multimedia, Virtual Reality 1 -
Natural Language Processing / Understanding 4 3
Computer Vision 4 2
Neural Networks 11 4
Genetic Algorithms 9 6
Fuzzy logic 4 1
Machine Learning 18 7
Intelligent Tutoring Systems 1 -
Data Mining 4 -
Knowledge Acquisition 3 -
Knowledge Representation 10 4
Knowledge Verification, Sharing and Reuse 3 1
Ontologies 4 -
Qualitative Reasoning 1 1
Constraint Programming 6 2
Common Sense Reasoning 1 -
Case-Based Reasoning 1 -
Nonmonotonic Reasoning 2 1
Spatial and Temporal Reasoning 1 1
Robotics 2 2
Planning and Scheduling 5 3
Navigation 5 2
Hybrid Intelligent Systems 4 1
Logic Programming 2 1
Intelligent Organizations 3 1
Uncertainty / Probabilistic Reasoning 1
Bioinformatics 3 —
Philosophical and Methodological Issues of Al 5 1
Other 10 4

The academic and editorial effort resulting in this volume was carried out in col-
laboration with, and was supported by, the Mexican Society for Artificial Intelli-
gence (SMIA). We cordially thank all people involved in its preparation. In the first
place these are the authors of the papers constituting it: it is the excellence of their
research work that gives sense to the work of all other people involved. We thank the
members of the Editorial Board of the volume and additional referees. We express our
gratitude to Alvaro de Albornoz, Angel Kuri, Hugo Terashima-Marin, Francisco J.
Cantu-Ortiz, Leticia Rodriguez, Fernando J. Jaimes, Rogelio Soto-Rodriguez, Hiram
Calvo, Manuel Vilares, and Sulema Torres for their significant contribution at various
stages of preparation of the volume. The submission, reviewing, and selection process
was supported for free by the EasyChair system, www.EasyChair.org.

Alexander Gelbukh November 2005
Raul Monroy
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XML based Extended Super-function Schema in
Knowledge Representation

Qiong Liu, Xin Lu, Fyji Ren and Shingo Kuroiwa
Qiong Ciu, Xin Lu, Fuji Ren, and ShiRgo Kuroiwa

The University of Tokushima,
2-1 Minami Josanjima, Tokushima, Japan 770-8506
{liugiong,luxin,ren,kuroiwa}@is.tokushima-u.ac.jp

Abstract. In recent years, the usual knowledge representation (KR)
problem in artificial intelligence is how to automatically represent and
transform different kinds of knowledge using one kind of schema. Espe-
cially this problem focuses on representing formal knowledge in natural
language for human understanding. For this purpose, this paper proposes
an extended super-function (ESF) schema to build a novel KR system.
This system can translate the data of stock market or other fields into
the corresponding natural language expression automatically. Moreover,
this system benefits from XML techniques which formalize and construct
all information using the common Web rules to realize the ESF schema.

1 Introduction

In artificial intelligence (AI), knowledge representation (KR) includes two basic kinds of
knowledge objects (formal objects and natural objects) in its fundamental conception.
Formal objects like mathematical entities can be captured exactly and precisely by
machine because of their formality. Natural objects like natural language entities can
be understood easily and commonly by human being through their flexibility. Then
KR provides the representation function to deal with the correspondences between the
formal objects and the natural objects, acting as surrogates in the real world as well as
in the machine space. Given the relationship with human and machine is made closer,
the last role of KR will become more significant and necessary.

In recent years, the KR technique has shown its superiority in knowledge collection
and organization. The natural objects in knowledge base have been organized in highly
structured form to satisfy the requirements that people wish to understand and master
various kinds of knowledge easily by natural objects. The KR system based on nat-
ural objects is most sophisticated, and its construction is depended on some kinds of
logic. Different formal methods (such as predicate logic, fuzzy logic, semantic networks,
frames and related techniques) have been developed to represent natural objects. They
also have been used by expert systems frequently in decision making and reasoning.
The KR system [1-5] based on natural objects has been implemented in almost every
aspect such as weather forecast, letters response, network analysis, disease diagnosis
and so on. All of these systems have been recognized as the considerable enhancement
of KR technique for natural objects management. Because natural objects like human
natural language are complex, irregular, and diverse, the previous KR systems based
on natural objects just act as interfaces to knowledge base, which perform formal tasks

© A. Gelbukh, R. Monroy. (Eds.)
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4 Liu Q., Lu X, Ren F., Kuroiwa Sh.

separated from nature objects processing. Nevertheless the computational character-
istic of representation and inference in natural objects can improve the efficiencies of
processing all tasks in the KR system. Therefore, the extended super-function (ESF)
schema is proposed to build a novel KR system which processes vast amounts of knowl-
edge systematically like machine and logically, deeply like human being. It is capable to
incorporate both the formal objects and the natural objects. We think the ESF schema
is a new direction in KR technique.

The paper is structured as follow. Section 2 describes the grammar of ESF schema
for KR. In Section 3, the ESF based KR system is realized as example, where the ESF
schema is utilized to produce technical report of stock market from data for non-expert
user. Finally, Section 4 presents a discussion and conclusion of this paper.

2 Extended Super-function Schema

In ESF schema definition, symbol set includes formal objects and natural objects.
Natural language is a symbol set, mathematic expression is a symbol set, music is a
symbol set, and so on. The ESF schema is applied to the translation from one symbol
set to another more variously than from one kind of natural language to another as
SF.

An ESF is a symbol set that denotes the correspondence between source symbol
patterns and target symbol patterns. The definition of symbol pattern is most neces-
sary for ESF, and it will be described firstly. Then we give ESF a definition.

Definition 1: A team of a token n, some attributes A and corresponding values v
can form a symbol pattern p, == p[n, A :v].

Definition 2: A symbol pattern p can be sorted into source pattern ps and target
pattern pt according to its origin. A set of source pattern ps and a set of target pattern
pt can aggregate a source pattern set Ps and a target pattern set Pt respectively.

Definition 3: A function from Psy X ---X Psp—1 to Psy, is a subset fs of the Cartesian
product Psi X -+ X Psy, such that for each pair (psi,...,psn—1) in Psi X -+ X Psp_1,
there is a unique ps, in Ps, such that the ordered pair (psi,...,psn) is in fs. The
source pattern ps, can be described as ps, ::= ps[n, A: fs]

Definition 4: A function from Pt; X --- X Pt,_1 to Pt, is a subset ft of the Cartesian
product Pty X - -+ X Pty, such that for each pair (pti,...,ptn—1) in Pty X -+ X Pty_1,
there is a unique pt, in Pt, such that the ordered pair (pti,...,pts) is in ft. The
source pattern pt, can be described as pt, := ptin, A: f]

Definition 5: A function from Ps to Pt is a subset r of the Cartesian product
Ps x --- x Pt, such that for each ps in Ps, there is a unique pt in Pt such that
the ordered pair (ps,pt) is in 7.

Definition 6: A set of function fs can aggregate a source function set F's. A set
of function fs can aggregate a target function set F't in the same way. A set of func-
tion r can be considered as relation set R. R means the translations between source
patterns and target patterns.
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In ESF, the based element is atomic pattern. Any symbol pattern, whose value is
obtained from function, can be defined as a complex pattern. Its value is composed
of some atomic patterns or other complex patterns ordered in function structures.
Therefore, these symbol patterns are not ordered in one layer, they are ordered like
net by functions. The grammar of ESF can be set as a five-tuple.

< Ps, Pt, Fs, I't, R >

3 KR System Construction using ESF Schema

We can master the ESF based KR system from three layers (i.e., abstracting layer,
describing layer and implementing layer). The three layers is used for understanding,
detailing and coding the KR system respectively. In this section we specify KR system
in these three layers for understanding.

Formal Objects —>

Processor —) | Natural Objects
-

Abstracting Layer

ESF Source Patterns _>
ESF —} ESF Target Patterns

| ESF Functions & Relations I —> Processo’

Describing Layer

XML Document _>
XSLT Stylesheet || —p

XSLT
processof

—} XML Document

Implementing Layer

Fig. 1. Fundamental structure of the KR system based on ESF schema

As shown in the top layer of Figure 1, the processor receives the formal objects with
the transform cases, and generates the natural objects. This is a pipeline mechanism.
Here, the transform cases are regarded as principles for guiding processor what to do
and how to do. They are the crucial parts of KR system.

3.1 Transform Case Extraction in Abstracting Layer

There are hundreds s of indicators in use today. Every technical indicator can be re-
garded as one transform case in the abstracting layer of our KR system. The technical
indicator data and its perspective can be considered as the formal objects and the nat-
ural objects of transform case respectively. In this paper, Moving average convergence
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Fig. 2. Moving Average Convergence Divergence i)Upper-oriented arrows marks bear-
ish centerline crossover. ii) Lower-oriented arrows marks bullish centerline crossover.

| 1. searching svitable entry |

-~ A

ps{1, Variable: MACDH1]| | ps[2, Variable: MACDI] |

fsl(psl, ps2)= (psl <=0 AND ps2 > 0)=True

— ri(ps3) = ptl1]

lps[3, Boolean: fs1(psl, ps2)] ‘

| 2. exploring nearest bridge |

‘ putting pattern as parameter in function
‘ quoting function as value in pattern

—— getting target pattern through relation

—‘ pt[3, Sentence: ft1(ptl, pt2), Subject: the stocky

l pt[1, Norn: stock] ‘ lpf[z, Verb: oversell] ‘

ft1(ptl, pt2)= Realisation(ptl, pt2)= the stock is oversold

lpf[A, Verb: consider] ‘ lpr[S, Norn: bearish signal] ‘

ft2(pt1, pt4, pt5)= Realisation(ptl, pt4, pt5)
= the stock is considered bullish signal

pif6, Sentence: ft2(pt1, pt4, pts), Subject: the stock]

| »-t3(pt3, pt6)= Referring(pt3, pté)
=t is considered bullish signal

—'fpf[7, Sentence: Hg{pf:i, pfé)]‘

__ ft4(pt3, pt8)= Aggregation(pt3, pt8)
= the stock is oversold, and it is considered bullish signal

4

' pi[8, Sentence: ft4(pt3, pt7)]

pt[9, String: positive divergence and

Ly
bullish mloving average crossover of MACD]

v
ft5(pt8, pt9 )= (After pt9, pt8)
= After positive divergence and bullish moving
average crossover of MACD, the stock is
oversold, and it is considered bullish signal

ri(ps3) = ptlo

pt[10, Sentence: ft5(pt8, pt9 )] ‘

y

|3‘ obtaining last pattern by recursion |

Fig. 3. ESF structures of MACD indicator (source patterns and source functions (left),

target patterns and target functions (right))
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divergence (MACD) is extracted as a transform cases from our KR system for clear
specification.

A bullish centerline crossover occurs when MACD moves above the zero line and
into positive territory. This is a clear indication that momentum has changed from
negative to positive or from bearish to bullish. After a positive divergence and bullish
moving average crossover, the bullish centerline crossover can act as a confirmation
signal. Conversely, after a negative divergence and bearish moving average crossover,
the bearish centerline crossover can act as a confirmation signal. (The MACD chart is
illustrated in Figure 2). Then we can get a transform description of MACD:

IF MACD(Day)>0 AND MACD(Day-1) <0 THEN "after a positive divergence
and bullish moving average crossover of MACD, the bullish centerline
crossover can act as a confirmation signal”
IF MACD(Day)<0 AND MACD(Day-1)>0 THEN "after a negative divergence
and bearish moving average crossover of MACD, the bearish centerline
crossover can act as a confirmation signal”

3.2 ESF Structure Design in Describing Layer

From abstracting layer to describing layer, we utilize the ESF schema to design the
ESF structure of our KR system detailedly. All non-linguistic inputs are defined as ESF
source pattern; the transform cases are generalized as ESF functions and relations for
reuse. The ESF processor can accelerate the map between the source patterns and the
target patterns through the functions and relations as illustrated in the middle layer
of Figure 1.

Here a transform case (i.e., MACD indicator mentioned above) has been generalized
as corresponding functions and relations by ESF schema in Figure 3 as an example.
In this example every block denotes a pattern, such as atomic or complex one. Every
relation can be considered as a translation bridge between numerable source patterns
and single target pattern. Every function acts as telephone line which is connecting
every user — pattern. We need to emphasize that the process from pattern to function
means putting pattern into function as parameter. On the other hand, the process from
function to pattern is quoting function as value in pattern. These two processes will be
coded in computer language for the actual experiment in following section. The ESF
process consists of three steps. They are marked in Figure 3.

1. Searching suitable entry: We put some source patterns, which will be translated
into natural language, into processor. Then the processor searches source functions’
parameters as the suitable entries for these source patterns. Here the ”suitable” de-
notes the pattern’s domain is consistent with a parameter’s domain or contained by
it. In this example, if the source patterns include other technical indicator information
except the MACD, it is difficult for processor to find the suitable entries.

2. Exploring nearest bridge: After searching suitable entry, the processor explores
downwards, passes numerable functions and finds a nearest relation. Then the proces-
sor can obtain a corresponding target pattern through the relation bridge. There is
a necessary condition in this process. It is all of the numerable functions’ parameters
(from suitable entry to nearest relation) should be filled by source patterns. In this
example, if there is only the M AC'D(Day) pattern ps; and not the M ACD(Day — 1)
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pattern psa, the processor cannot find the relation r;.

3. Obtaining last pattern by recursion: If the processor gets the corresponding
target pattern, it will use the correlative target functions structured recursively to get
the corresponding target pattern’s value.

ESF based KR system is a new KR system that has the characters between
template-based and standard KR. This is not only because the ESF based KR system
combines standard KR with templates, but also because it tends to use syntactically
structured templates (here the ”template” in ESF schema is a function. It has more
changes than the common template), and allows the gaps as parameters in them to
be filled recursively (i.e., by filling a gap, a new gap may result). The ESF based KR
system can use grammars to aid linguistic realization. For example, in Figure 5, it
includes lexical items (e.g., referring expression function, aggregation function and so
on) which always exist in standard KR. Therefore, it is difficult to give a definition of
”template based” for our KR system. We think the word — ”function based” is more
suited than "template based”.

3.3 ESF Structure Realization in Implementing Layer

It is necessary to utilize a ready-made and convenient technique to realize ESF schema
in KR systems. We regard the extensible markup language (XML) is the best choice to
define the ESF pattern. We also select extensible stylesheet language transformation
(XSLT) to describe the ESF function and relation. This section helps the reader master
and apply these ideas to KR problems. We utilize the XML and XSL techniques to
realize ESF schema for building a KR system. As shown in the bottom layer of Figure
1, in a KR system the ESF patterns in XML is fed into the XSLT processor as one
input, and the functions and relations in XSL is provided as a second input. The output
is then sent directly to user as a stream of HTML, XML or other formats. The ESF
functions and relations in XSL generate the transformation instructions about ESF
patterns, and the patterns in XML provide raw data. It is the implementing layer of
the KR system based on ESF schema.

Pattern construction using XML:

Code 1 — ESF source patterns
<stock symbol="TOPIX" name="Tokyo Stock Exchange Prices Index">

<date="2004-08-20" open="1105.08" close="1109.84" volume="1072250000"
MACD="-1.8351"/>
<date="2004-08-23" open="1115.93" close="1114.24" volume="1047230000"
MACD="0.1509"/>
<date="2004-08-24" open="1116.74" close="1116.60" volume="1065260000"
MACD="1.5825"/>

</stock>

We begin with an XML document that represents a portion of quotations about
MACD in stock market, which is shown above. The XML elements include their at-
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tributes with their respective values within the element’s start tag. Because the ESF
pattern’s attribute has the same name-value form, it can map the corresponding XML
element’s attribute with value. Therefore, all XML elements can be considered as the
ESF patterns.

Function and relation generation using XSLT:

Here the centric problems are how to build the XSLT stylesheet for realizing ESF
functions and relations, then how to process XML documents including ESF patterns
by the XSLT stylesheet. In this paper we utilize XSLT templates to do this work. In
Code 2, 3 and 4, we write some templates for realizing the ESF functions and relations
of the MACD transform case (shown in Figure 3), and process the XML document
mentioned above by any XSLT processor.

The XSLT templates are always written in one XSLT file together. We separate it
into three pieces in Code 2, 3 and 4 as their corresponding ESF roles for understanding
easily. Code 2, 3 and 4 respectively show source functions set, relations set, and target
functions set. The process of ESF is from ”searching suitable entry in source functions
set, to ”"exploring nearest bridge” in relation set, then to ”obtaining last pattern by
recursion” in target function set. For this example we describe detailed technological
process as following:

1 Source patterns extraction in Code 2 — (Searching suitable entry)

Code 2 — ESF source function

<xsl:template name="fs1" match="MACD">
<xsl:variable name="ps1"/>
<xsl:value-of select="//psl@value"/>
</xsl:variable>

<xsl:variable name="ps2">
<xsl:value-of select="//ps2@value"/>
</xsl:variable>

<xsl:choose>

<xsl:when test="$psl &lt;= 0 and $ps2 &gt; 0">
<xsl:value-of select="1"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="0"/>
</xsl:otherwise>

</xsl:choose>

</xsl:template>

Put two patterns psi, pse into source function
fs1 (ps1, ps2) = (ps1 < 0,ps2 > 0), and quote the function value as new pattern pss.
The obtained patterns pss are regarded as source patterns.

2 Transformation from source patterns to target patterns in Code 3 — (Exploring
nearest bridge)

Transform source pattern pss into target pattern ptig through relation r1(ps3) =
ptio. In the transformation, the target patterns ptio, is needed.
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Code 3 — ESF relation

<xsl:template name="r1">
<xsl:variable name="macd">
<xsl:value-of select="//ps3@value"/>
</xsl:variable>

<xsl:choose>

<xsl:when test="$macd = 1">
</xsl:call-template name="fsb5">
</xsl:when>

</xsl:choose>

</xsl:template>

3 Target patterns extraction in Code 4 — (Obtaining last pattern by recursion)

Code 4 — ESF target functions

<xsl:template name="ft3">

<xsl:choose>

<xsl:when test="//pt3@subject = //pt6@subject">
<xsl:call-template name="search-and-replace"/>
<xsl:with-param name=" input " select="//pt6@sentence"/>
<xsl:with-param name="search-string" select="//pt6@subject"/>
<xsl:with-param name="replace-string" select="it"/>
</xsl:call-template >

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="//pt6@sentence"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template name="ft4">

<xsl:value-of select="//pt3@sentence"/>
<xsl:text>, and </xsl:text>
<xsl:value-of select="//pt7@sentence"/>
</xsl:template>

<xsl:template name="ft5">
<xsl:text>After </xsl:text>
<xsl:value-of select="//pt9@sentence"/>
<xsl:text>, </xsl:text>

<xsl:value-of select="//pt8@sentence"/>
</xsl:template>

Put pattern pts, pte into target function fts (pts, pteé) = Referring(pts, pts), and
quote the function value as new pattern ptr.

Then put pattern pts, ptr into target function
fta (pts, ptr) = Aggregation(pts, ptr), and quote the function value as new pattern
pts.
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Then put pattern pts, ptg into target function
fts (pts, pto) = (After pty, pts), and quote the function value as new pattern ptio.
The obtained patterns ptio is regarded as target patterns.

These XSLT codes mentioned above are just a portion of all. If the XML document
constructed as Code 1, then all of XSLT codes are implemented, the result text can be
obtained as shown in follows:

Result

"In Tokyo Stock Exchange market, the Tokyo Stock Exchange Prices Index
(TOPIX) is analyzed now.

It opened at 1105.08, and closed at 1109.84 on 2004-08-20. Its total
turnover was 1072250000. It opened at 1115.93, and closed at 1114.24 on
2004-08-23. Its total turnover was 1047230000. After positive divergence
and bullish moving average crossover of MACD, the stock is oversold,

and it is considered bullish signal. It opened at 1116.74, and closed at
1116.60 on 2004-08-24. Its total turnover was 1065260000. ..."

4 Discussion and Conclusion

Our hypotheses are that texts which contain technical indicators as described above
will help non-experts to retain more information and perform better than charts, and
that non-experts will rate these texts as more interesting and pleasant to read. For
this point, the evaluation experiment is carried out in which learning outcomes of texts
will compare with charts’. The MACD indicator is chosen for the evaluation. For each
indicator two evaluation suites are prepared. The only difference between them is that
one uses the texts of technical indicators and the other uses the charts.

The tested are 40 students who do not have expert knowledge of stock market.
They are separated into two equally sized groups. Group A read the charts where the
technical indicators are marked and group B read the analysis texts which our KR
system generates. After reading, two groups will finish the evaluation suite including
”comprehension”, ”accuracy”, ”time”, ”interest”, "remembrance”, and ”usefulness”
items. The evaluation results are shown in Figure. Obviously, the ”comprehension”,
”interest”, ”remembrance” items’ scores of group B are much higher than group A.
Because the tested think not only charts but also texts are necessary for the technical
indicators to be described, the "usefulness” item’s score between group A and group
B is about same. Otherwise, the ”accuracy”, ”time” items’ scores of group B approach
group A. The reason is that the ESF schema has linguistic completeness and the
computer’s speed is much faster than before. The ESF based KR system can generate
sufficiently quality analysis texts for non-experts.

In the traditional view, KR can be separated into two kinds: Template based KR and
standard KR. Template based KR system maps its non-linguistic input directly (i.e.,
without intermediate representations) to the linguistic surface structure. Crucially, this
linguistic structure may contain gaps. Well-formed output can be obtained when the
gaps of linguistic structure are filled until the linguistic structure does not contain gaps.
By contrast, standard KR systems use a less direct mapping between input and surface
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Fig. 4. evaluation experiment

form. Such systems could begin with inputting semantic representation, subjecting it
to a number of consecutive transformations until a surface structure results.

Within this paper, the ESF based KR system can do the accurate and convenient
transformation between all kinds of knowledge objects. Because not only the ESF
schema combines standard KR with templates, but also it tends to use syntactically
structured ”templates” — function (here the function has more changes than the com-
mon template), and allows the gaps as function’s parameters to be filled recursively for
realizing linguistic expression like standard KR system. Therefore, we name our KR
system — function based KR system.

Furthermore, we utilize the XML and XSTL techniques to describe the ESF schema
in this paper. Because the XML and XSTL have become the main techniques of infor-
mation formalizing on Web, they supply the common rules for developers to format all
information under one standard. Therefore, this schema using XML and XSTL tech-
niques can be realized on Web for information’s integration, distribution and transfor-
mation.
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Abstract. The logic of tasks can be used in Al as an alternative logic of
planning and action, its main appeal is that it is immune to the frame problem
and the knowledge preconditions problem other plan logics confront. A
drawback the present logic of tasks has is that it is nondecidable (semidecidable
only). This paper extends the logic of tasks to enable the task description by
adapting description structure into it. A formal system DTL, which is sound,
complete and decidable, for agent abilities specification and accomplishablity
of tasks judgment is proposed.

1 Introduction

The semantic used in the logic of tasks can claim to be a formalization of the resource
philosophy associated with linear logic[4,5,6], if resources are understood as agents
carrying out tasks. The formalism may also have a potential to be used in Al as an
alternative logic of planning and action and its main appeal is that it is immune to the
frame problem and the knowledge preconditions problem other plan logics confront
[2,10]. A drawback the present logic of tasks has is that it is nondecidable
(semidecidable only).

Motivated by the success of description logic[7.8.9], in this paper we present a
decidable logic system, the description logic of tasks that enable task description by
adapting the description structure into the logic of tasks. In our paper the task may
have parameter e.g. we can use C(x) denoting the task to clean x, x can be either room
or lawn (room and lawn are constant). The expression o—f in our paper means that
the accomplishment of task a is the condition to accomplish the task 3, such as
F(rake)—>C(lawn) and F(mop)—C(room) express that the cleaner can clean the room
if be given a mop and can clean the lawn if be given a rake respectively.

A characteristic feature of description languages is their ability to represent other
kinds of relationships, expressed by role, beyond IS-A relationships. The role has
what is called a “value restriction,” denoted by the label VR. which expresses a
limitation on the range of types of objects that can fill that role. In this paper we use
role to express the relation between objects. For example R(room,mop) means that
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there is certain relation between room and mop (a mop is the necessity tool to clean a
room). The role has what is called “value restriction” denoted by the label VR. too,
which also expresses the limitation on the range of object that can fill the role. For
example, the expression VR(room,y).F(y)—>C(room) means that if be given all
necessity tools for cleaning a room the cleaner can accomplish the task of cleaning it.

In addition, we use predict to express the limitation on the range of value of the
parameter of tasks. For example, if we used predict P to express whether the object is
in charged of by the cleaner or not, then VP(x).(VR(x,y).F(y)—>C(x)) expresses that
for every object x that the cleaner in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning x.

In remain of the paper we will give out the syntax and the semantic of the
description logic of tasks.

2 Syntax and Semantic of the Description Logic of
Tasks

2.1. Syntax

We fix a set of expressions that we call atom task names {A,A,A;...}, with each of
which is associated a natural number called its arity, a set of predict name{P,P,,
P,....}, with each of which also is associated a natural number called its arity, a set of
role names { R,R{,R,,...}.
We also fix an infinite set C ={co_ci, ...} of constants and an infinite set X ={xo, x1,
X, ...} of variables. We refer to elements of CUX as terms.
Definition 2.1 (domain knowledge axioms) Domain knowledge axioms are defined
as follows:
1. Let a, b be two constants and R a role name, then R(a,b) is a domain knowledge
axiom;
2. Let ¢y ,¢, ..., ¢, be constants and P an n-ary predict then P(cy,¢y,...,¢,) is @ domain
knowledge axiom.
Definition2.2 (task formula) Task formulas are elements of the smallest class of
expressions such that:
1. If A is a n-ary atom task name, #,b,...,t, are terms, then A(f1,b,...,t,) is task
formula, be called an atomic task;
2. if P is a n-ary predict, a is a formula, #,,f,,...,t, are terms, then VP(¢,,6,...,t,).a0 and
3AP(t,t,,...,t,). o are both task formulas;
3. If a is a formula, R is an role, ¢ is a term and y is a variable, then VR(¢,y).a0 and
3R(¢,y).a are both task formulas;
4. if o and P are task formulas, then so are aAf,ovp and a—f;
. if o and P are task formulas, then so is onf;
6. if a is a formula, x is a variable, then IIxa is a task formula.

9]
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n and IT are called additive operators, or additives. The additive complexity of a
formula is the number of occurrences of additives in that formula. The task formula
whose complexity is zero is called primitive task formula and task formula that does
not contain free variable is call to be closed.

Except the sets mentioned above, the description logic of tasks also have two other
sets, the domain knowledge and the capability specification, defined as follows:

Definition 2.3 (domain knowledge and capability specification) The Domain
knowledge is a finite set of domain knowledge axioms. The capability specification is
a finite set of primitive task formulas.

2.2 Semantic

Let t,5,...,t, be terms, an assignment of (¢1,5,...,4,) is a n-tuple (ci/t),co/ta,. .. ,Colty)
such that c;eC and if ¢ is constant then ¢;=¢; for all i(1<i<n). Let a be a primitive task
formula, o(t,/cy,t/ca,..., ti/cy) is the result of replacing all free occurrences of #in o
by c¢;respectively (i=1,2,...,n) if # is a variable.

We consider interpretation I that consist of a non-empty set A' (the domain of the
interpretation) and an interpretation function - ', which assigns to every predict P a set
Plc (AI)“, to every role R a binary relation R'c A'x A, to every closed atomic task an
element of {0,1}. To give out the value of all closed primitive task formulas, - ' is
extended as follows:

. I _
1. (_|(X)l: 0 if —1’
1 else
2. VP(f],tz,. . .,tn).(x=
1 if (ot /c,,t,/ cypnt, /c,))' =1for every assignment (4, /c,,t,/¢,,...,t, / c,) such that (¢ ,c,,....c,) €P"
0 else
3. E'P(f[,tz,. . .,fn).(l:

{1 if there is an assignment (¢, /c,,t, / ¢,,...,t, / ¢, ) such that (c,,¢,,...,c,) € P' and (a(t, /c,,t, / Cyrnt, /¢,)) =1 5

0 else
4. (VR(ay).a) = 1 if (a(y/b))" =1foreverybsuch that (a,b) e R" .
0 else
5. (AR(ay).q) _{1 if there exist a constant b such that (a,b) € R" and (a(y/b))" =1.
else

6. (anp)= 1 ifa'=landB' =1,
0 else

7. (avp)= 1 ifa'=lorp' =1,
0 else

g ((HB)IZ{O ifa' =landp' =0,
1 b

else
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We say an interpretation I is coincident with the domain knowledge if it satisfies
conditions follows:

1. For every n-tuple of constants (cy,cs,...,cy), (€1,C2,.- .cn)eP' if and only if
P(c1,c,...,¢y) 1s in the domain knowledge;

2. for every 2-tuple of constants (a,b), (a,b) R if and only if R(a,b) is in the domain
knowledge.

Let I" be a set of primitive task formulas, {x,x,,...,x,} be the set of all free variable
that occur in the task formulas in I'. An interpretation I and an assignment
(X1/C1,X2/Ca,... Xl cy) is said satisfy T if (o(xi/c1,x2/Ca,. .. Xolcn))'=1 for every formula o
in I'. A task formula set I" is said be not satisfiable if there is no interpretation I and
assignment (x1/cy,X2/cy,. .., Xn/cy) satisfy it, else be satisfiable.

In remain of the paper we only consider the interpretation that is coincident with
the domain knowledge and assumes that the ability specification is satisfiable.

Definition 2.5(accomplishability of primitive tasks) Let I be the ability
specification and o a primitive task. Let {x,x,,...,x,} be the set of all free variables
that appear in the task formula in the set ['U {a.}. We say that a is accomplishable if
for every interpretation I and every assignment (xi/cy,X2/Cy,....xn/Cn) OF (X1,X2,....%n)
that satisfy ", we have (au(x,/c1,x2/Ca,. .. Xn/cn))'=1.

Now we will give out the concept of accomplishable task. The concepts of strategy
and realization used are same as those in [2].

Observe that development preserves the basic structure of the formula. L.e.

1. assume 0 y=VP(t,5,...,t,).p (or oy=3P(#,5,...,t,).p), then for every realization
R=<0l,01,0,-..,0> Of 0, a; must has the form of VP(#,5,....1).p; (or
AP(¢,t,...,t,).By)) (1<i<n). For every assignment (¢,/cy, ty/cy,... t/c,) the sequence
of Bi(ti/c1, t/cy,.. . tlcy), denoted by [P: ti/ci, ty/ca,... t/c,] R, 1s an realization of
B( tl/C], tz/Cz,. . .,fn/Cn).

2. Assume ay=VR(#,)).p (or o=3R(#y).p), then for every realization
R=<0lp,0l1,00,. . .,0n> Of oy, o must has the form of VR(ty).p; (or IR(z,y).By)
(1<i<n) and for every constant » the sequence of B;(y/b), denoted by [R:y/b]R , is
an realization of B(y/b).

3. Assume ay=BAy(or ay=pvy), then for every realization ® =<oty,0t1,0,. . .,0> 0of oo,
a; can be expressed as B; Ay ; (or Bivy ;) (1<i<n) such that <B¢,B,o,...,pn> and
<Y0,Y15Y25- - Y>> denoted by p(®R) and r(R®), are realizations of  and y respectively.

4. Assume o=F—, then for every realization ® =<o,0;,0,...,0> 0f ag, o; must
has the form of B; —>v; (1<i<n) . <Bo,p1,P2- - -.Pw> and <yo,y1,Y2,---»¥m> denoted by
a(®) and c(®R), are realizations of § and y respectively.

Definition 2.6 We say that an realization ®=<a, o, Qy,..., 0, of a task formula
o is successful if one of the following conditions holds:

1. If 0, is an atomic task formula, or ag=—a and a is an atomic task formula(both
imply m=0), and o is accomplishable;

2. g=VP(t,tp,...,t,).p and [P: ti/cy, ty/cy,.. . ,tn/cy] R is successful for every assignment
([1/6‘1,[2/6‘2,. . .,fn/Cn) such that P(C],Cz,. . .,Cn).

3. ay=3P(t,t,...,t,).p and there is an assignment (t/cy,ty/cy,... t/c,) such that
P(cy,ca,...,cn) and [P:ti/cy,ty/cy,. .. t/cn] R is successful;



The Description Logic of Task 17

. ap=VR(z,y).p and [R:y/b] R is successful for every constant b such that R(z,b);

. ap=3R(z,y).p and there is a constant b such that R(¢,b) and [R:y/b] ® is successful ;
. dp=PAy and p(R) and r(R) both are successful;

a=Pvy and either p(®) or r(R) is successful;

. dp=P—>y and c(R) if successful if a(®) is successful.

. 0 is an additive formula and either m=0 or m>1 and <o, ay,..., 0,;,> is successful.
Definition 2.7 (accomplishability of tasks) Let a be a task formula. If there is an

action strategy f'such that every realization of o with f'is successful then we say that o
is accomplishable.

NN EEN T NV RN

3 Accomplishablity judgment of primitive tasks

In this section the method for accomplishablity judgment of primitive tasks is
presented. The work in this section is inspired and highly related to F. Baader and
P. Hanschke’s work for the consistent judgment of description logic formula set [9].

For a task formula a, it is accomplishable if and only if that I'U {—a} is not
satisfiable. So here we need only give out the method for satisfiability judgment of
finite set of primitive task formulas.

First, we assume that the task formula in the task formula set, denoted by S, does
not has R(1) type free variable. A variable of task formula a is said to be R(1) type if
x is a free variable and o has sub formula has the form VR(x,y). or AR(x,y).p. In fact
if there is a R(1) type free variables x in S; , the number of constant a with a constant
b such that R(a,b) is in domain knowledge is finite, assume {aj,a,,...,a,} is the set of
all such a, then S; is satisfiable if and only if at least one of the sets S;(x/a;) is
satisfiable.

Furthermore, we assume that every formula in S; is in negation normal form, i.e. —
occurs only immediately before the atom task name, in fact if a task formula in S, is
not in negation normal form it can be transformed in to an equivalent one.

Definition 3.1(transformation rules) Let M be a finite set of finite primitive task
formula sets. The following rule will replace one of elements S of M by another set
(or several other sets) of primitive task formulas.

Rule 1: If a(ci/ti,co/ty,....co/th) €S for every assignment (ci/t1,cy/ty,...,cy/t,) such
that P(cy,ca,...,cn), VP(t1,t,....t;).00 is a sub formula of one element of S and
VP( t1,t,...,t,). o is not in S, then replace S by S'=SU {VP(t,,5,...,t,). a.};

Rule 1': if P(cy,ca,...,c0), VP(t1,t0,...,t0).00€ S and oci/t;,co/ty,...,co/ty) 1S not in S,
then replace S by S'=S U {ac1/t1,ca/ts,. . .,Colt)};

Rule 2: if there is an assignment (ci/t,co/ta,...,co/ty) of (f1,t,...,t,) such that
P(cy,ca,...,c) and alci/t,co/ty,...,.colty) € S, AP(t1,t,...,t,).0 is a sub formula of one
element of S but AP(#,1,,...,t,). o is not in S, then replace S by S'=SU {3P(¢,5,....t,).
o}

Rule 2': if 3P(t,,1,...,t,).a € S, but there is no assignments (c,/¢1,¢a/t,. . .,co/t,) such
that P(cy,co,...,cn) and alc)/ti,co/ta,...,ch/ty) € S, then replace S by sets S U
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{a(ci/ti,calty,...,.colty)} Where (c/ti,co/ta,...,co/ty) are all assignments of (¢,6,...,4)
such that P(cy,cy,...,cn);

Rule 3: if a(y/b)e S for every constant b such that R(a,b), VR(a,y).a is a sub
formula of one element of S and VR(a,y). a does not in S, then replace S by S'=SU
{VR(a.y).a };

Rule 3": if VR(a,y).a0 € S, but there is a constant b such that R(a,b) and a(y/b) is
not in S, then replace S by S'=SU {a(y/b)};

Rule 4: if there is a constant b such that R(a,b) and a(y/b)e S, dR(a,y).a is a sub
formula of one element of S but 3R(a,y).a is not in S, then replace S by S'=SU
{ IR(ay).a};

Rule 4': if IR(a,y).a € S, but there is not a constant b such that R(a,b) and
o(y/b)e S, assume the set of all constant b such that R(a,b) is {bi,b,...,b,}, then
replace S by n sets S=S U {a(y/b)}(i=1,2,...,n);

Rule 5: if ae S and Be S, aAP is an sub formula of one element of S, but aAf is
not in S, then replace S by S'=SU {aAB};

Rule 5": if anBe S but a and B are not both in S, then replace S by S'=SU { o,,B};

Rule 6:if ae S or fe S, avp is an sub formula of one element of S and avf is not
in S, then replace S by S'=SU {avp};

Rule 6’: if avBe S but none of the o and B is in S, then replace S by S'=SU {a}
and S"=SU {B};

Rule 7: ifa—Pe S and ace S but B in not in S, then replace S by S'=SU {B};

Definition 3.2 (clash) We say that a primitive formula set S has a clash if a and
—ao are both in S for certain task formula o.

To test whether a finite set of primitive task formulas S; is satisfiable or not, we set
M;={S;} and apply the transformation rule in the definition 3.3 to M as long as
possible then we finally end up with a complete Set M; i.e. a set to which no rule are
applicable. The initial set S, is satisfiable if and only if there is a set in M, does not
contain a clash (see the follow part of this section for a proof). The test procedure can
be defined in pseudo programming language as follows:

Algorithm 3.1 (satisfiability judgment) The following procedure takes a finite set
of primitive formulas as an argument and checks whether it is satisfiable or not.

Define procedure check-satisfiable(S;)
r=1;
M]Z:{Sl}
While ‘a transformation rule is applicable to M,
do
r=r+l
M;,:=apply-a-transformation rule(M;.)
od
if ‘there is an S € M, that does not contain a clash’
then return YES;
else return NO.

For example, let {P(room), R(room, mop)} be the domain knowledge. P(room)
means that the cleaner is in charge of the room. R(room, mop) means that mop is the
necessary tool to clean the room. If the ability specification is
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{VP(x).(VR(x,y).F(»)—C(x)), F(mop)}, where VP(x).(VR(x,y).F(y)—>C(x)) means that
for every object x that the cleaner is in charge of, if be given all necessity tools the
cleaner can accomplish the task of cleaning it. F(mop) means that the keeper can give
the cleaner a mop. To judge whether C(room) is accomplishable or not, i.e. whether
the cleaner can clean the room or not, we need to judge whether the set
Si={VP(x).(VR(x,y).F(y)—>C(x)), F(mop),—~C(room)} is satisfiable or not. The set M;
generated in the testing process are:
M,;={{VP(x).(VR(x,y).F(y)=>C(x)), F(mop), = C(room)} };
M,={{VP(x).(VR(x,y).F(y)>C(x)), F(mop), —~C(room),VR(room,y).F(y)—>C(room)} }
(by Rule 1, VP(x).(VR(x,y).F(y)—>C(x) )and P(room) );
M;={{VP(x).(VR(x,»)F(y)—>C(x)), F(mop), =C(room)}, VR(room,y).F(y)—>C(room),
VR (room,y).F(y) }
( by Rule 3, R(room, mop) and F(mop) );
M={{VP(x).(VR(x,y).F(y)>C(x)), F(mop), =C(room)}, VR(room,y).F(y)—>C(room),
VR(room,y).F(y), C(room)} }
( by Rule 7, VR(room,y).F(y)—>C(room) and VR(room,y).F(y) ).

Then S, is not satisfiable because there is not a set in M, that does not contain a
clash. So we know that C(room) is accomplishable.

For a primitive task formula 3 the length of B, denoted by |B|, is inductively
defined as:
1. If B is an atomic task formula or f=—o and a is an atomic task formula, then ||

=1;

. if B=VP(¢),5,...,t,).0 or B=3P(¢t1,L,,...,t,).0 then |B|=|a+1;
. if B=VR(t,y).a. or =3 R(t,y).a, then |B|=|a|+1;
. if B=anAy or B=avy, then |B=|of+y |;
. if B=a—>y, then |B|=|a+y |.

We call a task formula o that has the form a=BAy is a A-task. The maximal A-
expression of a A-task is an express o;AQ,...AdQ, such that a;is no long a A-task for
every i(1<i<n). If o is a A-task and its maximal A-expression is oljAQ... A0, then the
A-length of a is n. The concept of v-task and the v-length of a v-task, the concept of
—-task and the —-length of a —-task all can be defined analogously.

Proposition 3.1 The algorithm 3.1 can always compute a complete set M, in finite
time and the initial set S, is not satisfiable if and only all set in M, contain a clash.

Proof: Because the number of different assignments (ci/t),co/ty,....colty) of
(x1,X%2,...,xy) such that P(cy,c,,...,c,) for every predict P that occurs in domain
knowledge, the number of different sub formulas that has the form VP(#,,t,...,t,).a of
elements of S;, the number of different sub formulas that has the form
IP(t),t,...,t,).0 of elements of S, the number of different constant » which satisfies
R(a,b) for each pair (a,R) of constant and role that occurs in S;, the number of the sub
formulas that has the form VR(z,y).a of elements of S|, the number the sub formulas
that has the form JR(#,y).a of elements of S;, the number of the different sub formulas
that has the form of aAf of elements of S; and the maximal A-length of them, the
number of different sub formula that has the form avf} of elements of S, and the
maximal v-length of them, the number of the different formula that has the form
a—f of the elements of S; and the maximal —-length of them are all finite, then it

wm AW
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can be proved that the rules in definition 3.1 can only be applied for finite times, so
the computation process will terminate in finite time.

The second part of the proposition is a consequence of lemma 3.1 and lemma 3.2
bellows, where the notion of contradictory formula set which is syntactic equivalent
of not satisfiable formula set is defined by induction on the relation of “descendant ”.
A formula set S occurring in the computation is contradictory with respect to the
computation if and only if
1. S does not have a descendant and contains a clash or
2. all descendants of S are contradictory.

Lemma 3.1 If the initial formula set is contradictory with respect to a given
computation then it is not satisfiable.

Proof: The proof is by induction on the definition of contradictory with a case
analysis according to the transformation rule applied. Assume S; is a given set of
formulas which is contradictory with respect to a given computation, we will show
that it is not satisfiable.

If S| does not have a descendant, then it must have a clash. Obviously a set of
formulas that have a clash is not satisfiable. For the induction step, assume S is
satiafiable, we have to show that the descendant (resp. one of the descendant in the
case of rule 2', rule 4', and rule 6’ ) of S is satisfiable too, this will be contradiction to
the induction hypothesis, because all descendants of contradictory set are
contradictory.

We shall only demonstrate the case of rule 5. The other cases can be treated
similarly. Assume that rule 5 is applied to a set, denoted by S,.; means that there are
two formula o and B such that ae S, and B S, and the descendant of S, ; denoted
by S, is equal to S.; U {anB}. If the interpretation I and the assignment
(/e xalca. . xolcy) satisfy  S.;, then we have (o(xi/cixo/ca... xn/cy))=1 and
(BCxi/c1xa/cs. .. xolen))'=1, thus ((0AB)(xi/c1,x2/Ca. .. xn/cy))'=1 by the definition of the
semantic of closed task formulas, so I and (x/c1,xy/cs...,x,/cy) satisfy S; too,

Lemma 3.2 If the initial formula set is not contradictory with respect to a given
computation then it is satisfiable.

Proof: If S, is not contradictory then there is a primitive formula set So S, in the
complete set M, such that there is no clash in S. Assume the set of all different free
variable occur in S is {x1,Xp,...,Xn}, we define an interpretation I:(AI,-I) as follows:

A" is the set of all constants. -' assigns to each constant itself, to each predict P a set
PI:{(al, sy ..., n)\aieAI (1<i<n) and P(a |, a,..., a ,)}, to each role R a set
R'={(a,b)| a,beA" and R(a,b)}. Let (¢,ca,...,c) be an arbitrary m-tuple of constants,
! assigns each atomic task A(ay,ay,...,a)(j=1,2,3,...) an element of {0,1} according
to following rule:

A(abazw’aj)lz{o if —A(a,,a,,..,a;) € S(x, /¢, x,/¢y50s%,,/C,,)
else
We will prove that the interpretation I and the assignment (ci/t1,co/ta,...,.Co/tm)
satisfy S so satisfy S also. We use induction on the length of a.
If |af=1, then o is an atomic task or a=—f and P is an atomic task. Then
(0U(x1/c1.x0/Ca. .. Xl Cm))'=1 by the definition of 1.
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Assume |a|=k (k>1), we prove that (a(xl/cl,xz/cz...,xm/cm))lzl. In the case of
a=VP(t,b,....t,).p. M; is complete then we have B(¢/a.tr/a,,... t/a,)€S for every
assignment (t/aytay,.. . tlay,) such that P(ay,ay,...,a,), )
(B(t/ay,tlay,. . tilay)( xi/c,xolcs. . Xm/Cm))'=1 by the induction hypothesis, so we have
(a(xi/cy,xo/cy. . .,xm/cm))lzl. The other cases can be proved analogously.

4 Logic DTL

The logic DTL (Description Logic of Tasks) that we are going to define in this section
is intended to axiomatize the set of accomplishable task formulas. It will be
mentioned that the concept of quasiaction and quasireaction of a task formula is same
as those in [2].

Definition 4.1 (DTL). The axioms of DTL are all the primitive formulas that are
accomplishable.

The rules of inference are

A-rule:

E, where T is an elementary quasiaction for o.

a
R-rule:

G775 e where €21 and 7,70,y 7, are all quasireaction for o, & is

a
the primitivization of o.

Theorem 4.1(soundness) Let o be a task formula, if DTL }o then a is
accomplishable.

Theorem 4.2 (completeness) Let o be a task formula, if a is accomplishable, then
DTL }o.

The only different between the logic DTL and the logic L proposed in [2] is the
different of their axioms. Axioms of DTL are primitive task formulas that are
accomplishable while the axioms of L are formulas provable in classical first order
logic. The rules of inference in them are same. Keep in mind that the concept of
strategy, quasiaction and quasireaction used in this paper are same to those in [2]. So,
the proof of the soundness, completeness of DTL can be carried out analogically as
the proof of the corresponding properties of the logic L.

Theorem 4.3 (decidability) DTL is decidable.

Proof: Here is an informal description of a decision procedure for DTL |-a,
together with a proof, by induction on the additive complexity ofa., that the procedure
takes a finite time. Given a formula o

(a) If a is primitive, then we can judge whether it is an axiom, i.e. whether it is
accomplishable using algorithm 3.1 in finite time by Proposition 3.1.

(b) If o is not primitive, then the only way it can be proved in DTL is if either one
of the elementary quasiactions for it is provable, or all of the elementary
quasireactions for it, together with its primitivization, are provable in DTL. Whether
the primitivization is provable can be checked in a finite time. Also, as we noted, the
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number all the elementary quasiactions and quasireactions for a is finite. So, check
each of them for provability in DTL. If it turns out that either one of the elementary
quasiactions, or all of the elementary quasireactions together with the primitivization
of a are provable in DTL, then output “yes”, otherwise output “no”. The additive
complexities of those elementary quasiactions and quasireactions are lower than the
additive complexity of o and, by the induction hypothesis, their provability in DTL

can be checked in a finite time. So that this step, too, can be completed in a finite time.

5

Conclusion

The description logic of tasks enable tasks description and have more reasoning

power, it can be used to structure the cooperation plan system for multi agent system.
For example, for behavior modeling of large-scale battlefield simulation, we use it to
describe the ability knowledge of military entities and the relations among them, then
we can use the reasoning power of it for cooperation actions plan and verification.
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Abstract. This paper proposes a practical way for circumscription. The
meanings of the practical way are 1) a goal-oriented prover is given for solving
circumscription problems. A feature of the prover is that the priority and the
variable predicates are suggested so as to prove the intended results whereas
usual methods prove queries by giving the priority and the variable predicates
in advance. This prover is an application of the one for DNF formulae in the
object system T and is the set of meta-rules of a meta-predicate which
represents a clause. Circumscription formulae are represented as the meta-
rules. The SLD-resolution procedures for the meta-system are given and a
circumscription problem is solved by showing an empty node in the SLD-tree if
semi-decidable. 2) Based on the prover, formulae satisfying circumscription
formulae are given for predicates with functions. Practically circumscription is
applied to prove the negation of a predicate p. For the formulae given above to
be false, the condition is needed that T made p false is consistent with T. 3)
Variable predicates are generalized so as to prove T made p false. By the
generalization it is shown that circumscription problems are practically solved
by giving a model to show the consistency for the undecidable cases. By
encapsulating the consistency check as an oracle a practical logic programming
for circumscription is given for queries without universal quantifiers. The
oracle for queries with universal quantifiers is also given.

1 Introduction

Nonmonotonic logics are important for inferences based on defeasible assumptions in
Al [1]. Major nonmonotonic logics are circumscription [7], default logic, and
autoepistemic logic. These logics deal with the concepts of plausibility and normality
and the proof systems are complicated. As seen in the sequent calculi for
nonmonotonic logics these proof systems include both the proof and disproof
procedures [3, 5]. Default and autoepistemic logics need the disproof-procedures to
generate the extensions and the expansions, respectively. Regarding the provers
circumscription is attractive from the following two reasons. One is that in
propositional case the complexity of circumscription is IT°, of polynomial hierarchy
whereas that of autoepistemic logic is IT°;-complete for skeptical reasoning [4]. The
other is that circumscription is formalized in classical logic by a formula in second-
order logic, and resolution procedures can be applied to the provers. The proof-
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systems of circumscription are usually based on minimal modes, and disproof-
procedures are needed to generate minimal models. In the tableau calculus it is
needed to show that the branches which are not closed are not minimal models by
showing that there are predicates not proved in the branches [8]. For a given theory T
and a query the MILO-resolution needs to generate a tree which shows that T and the
query are consistent, and to prove all the leaves in T [10].

There are several restrictions in these provers, 1) The selection priority of the
predicates circumscribed and the variable predicates must be given a priori [6]. 2)
There are no procedures for the cases where the predicates include functions, i.e., the
ones undecidable. Originally nonmonotonic systems are required to realize the
concepts of plausibility and normality needed. The priority and the variable
predicates must be chosen such that the requirements are satisfied. Therefore these
vary accordingly to the queries. In this meaning a goal-oriented prover is practically
needed such that both the circumscribed (the priority) and the variable predicates can
be suggested in the processes of proofs. Regarding 2) the circumscription formula
includes at least II°, formulas of arithmetical hierarchy, and the system is
undecidable. Therefore semi-decidable provers are impossible. However if the
undecidability is confined it is possible to make provers semi-decidable except the
confined undecidable procedures. This method gives a practical way to solve
problems for circumscription. For example if the undecidability is due to the proof of
the consistency then it can be resolved practically by giving a model though not
formally.

This paper proposes a goal-oriented prover which solve practically the above two
problems. The proof-system is an application of that for the set of formulae in the
disjunctive normal forms (DNF) [2]. The system is the set of Horn clauses called
meta-rules of a second-order predicate Prov called a meta-predicate which means a
clause. The system is called a meta-system, and is generated from the DNF formulae
in the object system T. SLD-resolution procedures are given for the meta-system, and
the search space is an SLD-tree. The meta-system is sound and complete in the
meaning that if Prov with the empty value is proved in the meta-system then the
object system is inconsistent, and vice versa. Let T be the set of clauses. For a given
predicate p the circumscription formula of p is that a«—p is proved from p«—a and
T(p/a), where T(p/a) is given by substituting a for p in T. a is called a circumscribing
formula of p. The circumscription formula is a DNF formula, since the body consists
of p<—a and T(p/a), where T(p/a) is a conjunction of clauses due to the fact that T is
the set of clauses. Therefore the circumscription formula is a meta-rule in the meta-
system and is called the circumscription meta-rule. Generally (T+circumscription) is
undecidable and so is the meta-system.

In Sec.2, the proof system is formulated. In Sec.3, based on the prover,
circumscribing formulae are given without variable predicates for the set of typical
clauses of predicates with functions. Practically circumscription is applied to prove
the negation of p. For the formulae given above to be false, the condition must be
satisfied that T made p false is consistent with T. When the condition is satisfied,
variable predicates are generalized so as to prove T made p false and are called
generalized variable-predicates. Generally the consistency check is undecidable. By
encapsulating the consistency check as an oracle, a practical logic programming for
circumscription is given for queries without universal quantifiers, i.e., circumscription
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problems are practically solved by giving a model to show the consistency. The
oracle for queries with universal quantifiers is also given.

2 Formalization

Let (I') be a set of formulas of first-order logic. Without loss of generality it is
assumed that predicates are one variable except the special predicate =, the equality.
Assuming Skolem’s functions and the Henkin theory of (I), let " be the matrix of (I")
represented as the set of DNF formulae. In the following each upper case letter, U, W,
X, Y or Z, takes the values of disjunctions, conjunctions of positive predicates, or the
empty symbol O, and each lower case letter except x and y represents a predicate in
the formula the upper case letter denotes. x or y is for the variable of (I'). X and Y
are the variables of the meta-system called M whose values are the conjunctions and
the disjunctions of the Herbrand base of I', respectively. Now introduce a meta-
predicate Prov(X;Y) which means Y«X, where X and Y are a conjunction and a
disjunction of positive predicates, respectively. When Y={Y1,Y2} and X=X1&X2,
Prov(X;Y) is also represented as Prov(X1,X2;Y1,Y2), where & is the conjunction
sign and {} means the disjunction of the elements. The meta-system for to I is
defined as follows.

Definition 1 Let I be the set of the formulas, (Z«W)«—(Z1<—W1)&...&(Zm«—Wm)
and (Z’«<—W’)«. The meta-system M is the set of meta-rules as follows.

MO  Prov(X,X1;Y1,Y) « Prov(X,X1,X1;Y1,Y1,Y),

M1 Prov(X,u;un,Y) <,

M2 Prov(X;Y) < Prov(X;ul,Y)&...&Prov(X;uj,Y)&Prov(X,U;Y), U=ul &...&uj,
M3 Prov(X,W;Z,Y) < Prov(X,W,W1;Z1, Z,Y)&...&Prov(X,W,Wm;Zm, Z,Y),
M4  Prov(X,W’;Z’,Y) «,

where u, ul,..., and uj are predicates (x is not shown explicitly). The left and the
right formulae of a meta-rule are called the head and the body, respectively. When
the negation of a query is added to I', the query is represented as a conjunction in the
normal form and the corresponding meta-rule is M3 with W and Z empty. The body
of a meta-rule without the head is called a goal clause for simplicity. It is noted that
M is a proving system without the negation symbol ~.

Definition 2 (The SLD-tree) The root node is Prov(o; o). Each node is labeled a
conjunction of Prov. Let Prov(X1;Y1) be the left most of the conjunction labeled to a
node. Then the conjunctions below the node are generated as follows. In the
following ‘X1 (Y1) includes W (Z)’ means that every predicate in W (Z) matches
with a predicate in X1 (Y1) with the most general unifier. X-X1 means the formula
removed atoms in X1 from X.

P1: If Prov(X1;Y1) matches with the head of M1or M4 then remove it.

P2: If X1 and Y1 include W and Z in M3, respectively, then remove it and add
Prov(X1,Wi;Zi, Y1), (1<i<m).

P3: If Y1 includes Z in M3 and does not include any ui, (1<i<j), where ul&...&uj=
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W-X1, then remove Prov(X1;Y1) and add Prov(X1;ui, Y1), (1<i<j), and
Prov(X1,W,Wi;Zi,Y1), (1<i<m).

P4: If Y1 includes Z’ in M4 and does not include any ui, (1<i<j), where ul&...&uj=
W’-X1, then remove Prov(X1;Y1) and add Prov(X1;ui, Y1), (1<i<).

The generated meta-predicates obtained by applying the above procedures
repeatedly are called the descendants of Prov(X1;Y1). It is noted that for P2, P3, or
P4 to be applied to Prov(X1;Y1), Y1 must include Z or Z’. The branch whose leaf is
the empty node is called a success-branch. Theorems 3 and 4 have been proved in [2].

Theorem 3 If there is the empty node in the SLD-tree for M then I is inconsistent
and vice versa.

Theorem 4 [f the SLD-tree includes the empty node then there is a success-branch
such that any meta-predicate in a node doesn’t appear in the descendants, i.e., there
are no loops such that a meta-predicate is expanded repeatedly.

Example 5 To show the existence of x for p(x) from {p(a),p(b)}, where a and b are
constant. I'is {p(a),p(b)}« and the negation of the query is «—p(x). Corresponding
meta-rules and the goal clause for Prov(g; o) are, respectively,

Prov(X; p(a),p(b),Y) «—, (M
Prov(X;Y) « Prov(X;p(x),Y), 2)
«— Prov(o; ), 3)

where the other meta-rules, MO, M1, and M2 are omitted (so are hereafter). (2) is the
meta-rule corresponding to the negation of the query in I'. The SLD-tree is

Prov(o;o) - Prov(o;p(x)) - Prov(o;p(x),p(x’)) - .

The second is obtained by matching Prov(o;0) with the head of (2) and P2. The third
is given by matching Prov(o;p(x)) with the head of (2) and P2. By Theorem 4, x and
x” are different. The last is shown by (1) and P1 with x=a and x’=b.

Let T be the set of clauses. The formulation of circumscription is given in second-
order logic with the universal quantifier. The universal quantifiers in first and
second-order logics satisfy the same inference rules [9] and a circumscription formula
is a DNF formula in T. Therefore the meta-rule for circumscription is in the form of
M3 and is given as follows.

C1 Prov(X,p(x);a(x),Y) = Prov(X,p(x),a(C);p(c).(x), Y ) &T(pla,x/c’:X,p(x);0(x),Y),
where ¢ and ¢’ are constant symbols not appearing in T and T(p/a,x/c’:X,p(x); a(x),Y)
is the conjunction of meta-predicates for clauses in T replaced p and x with a and ¢’,

respectively. For example when T is the set of q(x)«—p(x) and r(x)«—s(a),

T(p/a,x/c’:X,p(x);a(x),Y)=Prov(X,p(x),a(c”);q(c’),o(x),Y)
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& Prov(X,p(x),s(a);r(c”),ux),Y).

However the second meta-predicate is removed since it is true in M.
The other meta-rules needed for (T+circumscription) relate to the equality (=).

C2 Prov(X,X1(x);Y1(x),Y) « Prov(X,X1(x),X1(y),x=y;Y 1(y),Y1(x),Y)
&Prov(X,X1(x);x=y,Y1(x),Y),

C3 Prov(X,x=y,x=y’;Y) « Prov(X,y=y’;Y),

C4 Prov(X;x=x,Y) «,

where the variables x and y in X1 and Y1 are explicitly shown. C2 is the meta-rule to
show that if a meta-predicate is proved at x=y and for any values not equal to y then
the meta-predicate is proved for any values of x.

It is noted that a in C1 is a variable in the meta-system. By definition a(x) in the
head of Cl1 is a disjunction of positive predicates and a(c) in the first meta-predicate
in the body is a conjunction of positive predicates. Moreover a is unified with any
formula. This is understood by regarding a as a positive predicate with the following
auxiliary meta-rules, respectively, corresponding to {al(x),a2(x)}, al(x)&o2(x),
{~a1(x),02(x)}, and ~al(x)&a2(x) for a(x).

Al Prov(X, a(x);Y) < Prov(X,al(x);Y)&Prov(X, a2(x);Y),
A2 Prov(X;a(x),Y) < Prov(X;al(x),Y)&Prov(X;02(x),Y),
A3 Prov(X;u(x),Y) < Prov(X,al(x);02(x),Y),

A4 Prov(X,a(x);Y) < Prov(X,02(x);a1(x),Y).

Definition 6 The meta-system MC for (T+circumscription) is the set of M0, M1, M2,
Cl1, C2,C3, C4 and the meta-rules of M4 for the clauses in T, and the auxiliary meta-
rules Al, A2, A3, and A4.

3 Practical Logic Programming for Circumscription

Example 7 T is {p(a),p(b)}«. Then p(x)={p(a)&x=a, p(b)&x=b} is proved in MC.
p(x)—{p(a)&x=a, p(b)&x=b} is obvious. {p(a)&x=a, p(b)&x=b}«p(x) is shown as
follows. Meta-rules are with a(x)={p(a)&x=a,p(b)&x=b} and a constant d not in MC,
Prov(X;p(a).p(b),Y) <,

Prov(X;Y) « Prov(X,p(d);a(d),Y).

A success-branch is given as follows, with X1=p(d)&a(c), and Y1={p(c),o(d)}. The
root, Prov(o;0), is omitted (so is hereafter).



28 Arai M.

Prov(p(d);a(d)) - Prov(X1;Y1) - Prov(X1,a(a),c=a;p(a),Y1)&Prov(X1;c=a,Y1) -
- Prov(X1;c=a,Y1) - Prov(p(d),a(c);c=a,c=b,p(c),a(d)) - O.

The second node is given by matching with C1 and is the first meta-predicate in the
body of C1 since T(p/a,x/c’:X,p(x); a(x),Y) is true. The third is given by applying C2
with y=a. By applying Al to the first meta-predicate Prov(X1,p(a),c=a;p(a),Y 1) and
Prov(X1,p(b),c=b,c=a;p(a),Y1) are obtained. Both are true by P1 and by C3 with a=b
false, respectively, and the fourth node is given. Similarly the fifth node is obtained
by applying C2 with y=b. The last is given by Al and P1.

It is noted that {x=a,x=b}«p(x) is also proved in Example 7. Then the following
two circumscription meta-rules corresponding to o(x)=x=a and o(x)=x=b are used.

Prov(X,p(x);x=a,Y) « Prov(X,p(x),c=a;p(c),x=a,Y),
Prov(X,p(x);x=b,Y) « Prov(X,p(x),c'=b;p(c'),x=b,Y).

Similarly the well-known solution, i.e., for all x and all y {(x=a«<p(x)),
(y=b<p(y))}, is also proved in MC by using the above two circumscription meta-
rules with the following meta-rule for the query and constants, d and d’, not in MC.

Prov(X;Y) < Prov(X,p(d),p(d’);d=a,d’=b,Y).

Example 8 (The priority and variable predicates) With A, S, E, pl, and p2 for
adult, student, employed, abnormall, and abnormal2, respectively, Let T be
pl(X)—SX)&E(x), {E(X),p2(x)}—A(x), A(X)«—S(x), S(m)«— and let the query be
~E(m), where m (Mary) is a constant. The corresponding meta-rules are,
respectively,

Prov(X,S(x),E(x);p1(x),Y) <, 4)
Prov(X,A(x);E(x),p2(x),Y) <, Q)
Prov(X,S(x);A(x),Y) <, (6)
Prov(X;S(m),Y) «, (7
Prov(X;Y) < Prov(X,E(m);Y). 3

The circumscription meta-rules for p1 and p2 are, respectively,

Prov(X,p1(x);a1(x),Y)
—Prov(X,pl(x),al(c);pl(c),al(x),Y)&Prov(X,pl(x),S(c’),E(c’);al(c’),al(x),Y), (9)

Prov(X,p2(x);02(x),Y)
«—Prov(X,p2(x),02(d);p2(d),02(x),Y)&Prov(X,p2(x),A(d’);E(d’),a2(d’),02(x),Y).(10)
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It is noted that the second meta-predicate in the body of (9) is T(pl/al,x/c’: X,p1(x);
al(x),Y) since from (5) to (8) the meta-predicates are not changed and are true.
Therefore these meta-predicates in T(p/a,x/c’:X,p(x); a(x),Y) are dropped. Similarly
(10) is obtained. The first and the second nodes of a success-branch are given by
making al(x) empty for a value x” in (9),

Prov(E(m); o) -
- Prov(E(m);p1(x*))&Prov(p1(x”),al(c);pl(c))&Prov(pl(x’),S(c’),E(c’);al(c’)) -.

The second node is given by P3. The first meta-predicate of the second node is
expanded into Prov(E(m);S(x”),p1(x’))&Prov(E(m);E(x’),p1(x’)) by matching with
(4) and by applying P4 . From (7) the first meta-predicate is removed with x’=m by
P1, and the second meta-predicate is also removed by P1. Therefore the first meta-
predicate in the second node is removed. The third and the last nodes are

- Prov(pl(m),al(c);pl(c))&Prov(pl(m),S(c’),E(c’);al(c’)) - o.

The first meta-predicate in the third node is matched with (4) by unifying x and al(c)
with ¢ and S(c)&E(c), respectively, and is removed. By using the auxiliary meta-rule
A2, it is shown that the second meta-predicate is also removed by P1 and the empty
node is obtained. The condition that al(m) is false is satisfied by requiring that
S(x)&E(x) is false, i.e., there are no students employed. It is easily shown that the
empty node is not obtained by making o2(m) empty. Therefore the priority of pl is
higher than that of p2 and it is required that S or E is the variable predicate.

Suppose that for another student k (Ken), E(k) is another plausible query. Adding
Prov(X;S(k),Y) <, (7)

require that Prov(d;E(k)) is proved. A success-branch is by making o2(x) in (10)
empty at x=x’,

Prov(o;E(Kk)) -
- Prov(o;E(k),p2(x*))&Prov(p2(x”),02(d);p2(d))&Prov(p2(x’),A(d’);E(d’),a2(d’)) -.

The first meta-predicate of the second node is replaced by Prov(o;A(k),E(k),p2(k)) by
matching with (5) for x’=k and from P4. From (6) with P4 and (7”) with P1 the first
meta-predicate is removed. The third and the last nodes are

- Prov(p2(k),02(d);p2(d))&Prov(p2(k),A(d’);E(d’),a2(d’)) - .

The first meta-predicate of the third node is removed by applying A4 with
02(d)=~021(d)&022(d) and by matching with (5) by unifying a21(d) and 022(d) with
E(d) and A(d), respectively. The second meta-predicate is also removed by applying
A2 and A3. The priority of p2 is higher than that of p1 and the variable predicate is A
or E. The condition that 02(k) is false is satisfied by requiring that ~E(k)&A(k) is
false. It is easily shown that pl(k) and p2(m) are true, i.e., Ken is abnormal as a
student and so is Mary as an adult. In this case the condition that S(x)&E(x) is false is
not correct since al(k) is true. An alternative is that al(x)=S(X)&E(x)=x=k, i.e., only
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Ken is abnormal as a student. Similarly 02(x)=~E(x)&A(x)=x=m, i.e., only Mary is
abnormal as an adult.

Similarly the following Example 9 is proved in MC. Let Q(x) be a conjunction of
positive or negative predicates except p and if Q(x) includes p then p is positive with
functions.

Example 9 Let T be p(x)«—Q(x), or {p(x),p(a)}«—Q(x), or {p(x),p(f(x))}«—. Then

P(x)=Q(x), or p(x)={Q(x)&~p(a), p(a)&x=a}, or p(x)=p(x)& {p(f(-2.x)),p(f(2,x))},
respectively, is proved in MC.

As seen in Examples 8 and 9, to prove ~p(t) for a given term t, a sufficient condition
is that T made p(t) false is required. Generally this form of circumscription is
obtained by using generalized variable-predicates defined below.

Definition 10 Let S be a subset of the Herbrand universe of T. Then T(/p/0,S]) is
defined by the set of clauses of the form Z«<W in T for which W doesn’t include p(t)
and Z includes p(t) and from which p(t) is removed for tin S. Generalized variable-
predicates are defined such that T([p/0,S]) is satisfied when T([p/0,S]) is consistent
with T.

Theorem 11 If (T+T([p/0,S])) is consistent then ~p(t) for t in S is proved with the
generalized variable-predicates.

Proof: Let a(x) be false for x in S, and be p(x) for x not in S. Then p(x)«—a(x) is
proved and T(p/a) is proved assuming T([p/o,S]).

It is noted that for ¢ not in T, ~p(c) is not proved since a is a model of p, t is in the
Herbrand universe of T. It is also noted that ~p is not proved from T([p/o,S]), but is
proved by circumscription with generalized variable-predicates. Example 7 is also
shown by Theorem 11. Because let S be the set of x such that x#a,b. Since
T([p/o,S]) is empty and consistent with T, without generalized variable-predicates,
a(x) is given by the one which is false for x#a,b and is p(a) for x=a and p(b) for x=b.

Usually the consistency check is undecidable. By encapsulating the consistency
check as an oracle the logic programming with oracles is given in the following.

Definition 12 For a term t, O(p(?):S) is the oracle answering true if T([p/0,S’]) is
consistent with T and false otherwise, where S’ is the sum of S and t. The extended
predicate Prov(X;Y:m,X) is defined from Prov(X;Y) by adding two variables 7 and X
for predicates and subsets of the region of x, respectively. The oracle and
Prov(X;Y:r,2) satisfy the following meta-rules O1, O2, and G for the initial goal
clause.

Ol Prov(X,r(x);Y:1(x),2) < Prov(X,1(x);O0(r(x):X),Y:r(x),%),
02 Prov(X;Y:r(x),X) < Prov(X;Y:m,X’),

G « Prov(o;0:m,X),
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where 1 is the variable for predicates and X’ is defined by adding x to X.

02 is for preserving the information regarding X obtained in the proof. The
following Theorem 13 is immediately obtained.

Theorem 13 Let Mo be the meta-system M for T with Ol and O2. If ~p(t) is proved
by using C1 once then ~p(t) is proved in Mo, and Mo is decidable regarding
circumscription.  The converse is obtained for MC with generalized variable-
predicates.

Example 14 Let T be p(a)« and p(x)«p(f(x)). Suppose that there is not an n such
that a=f(n,b). Let S be the set of (b, f(b), ..., f(n,b), ...). Then T([p/o,S]) is empty.
Therefore ~p(b) is proved without generalized variable-predicates. In Mo there is the
success-branch due to the oracle.

Prov(p(b);0) - Prov(p(b);0(p(b):$)) - .

It is noted that the oracle in Definition 12 is for queries with the existential quantifier.
For the query, a(x)=f(n(x),x)=a, where n(x) is the Skolem’s function for n, the query
includes the universal quantifier regarding x. In this case the oracle requires the
information about the region in which a is false and is more complicated than the one
give above.

Definition 15 Let O(X1,p,;Y1:Sp) is the oracle answering true if T([p/a,Sp]) is
consistent with T and false otherwise, where Sp is the complement of the region in
which Y1(x)«—p(x)&X1(x) is proved. The oracle satisfies

Ou Prov(X,X1(x),r(x);Y1(x),Y:m,2) < Prov(X;O(X1,r;Y1:Sr),Y:w,X),

which is proved by Theorem 11. By using Ou, with a(x)=f(n(x),x)=a, a(x)«—p(x) is
proved since there is a success-branch such that

Prov(p(c);a(c):m,X) - Prov(o;O(p;a:Sp):w,X) - O,

where Sp is x such that f(n,x)#a for all n. The empty node is given by the oracle since
T([p/o,Sp]) is consistent with T.

As is easily seen when T is {p(a),p(b)}«, ~p(a) or ~p(b) can be inferred with
generalized variable-predicates. Therefore there is a problem in the definition of
generalized variable-predicates. To remove the problem one way is to require that
T([p/a,S)) is empty. However it is well known that meaningful results aren’t given
under the condition. Another way is to restrict the inference regarding ~p(a) or ~p(b)
as follows.

Definition 16 For a generalized variable-predicate p(t) let ¢ be a disjunction of
positive or negative predicates. Consider the restriction that ~p(t) can’t be inferred if
there is a clause ¢ such that {p(t),¢} is proved but ¢ is not proved in T. ‘Semi-
general’ and ‘restricted’ variable-predicates are the cases where ¢ is the disjunction
of positive p and ¢ is any disjunction not including ~p(t), respectively.
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It is easily shown that for the semi-general case the proof of ~p doesn’t depend on S
but depends on another circumscribed predicate q is used in the proof. For the
restricted case it is also shown that the necessary and sufficient condition to prove
~p(t) is that there are no clauses in T including p(t). An easy way to implement the
above restrictions is the use of oracles answering under the restrictions. Then the
oracle for the semi-general case is the most undecidable among the three.

4 Conclusion

A goal-oriented prover for solving circumscription problems was presented. A
feature of the prover is that the priority and the variable predicates are suggested so as
to prove the intended results. Based on the prover, formulae were given which satisfy
circumscription formulae without variable predicates for the set of typical clauses of
predicates with functions. Practically circumscription is applied to prove the negation
of a predicate. For the formulae given above to be false, the condition must be
satisfied that T made p false is consistent with T. Variable predicates are generalized
so as to prove T made p false. By the generalization it was shown that
circumscription problems are practically solved by giving a model to show the
consistency for the cases where predicates include functions for which the problems
become undecidable.  Generally consistency problems are undecidable. By
encapsulating the consistency check as an oracle a decidable prover was presented for
queries without universal quantifiers. The oracle with universal quantifiers was also
given. This prover is practical in the meaning that the consistency is proved by giving
a model of T. The restrictions, semi-general and restricted, were considered for
generalized variable-predicates not to infer undesirable predicates. These restrictions
are additive and more unified formulations are desired.
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Abstract A Constraint Satisfaction Problem (CSP) can be stated as
follows: we are given a set of variables, a finite and discrete domain for
each variable, and a set of constraints defined over the values that each
variable can simultaneously take. The objective is to find a consistent
assignment of values to variables in such a way that all constraints are
satisfied. To do this, a deterministic algorithm can be used. However,
the order in which the variables are considered in the search process
has a direct impact in the efficiency of the algorithm. Various heuristics
have been proposed to determine a convenient order, which are usually
divided in two types: static and dynamic. This investigation in particular
uses Genetic Algorithms as a heuristic to determine the dynamic variable
ordering during the search. The GA is coupled with a conventional CSP
solving method. Results show that the approach is efficient when tested
with a wide range of randomly generated problems.

1 Introduction

A Constraint Satisfaction Problem [1] (CSP) is composed of a finite set of vari-
ables, a discrete and finite domain of values for each variable, and a set of
constraints specifying the combinations of values that are acceptable. The aim
is to find a consistent assignment of values to variables in such a way that all
constraints are satisfied, or to show that a consistent assignment does not exist.
Several deterministic methods exist in the literature to carry out this process
[2,1], and solutions are found by searching systematically through the possible
assignments to variables, usually guided by heuristics. Many investigations have
shown that the order in which the variables are considered for instantiation in
the search has a direct impact in its efficiency [3]. There is a wide range of prac-
tical problems that can be modeled as CSPs. Applications of the standard form
of the problem have included theorem proving, graph coloring and timetabling,
machine vision, and job-shop scheduling [1]. Various heuristics have been pro-
posed in the literature to determine an appropriate variable ordering, which can
be classified in two types: static and dynamic. The heuristics of Static Variable
Ordering (SVO) generate an order before the search begins, and it is not changed
thereafter. In the heuristics of Dynamic Variable Ordering (DVO), the order in
which the next variable to be considered at any point depends on the current
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state of the search. It has been observed that heuristics for DVO outperform
those heuristics for SVO [4,3]. This article presents an investigation which uses
a Genetic Algorithm (GA) [5] as a dynamic heuristic to determine the appropri-
ate variable ordering during the search. The GA is used with a Forward Checking
algorithm (FC) and in this scheme the FC algorithm calls the GA which decides
the next variable (one or more) to be instantiated. Results of this approach are
compared against three other heuristics that have been widely used in similar
studies and have provided reasonable performance for a variety of problems.

The reminder of this article is organized as follows. The next section describes
the proposed solution model. Section 3 presents the results obtained and their
discussion when the model is tested over different instances of CSPs. Finally, in
Section 4 the conclusions are included.

2 Methodology

This report presents a combination of aspects of Constraint Satisfaction and
Evolutionary Computation. This association has been used before. For instance,
recent work by Craenen et al. [6] presents a comparative study on the perfor-
mance of different evolutionary algorithms for solving CSPs. Research by Eiben
[7] also discusses a methodology and directions for developing hybrid approaches
with both techniques. The work presented in this paper, however, establishes the
connection in a different way by concentrating on the problem of dynamic vari-
able ordering when solving constraint satisfaction problems.

We herein describe a model to define the instances of CSP problems used
in this work; they are binary CSPs (problems in which the constraints involve
only two variables) defined by a four-tuple (n,d, p1, p2), where n is the number
of variables, d is the domain associated with each variable (for this investigation
it is the same for all variables), p; is the probability that there is a constraint
between a pair of variables, and ps the probability that, given that there is a con-
straint between two variables, the pair of values is inconsistent. This means that
p1 and py represent an approximation of constraints in the problem (constraint
density) and a number of inconsistent pairs of values (constraint tightness), re-
spectively. A problem of this kind will have plw constraints, and pod? over
each constraint. The same model has been used in other similar studies [8,9,10].

As a basis for comparison, this work uses several variable ordering heuristics
that have been previously studied. These algorithms are based on the principle
of selecting the ‘most constrained variable’; the heuristics attempt to fail as soon
as possible when instantiating variables, what leads to reinstantiate the variables
with other values, and so eliminate search subregions of considerable size. These
heuristics are the following:

Brelaz. This heuristic was designed for solving graph coloring problems. For a
partial coloring, the saturation degree of a vertex is the number of different colors
used to color the adjacent vertices. For our problem, the heuristic selects first
the variable with maximum saturation degree (the variable with fewer values in
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its domain). Then, it breaks ties by selecting the variable with maximum degree
(the degree for a variable is the number of adjacent uninstantiated variables).
Rho. This heuristic selects first the variable that maximizes equation p =
[I.cc_c,(1 = pc). That is, the variable that minimizes [[.co (1 — pc), where
C is the set of constraints in the problem, C; is the set of incident constraints
in the current variable V; and if a constraint ¢ in average limits a fraction p.
of possible assignments, a fraction 1 — p. is allowed. Thus this heuristic selects
first the variable with the most and/or tightest constraints. The idea behind it
is that by selecting this variable, the remaining subproblem contains a larger
number of solutions (solution density p). The heuristic, however, does not take
into account the available domain of the variables.

Kappa. This heuristic selects the variable in such a way that the parameter
K is minimized, where k is a measure over the subproblem left after extracting
o loga(1-pe)

Zuev logs (dv)
where V' is the set of variables in the problem, and d, is the domain size of

variable v. This heuristic depends on the proposal by Gent et al. [11] in which
K captures the notion of the constrainedness of an ensemble of problems. The
problems with x < 1 are likely to be under-constrained, and solvable, whereas if
K > 1, these problems are likely to be over-constrained and unsolvable. Similarly
as the heuristic Rho, this heuristic intends to select a variable that will leave a
subproblem with high probability of being solvable.

More formal description of each heuristic can be found in the work by Gent
et al. [12].

the variable V; and is given by the following equation: k =

2.1 Solution Approach

The method for solving the CSPs in this work is the Forward Checking (FC)
algorithm. FC takes a variable from the uninstantiated ones, sets a value for
it, and propagates constraints (it keeps consistency in the domains of the adja-
cent and remaining variables). If one of those variables finishes with an empty
domain, then the algorithm chronologically backtracks (BT), otherwise it con-
tinues with the next variable. This algorithm was chosen because it provides
updated information in relation to the unsolved subproblem in each iteration.
This information is in fact used by the heuristics to determine the next variable
to instantiate. In our hybrid approach, the FC algorithm invokes the GA which
runs for a number of cycles and determines the variable (it may be one or more)
to be instantiated. Figure 1 illustrates the implementation diagram.

The variable(s) to be instantiated by the FC algorithm are taken from the
best individual in the last cycle of the GA, every time this is called. The se-
lected variables are those placed to the left-most part of the chromosome (a
permutation-based representation is used) where each gene represents the index
of each uninstantiated variable. n is the number of variables in the chromosome.

When the FC algorithm starts solving a given instance of CSP, it calls the
GA, which initializes the population (popsize is 15n) with randomly generated
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Figure 1. Flowchart of the proposed approach.

Table 1. Control parameters for the GA.

Parameter Initial|Following
Population 15n 10n
Cycles 12n 8n
Replacement 60% [60%
Crossover Probability [90% 90%
Mutation Probability [10% 10%

chromosomes, runs for 12n cycles, and returns the selected variables for instan-
tiation (step). FC is then used to assign values to step variables (the ones on
the left), so there will be n — step left to assign. For the subsequent invocations,
the population in the GA is initialized based on the best chromosome of the
previous call (we call it base chromosome and it is the one used to select the
step variables). Now, the new population of size 10(n — step) is created, which
is run for 8(n — step) cycles. The chromosome used to generate the new popu-
lation is modified using random alterations. A copy of the base chromosome is
also inserted in the population. The process continues until the complete CSP
has been solved. The type of the proposed GA is steady state, with tournament
selection, PMX crossover, and swap mutation. The GA was empirically tunned
in its parameters and the final parameter set is presented in Table 1.

The objective function in the GA is given by the following expression:

Ev =5, +nSy where S; = E:ff ﬁDmaxQ(n —1i)% and

i\ 2
So = Z?:Step 1 Dj (£)” being n the number of variables remaining to be in-
stantiated, step the number of variables the GA returns to the FC algorithm
to be instantiated, D; the size of the current available domain for variable V;,

Dy a0z is the largest domain associated to a variable, A; is the number of adjacent

variables to variable V; and T} = Z;lz stepi1 Cg?ljf)’;j w
of pairs in conflict between the current available values for variables V; and V.

The best individual is the one that maximizes the objective function above.
This fitness function combines ideas from both the Brelaz and Kappa heuristics,
specifically, with S; we are looking for those variables with small available do-

main and at the same time with constraints with high degree (with 4-), while

here conf; ; is the number
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So is used to emphasize that variables with small available domain should be se-
lected first (shifted to the left side). From this expression, it can be observed that
for smaller domains of the involved variables the value on S; would increase. It
is also beneficial to have those variables to the left of the chromosome, and this
is achieved by introducing the factor (n —i)2. The value that makes a difference
between two or more variables with the same minimal domain is T; which is a
sum of the tightness for each uninstantiated variable and adjacent to variable
V;. The quotient of T; divided by A; in S; would give us an idea of how ’hard’ in
average are the constraints linking V; with the rest of the variables, considering
only their available values. Ss gives preference to select first those variables with
smaller domain. This effect is achieved by maximizing the sum of the available
domains of the remaining variables. Taking advantage on this, we also consider
shifting variables with smaller available domains to the first positions in the
chromosome. We give a weight to each position with (j/n)?2. It is also important
to stress that when the FC algorithm is combined with heuristics Rho, Kappa,
or Bz, just a single variable is returned for instantiation, that is, parameter step
is only applies for the FC-GA combination.

3 Experiments and Results

This section presents the most important results obtained by the proposed ap-
proach. The experiments are divided following two different ways for generating
the instances: in the first one, the generated problem instances have the param-
eter po constant, that is, all constraints have the same number of inconsistent
pairs; while in the second one, this parameter is randomly varied, leaving dif-
ferent number of inconsistent pairs between constrained variables. This way of
generating the instances allows to observe the behavior of the various heuristics
when the parameters used to define an instance are not uniform. For both cases,
the performance of the algorithms is based on the number of consistency checks
performed by the FC algorithm, with the aim to minimize it. The number of
consistency checks is the most common way of comparing algorithms of this kind
when solving constraint satisfaction problems, but there exist two other usual
criteria such as the number of expanded nodes in the search tree and the number
of backtracks. In the case of the GA, results report the average and best result
over ten runs of the same instance.

Problem instances with uniform p,

We present results for instances with 10 and 20 variables and domain size of
10. For both sizes, three different experiments are carried out, each one with a
different value for parameter p; (constraint density).

First, we report results for instances with 10 variables. 40 random instances
were generated for each value of ps, the FC algorithm is executed with each
heuristic and each instance, and then the average number of consistency checks
is computed. That is the number plotted in the figures. For the GA case, each
instance is run 10 times and then their average is used to obtain the average
over the 40 instances, which is the one reported in the figures. py is increased
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Figure 2. Result on problems (10, 10) with uniform p-.

from 0.2 to 0.98 with steps of 0.02, trying to observe in detail the behavior of
each heuristic in this range, and specifically over the phase transition (the region
where the most difficult instances can be found). Figure 2 shows the first three
series of experiments. In Figures 2 ((a) and (c)) the value for p; is 0.75 and 1,
respectively.

The parameter step is set to 1. It can be observed that for all values of py, the
GA approach shows slightly better results than the other single heuristics. It is
also shown that there is an improvement from the approach when the instances
have higher constraint density, for example, when p;=1, it is clear that the FC-
GA combination achieves better results (see Figure 2 (c)). Parameter step was
intended to allow the FC-GA combination to select more than one variable to
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Figure 3. Results on problems (20, 10) with uniform ps.

instantiate at each invocation. When we set step = 2 results can be observed
in Figure 2 ((b) and (d)). We found for these cases and even when step had a
higher value, single heuristics outperform our strategy.

The connection we deduced from these results is that indeed assigning a value
to the most-left variable produces changes in the domains of the uninstantiated
variables including that one selected by the parameter step. Consequently, those
changes affect the domains of this variable, and so its selection is no longer the
best one.

We now present results for instances with 20 variables. In this case, 20 dif-
ferent instances were randomly generated and tested with the FC algorithm and
for each different value of py. The average number of consistency checks is re-
ported in the figures. For the GA, the figures report the average of the average
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of ten runs for each instance, the same way as in the previous experiment. po
is increased by steps of 0.02. For these results, we concentrate in the range of
values for py between 0.22 and 0.34, where the phase transition appears. See
Figure 3. It is clear in Figures (a) and (c) that the GA performs fewer number
of constraint checks when step=1. Again, the GA shows better performance for
highly constrained problems (p; = 0.75 and p; = 1). However, it is also true
that as we increase the value in step to 2 (see Figure 3 (b) and (d)), the the
advantage of the GA with respect to the other heuristics is less evident. In fact,
we ran experiments for greater values of step (up to 5), but the best performance
was found when step=1.

Problem instances with non-uniform ps

In this set of experiments, the probability for inconsistent values between con-
strained pairs of variables (p2) is not uniform. Because of this non-uniformity, a
given variable may have more information, in addition to its available domain
and degree, to be considered when selecting variables for instantiation. Heuris-
tics Rho and Kappa, as well as our approach, exploit this situation. It is not the
case with heuristic Bz, so that it is expected to produce different behavior in the
results for the various heuristics.

For these experiments, instances have 20 variables, domain size of 10, and
other additional particular features were considered. Specifically, for 15% of the
constraints in an instance, parameter ps was set to 0.8, while for the remaining
85% of constraints, the same parameter has a value of 0.2. Now, what is inter-
esting to observe is the behavior of the heuristics when the constraint density
is varied (p1). This parameter varies from 0.2 through 1 with steps of 0.02. For
each value of p1, 20 random instances were generated, each one was run 10 times,
and the average number of consistency checks was computed.

Figure 4 (a) shows results when comparing all heuristics and the GA ap-
proach with step=1. As expected, the performance of heuristic Bz is very poor
with respect to the other heuristics. The GA clearly beats all other heuristics
for a wide range of values for p1, including in those regions where the FC algo-
rithm has its largest computational effort in combination with any heuristic. It
is always possible, however, that by using either Kappa or Rho, a better result
can be obtained for a particular instance, but let us recall that the result re-
ported here in the GA case, is an average over a set of instances for each value
of p1. When observing results on experiments for step=2, Kappa, in general,
has better performance than Rho and the GA. Nevertheless, the GA presents
a reasonable performance over these instances, caused by the inclusion of the
constraint density in the fitness function.

In order to support our study, statistical tests were run to validate the re-
sults. Despite of this, one may wonder about the overall performance of our
strategy given that the computational cost of the GA is naturally higher given
his population-based approach. It is then interesting to explore the trade-off
between the gain in the number of constraint checks produced by the FC algo-
rithm against the computational cost by any of the heuristics used including our
approach. Results confirm the outcome on the previous experimentation. For
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Figure 4. Results on problems (20, 10) with non-uniform ps.

instance for less dense graphs with p; = 0.5 the best heuristic is Bz, and the
GA has to work 140% more. But for dense graphs with p; = 1 the GA clearly
generates better results on the number of constraint checks, with an additional
cost of only 34% with respect to the effort taken by the Kappa heuristic. We
think that with additional refinement of the FC-GA combination this percent-
age can be reduced, but this work is contemplated in future extensions of this
investigation.

4 Conclusions

This article has proposed an innovative approach for using a GA to generate a
dynamic variable ordering when solving CSPs. Using this scheme, under certain
configuration of the GA, results are efficient, in terms of consistency checks.
After testing for different values of parameter step (the number of variables to
be instantiated before calling the GA again), it was found that best performance
is shown when step=1. By establishing step=1, the fitness function in the GA
could be seen as a deterministic heuristic that can be used to evaluate each of the
uninstantiated variables and select that variable which maximizes the measure.
This can be used as a single heuristic without considering the GA and probably
would obtain as good results or better than those provided by the GA.

The FC-GA combination shows in general better results than the other
heuristics, especially for highly constrained problems. It was also observed that
when the probability ps is not uniform, the GA has a very competitive perfor-
mance, achieving in some cases much better results than the other heuristics. The
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success of the GA in these cases is that the fitness function takes into account
the degree of a variable.
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Abstract. Tabu search is a meta-heuristic that has been successfully applied to
hard optimization problems. In this paper, two new hybrid meta-heuristics are
studied for the NP-Complete satisfiability problems, in particular for its
optimization version namely MAX-SAT. At first, we present a tabu scatter
search approach, TS+SS, which is a tabu search procedure extended by a
commonly shared collection of scatter elite solutions. Then, we introduce a
scatter tabu search approach, SS+TS, which is a scatter search procedure
enhanced with a tabu search improvement strategy. Experiments comparing the
two approaches for MAX-SAT are presented. The empirical tests are performed
on DIMACS benchmark.

1 Introduction

Tabu search is one of the meta-heuristic methods. It has been applied to various
optimization problems with a great success. In this work, we propose two hybrid
approaches based on tabu search meta-heuristic to solve the satisfiability problems.
Given a collection C of m clauses involving n Boolean variables, the satisfiability
problem is to determine whether or not there exists a truth assignment for C that
satisfies the m clauses. A clause isadisunction of literals. A literal isavariable or its
negation. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
The formulais said to be satisfiable if there exists an assignment that satisfies all the
clauses and unsatisfiable otherwise. In the latter situation, we are interested in other
variants of SAT. We mention among them the maximum satisfiability problem
(MAX-SAT). The latter consists in finding an assignment that satisfies the maximum
number of clauses. MAX-SAT is an optimization variant of SAT. They are an
important and widely studied combinatorial optimization problem with applicationsin
artificial intelligence and other areas of computing science. The decision variants of
both SAT and MAX-SAT problems are NP-Complete [4, §].

Many agorithms have been proposed and important progress has been achieved.
These algorithms can be divided into two main classes:
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- Complete algorithms: dedicated to solve the decision version of SAT problem. The
well- known algorithms are based on the Davis-Putnam-Loveland procedure [5]. Satz
[13] is afamous example of a complete algorithm.

- Incomplete algorithms: they are mainly based on local search and evolutionary
algorithms. Local search[16], tabu search [14, 1, 2], smulated annealing [10], genetic
algorithms [7 ], GRASP[15], scatter search [6] and recently memetic algorithms [3]
are examples of incomplete algorithms for SAT. These meta-heuristics are a good
approach for finding a near solution of very large instances, in particular for
unsatisfiable or unknown instances.

In this paper, we propose, at first, a tabu scatter hybrid procedure for MAX-SAT
problems. Its algorithmic backbone is a tabu search (TS) which is extended by a
commonly shared collection of elite solutions. This collection is maintained by the
tabu search, which inputs quality solutions and is used by the scatter search to
construct combined solutions. Then, a scatter search variant is proposed for the same
problem. Its agorithmic backbone is a scatter search (SS) combined with a tabu
search (TS) improvement strategy. The latter performs an intensified search of
solutions around the scatter search regions. Experiments comparing the two
approaches for MAX-SAT are presented. The empirical tests are performed on some
well-known DIMACS benchmark instances. The paper starts with a brief review of
the tabu search. Section 3 introduces the scatter search approach. Section 4 presents
our new tabu scatter search approach. Section 5 presents the scatter tabu search
approach. Our comparative study and experiments results are summarized in section
6. Finally, conclusion and future work are explained in section 7.

2 A Tabu Search Meta-heuristic

Tabu search is a meta-heuristic that has been proposed by Fred Glover [9]. It has been
applied to various optimization problems including the satisfiability problem [14, 1,
2] and job shop scheduling [17]. Tabu search starts with an initial configuration
generated randomly, then, the best neighbor solutions are selected. Tabu search uses
also alist called "tabu list" to keep information about solutions recently selected in
order to escape the solutions aready visited. In the case where a tabu move applied to
a current solution gives a better solution; we accept this move in spite of its tabu
status by aspiration criterion. The search stops when the quality of the solution is not
improved during a maximum number of iterations or when we reach a global optimal.

2.1 Tabu Search Items

In order to use tabu search for solving MAX-SAT problem, we define the following
items:;

- A Solution is represented by a binary chain X (n Vector); each of whose
components Xi receives the value 0 or 1. It is defined as a possible configuration
verifying the problem constraints and satisfying the goal that consists in finding an
assignment of truth values to the n variables that maximizes the sum of satisfied
clauses.
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- A move is an operator used to generate neighbor solutions. An elementary move
consists in flipping one of the variables of the solution. The neighborhood of a
solution is constituted by all the solutions obtained by applying an elementary move
on this solution. A variable isin tabu state if it has been modified during the current
move and it keepsit during a certain number of iterations called tabu tenure.

- A Tabu List is used to keep information about the solutions already visited in order
to escape local optima by searching in new regions not already explored.

3 A Scatter Search Meta-heuristic

Scatter search [12] is a population-based meta-heuristic. It is an evolutionary method
that constructs solutions by combining others. The approach starts with an initial
population (collection of solutions) generated using both diversification and
improvement strategies, then, a set of best solutions (reference set that incorporates
both diverse and high quality solutions) are selected from the population. These
collections of solutions are a basis for creating new solutions consisting of structured
combinations of subsets of the current reference solutions.

3.1 A Scatter Search Template

Four methods are used to achieve the scatter search template:

- A Diversification Generator. The generator creates, from a seed solution, a
collection of diverse solutions, applies a heuristic process for improving these
solutions and designates a subset of the best solutions to be reference solutions.
Solutions gain membership to the reference set according to their quality or their
diversity.

- An Improvement Method. An Improvement method transforms atrial solution into
one or more enhanced trial solutions. To improve the quality of solutions we often
apply a heuristic process.

- A Subset Generation Method. A subset generation method operates on the
reference set (collection of elite solutions), to produce a subset of its solutions as a
basis for creating a combined solution.

- A Combination Operator. A solution combination method transforms a given
subset of solutions created by the subset generation method into one or more
combined solutions. In this step, we create new points consisting of structured
combinations of subsets of the current reference solutions.

4 A Tabu Scatter Search

In order to take advantage of the individual benefits of a single-solution oriented
approach and a population oriented approach, we propose a hybrid tabu scatter search
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approach. Its backbone is a basic tabu search that works on a single solution by
building neighborhoods from which a best admissible candidate is passed to the
scatter search process. The hybrid tabu search makes use of a population based
strategy and maintains a collection of elite solutions. More precisely, the tabu scatter
hybrid (TS+SS) procedure starts with an initial solution generated randomly; then, a
basic tabu search is started. The duration of this second phase (TS) is given by an
input parameter iterrs corresponding to the number of iterations of the basic TS
process ( see code below). During the TS phase a new best solution is always
deposited into the collection. Every “iterss” iterations the agorithm calls the
subroutine of the scatter search phase, operating on the solutions in the collection.
Those solutions represent the reference set in the basic scatter search. They are abasis
for creating new combined solutions using a combination operator. The combination
method, that we have used, randomly selects a position K to be the crossing point
from the range [1,...n]. The first K elements are copied from the one reference point
while the second part is copied from the second reference point to create the new trial
solution. After having built new combined solutions via the combination method
cited above, the best solution is returned to TS to serve as an initial starting point
which may be enhanced after resetting the tabu list. The algorithm terminates after a
certain number of iterations.

4.1 A Tabu Scatter Search Outline

Step 1. Initialization

Set tabu scatter search(TS+SS)paraneters

/[liter is the current iteration of TS+SS process,

[/maxiter is the maxi mum nunber of iterations of TS+SS

/[literl is the current iteration of TS process,

[l iter_is the maxi mum nunber of iterations of TS, //iter
s the nunber of iteration in which the scatter search
SS )is called, /Il TL
s the tabu Iist,
/
0

Ss

i

/1 S* is the best solution with the m ni num F* corresponds

to S*, F* objective function value that is F*=F(S*),

Cenerate an arbitrary solution S; -
Evaluate F (S); S*=S; F* = F; iter=0; iterl = 0;

Step 2. lteration

Wiile (iter < maxiter) do

i
(

begin
Wile (iterl <iter, and iter < maxiter) do
begin
- iter =iter +1; iterl = iterl +1;

- Apply a basic TS process;/* iteratively execute
iter  iterations using neighborhood operators*/

- Add the good solution found to the collection
of elite solutions to construct the reference
set for the next phase;

If (iter =itery, ) then
begin
/*while performing the TS, execute an SS
phase every iter */
- Apply a TS process using the second nove (SWAP) to
diversify the search, and add the diverse
solution to the collection;
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- Generate subsets of the reference set as a basis
for creating conbi ned sol utions;

- For each subset produced, use the conbination
operator to produce new sol utions;

- I nprove the conbi ned sol utions

end;
end;
- iter1=0;
end;
end;

Step 3. Termination. Print the best solution with the best
obj ective val ue.

5 A Scatter Tabu Search

Our scatter tabu search-based evolutionary approach starts with an initial population
of solutions created using a diversification generator. The latter creates, from a seed
solution V, a collection of solutions associated with an integer h (1<h<=n). A
solution is represented by a binary chain V (n Vector). Two types of solutions V' and
V" are created from the seed solution V and given as.
Typel solutions V'[1+k*h]= 1- V[1+k*h], k=1,2,....n/h, k<n.
Type2 solutions. V'' are the complement of V',

Then, each solution in the population makes tabu search to improve its fithess. After
that, a set of solutions (reference set) are selected from the current population. The
resulting reference set has B1 high quality of individuas plus B2 diverse solutions.
The reference set is a basis for creating new solutions consisting of structured
combination of subsets of the current reference set. The combination method (the
same described in the preview section) is applied to all subsets of solutions of the
current reference set. After having built new combined solutions, the combined
solution is returned to TS procedure to serve as an initial starting point which may be
enhanced. With all this components: diversification generator, reference set selection,
combination method and intensified tabu search procedure, we hope to be able to
achieve a good compromise between intensification and diversification in the search
process. The search terminates after a certain number of generations or when we
reach the optimum global.

5.2 A Scatter Tabu Search Outline

Step 1. Initialization

Set scatter tabu search paraneters

/1 Psize is the size of the population P,

/IBis the size of the reference set

/lmaxiter is the maxi mum nunber of generations,

/1 iter is the current generation,

- Call the Diversification generator to create an
initial population P;

- Use TS to create enhanced trial solutions of P

- Evaluate and order the solutions in P according

to their objective function val ue;
- iter=0 ;
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Step 2. lteration
Wiile (iter < maxiter)do
begin
- Create the Reference Set of selections by
choosing Bl high quality and B2 diverse
solutions from P where Bl1+B2= B;
- Subsets Generation Method
Whi | e(continuing to maintain and update
reference Set) do
begi n

- For each subset produced, use the

conbi nati on nethod to produce new sol uti ons;

- Use TS to create enhanced trial sol utions;

- Update the Reference Set: If the resulting
solution inproves the quality then add it to
the Bl high quality solutions and renove the
worst one else add it to the B2 solutions and
renoves the | ow diverse one in B2

end;
- Build a new population P by initializing the
generation process with the reference set;
- Use TS to create enhanced new trial solutions;
- iter=iter+1;
end;

Step 3. Termination, print the best solution with the best
obj ective val ue.

6 A Comparative Study

The purpose of this comparative experiment is to evaluate the performance of each
one of the proposed techniques to solve MAX-SAT instances. First of all, we compare
on the table 1 the approaches regarding their principles and the operators used by each
approach. Further, we give some numerical results obtained by applying each
algorithm on MAX-SAT instances. The objective is to explore the influence of
population and combination strategies by comparing SS+TS and TS+SS. To compare
the hybrids and to explore the influence of the hybridization, we have compared
SS+TSand TS+SSwith SS and TS alone. The results are given on the tables below.

6.1 Computational Results

All experiments were run on a 350 MHZ Pentium Il with 128 MB RAM. All
instances have been taken from the SATLIB [11]. They are hard Benchmark
Problems. On each instance the different algorithms have been executed in order to
compute the average of the maximum number of the sum of the satisfied clauses.

The DIMACS Benchmarks

Two kinds of experimental tests have been undertaken. The goal of the first ones is
the setting of the different parameters of the TS+SS, and SS+TS agorithms like the
Tabu tenure, the number of iterations, the population size and the interaction between
the two algorithms parameters. These parameters are fixed as:
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Table 1. Comparison of TS, SS, TS+SS, and SS+TS approaches
TS SS TS+SS SS+TS
-neighbor - Evolutionary - neighbor -Evolutionary
search meta-heuristic search mete-heuristic
meta-heuristic
Principles -Single - Population- -Population- - Population-based
current based based
solution
-Interdiction Biological Interdiction -Biological
mechanism evolution mechanism evolution
and interdiction
-Reference set - Reference set
Operators -Move selection - Move selection
-Tabu list - Structured - Tabulist - Structured
- Aspiration combination -Aspiration combination
criterion - Improvement criterion - Improvement
local technique local technique
Solution or | At Random Using At Random or Using a
Population diversification using a diversification
generation generator heuristic generator

- TS+SS. The maximum total number of iterations was set to maxiter=1000. The
basic TS phase parameter, iterrs was set to 100 iterations, the population size was set
to 40, the SS procedure was called every iterss= 10 iterations. The move operator for
TS intensification phase was the variable flipping. A second move operator is used in
order to diversify the search consisting in permuting between two variables chosen at
random. This phase is executed before calling the SS subroutine, that, in order to
create a collection of best solutions including diverse and high quality solutions.

- TS. The maximum total number of iterations was set to maxiter=10000. The move
operator was the variable flipping. and tabu tenure was set to 7.

- SS+TS. The basic SS phase parameter, the maximum total number of iterations was
set to maxiter=3, the reference set was set to 10, the population size was 100, and the
TS parameter was set to 30 iterations and tabu tenure was set to 7.
- SS. is a scatter search with a simple local search as an improvement technique. The
SS parameters are: the maximum total number of iterations was set to maxiter=3, the
reference set wasset to 10 and the population size was 100.

The second kind of experiments concerns MAX-SAT instances. All these instances
are encoded in DIMACS CNF format [11]. The tables below show the results
obtained by our algorithms. These columns contain the name of instance, the number
of variables, the number of clauses, the solution found by each algorithm, and the
algorithm running time in second. The results found are classed by class:

AIM class: Artificially generated random 3-SAT, defined by Kazuo Iwama, Eiji
Miyano and Y uichi Asahiro [18]. We have chosen six instances.
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Table 2. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on

AIM instances.

Instance/ # # TS TS+ TS+tSS SS SS SS+ SS+
satisfiable Var claus TS Time Ss Time Time TS TS
es Time
Aim50-1-1 50 80 78 21,6 79 44.8 79 9,6 79 54,8
Aim50-2-1 50 100 929 26,5 99 43,3 99 115 99 15,7
Aim50-3-1 50 170 169 44,3 170 12,0 167 18,9 165 25,5
Aim100--1 100 160 154 87,5 159 95,1 158 34,5 157 43.7
Aim100-2 100 200 195 105,5 199 156,1 196 46,8 195 63.6
Aim100-3 100 340 334 185,6 335 243.9 330 709 327 183.9

JNH class: Randomly generated instances- constant density model. The instances
have originally been contributed by John Hooker [18].

Table 3. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on

JINH instances.
Instance # # TS TS+ TS+SS SS SS+ SS+TS
satisfiable Var claus TS Time SS Time SS Time TS Time
Jnh201-yes 100 gzo 797 885,3 800 155,7 795 314 799 670.2
Jnh202-no 100 800 792 10842 796 896,0 795 306 797 777.3
Jnh203-no 100 800 798 1159,0 796 11351 790 31,3 794 753.7
Jnh204-yes 100 800 796 707,7 798 728,7 796 287 797 821.1
Jnh205-yes 100 800 800 697,3 799 894,1 794 345 797 802,2
Jnh206-no 100 800 799 701,1 797 750,2 794 304 796 821.1
Jnh207-yes 100 800 797 701,4 797 841,8 793 283 796 831,4
Jnh208-no 100 800 797 700,7 794 761,1 795 342 796 789.1
Jnh209-yes 100 800 797 697,8 797 797,8 794 27,8 796 748.0
Jnh210-yes 100 800 800 699,0 800 83,2 795 286 797 767.6

Parity8 class: Instance arises from the problem of learning the parity function.
Defined by James Crawford (jc@research.att.com). All the instances are satisfiable by

construction [18].

The results obtained by the different approaches are acceptable (we have reached the
optimum for some instances in reasonable time). In many cases (Jnh 201, Jnh 210,
par8-1-c for example), the tabu scatter search (TS+SS) performs the other approaches
in solving such instances. In some case ( Jnh 205, for example) aTS alone performs
the others. Also, for some benchmarks, the SS alone performs the SS+TS which
means that the choice of adequate parameters for a meta-heuristic in solving a given
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benchmark is a difficult operation and the hybridization in some situation is not very
interesting. However, for the most benchmarks the hybridization improve the quality
of solutions and gives a good result. So, according to our results, we can see that, in
general, when SS is incorporated in TS (TS+SS), the solutions space is better
searched. When intensified improvement tabu search and diversified components are
incorporated in SS (SS+TS), the solutions space is better searched but the process
search takes more time to find a solution. We precise, that the role of a tabu search
technique in scatter search isto locate the solution more efficiently.

Table 4. Solutions quality and running time results obtained by TS, TS+SS, SS and SS+TS on
parity8 instances.

Instance  # # TS TS TS+ TS+SS  SS SS SS+ SS+TS
Var claus Time SS Time Time TS Time
es

Par8-1 350 1149 1115 1768,1 1126 986,7 1141 76,7 1141 303,94
Par8-1-c 64 254 250 68,9 254 10,9 248 41 245 121.12
Par8-2 350 1157 1114 18136 1137 9379 1146 76,0 1146 401,99
Par8-2-c 68 270 267 78,9 267 137,7 263 513 260 99,17

Par8-3 350 1171 1127 18506 1154 11310 1162 728 1162 536.33
Par8-3-c 75 298 296 96,2 294 9714 291 11,8 289 117.23
Par8-4 350 1155 1105 18169 1154 1351 1149 70,9 1149 278.26
Par8-4-c 67 266 261 74,5 264 141,2 260 4.8 260 91,06

Par8-5 350 1171 1110 1842,7 1164 1581.1 1163 74,8 1163 584.16
Par8-5-c 75 298 293 95,9 294 157,0 290 7.2 290 119,91

7 Conclusion and Perspectives

In this paper, we have presented, at first, the single—oriented meta-heuristic called
tabu search. We have proposed to hybridize it with a scatter search evolutionary
algorithm.. Then, we have presented a scatter tabu search approach. The proposed
approaches have been implemented for solving MAX-SAT hard instances. Our
objective is to explore the influence of both population and combination strategies on
the ability of generating high quality solutions in single solution-oriented approaches
and vice versa. We have shown that the impact of a population strategy on a single-
oriented approach is like the import of alocal search in a population- based approach.
After an intensified experimentation, we conclude that the tabu search (TS) can be
considered as a powerful procedure capable to organize and to direct operations of
subordinate methods. We plan to improve our framework by implementing a parallel
environment including the two approaches.
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Abstract. Interval algebra(IA) based temporal constraint satisfaction problems
(TCSPs) are useful in formulating diverse problems. The usual approach to
solve IA networks is based on partial instantiation strategy - backtrack search
for exact solution. To the best of our knowledge, determining approximate so-
lution for TCSPs is not addressed so far. In this paper we propose a new com-
plete instantiation strategy based on a complete algorithm to determine an ap-
proximate solution of IA networks. We identify a property of constraints called
nastiness that disturbs monotonic nature of entropy of a constraint. We go be-
yond the identification of nasty constraints to pin-point the singleton to restore
normal behaviour of entropy. On termination, the algorithm guarantees either
an exact or an approximate solution depending upon the number of constraints
the solution violates. We demonstrate experimentally that solution to general
IA networks can be efficiently obtained in time polynomial in the size of the
network with the success rate of 95% contrary to exponential exact algorithm.

Keywords: Constraint satisfaction problem, Approximation algorithm, Interval alge-
bra

1 Introduction

Constraint Satisfaction Problems (CSP) are in general NP-hard class [6]. On the
other hand, CSPs have numerous applications in almost all branches of engineering.
There have been several attempts to devise solution techniques for CSPs. One ap-
proach is to characterize tractable subclasses and to provide polynomial-time algo-
rithm for solving such instances. Another approach is to devise good heuristics and
search strategies. In order to understand the distribution of hard instances, there have
also been studies on identifying values of critical parameters which lie between the
easy instances of under-constrained and of over-constrained instances. In this paper,
we attempt to characterize the hardness of problem instances in a different manner.
One wonders whether there are certain nasty constraints in an instance of CSP that is
possibly the reason for hardness. And if so is the case, this paves the way to devise
approximation scheme to solve hard instances by settling these nasty constraints. The
efficiency of such an approximation method lies in settling very small number of
nasty constraints to obtain a solution in polynomial time.

In this paper we study this aspect in the context of qualitative temporal CSP,
namely Allen’s framework [1] IA. We characterize a reason for late solution for prob-
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lems due to presence of nasty constraints. The major contribution of this paper can be
highlighted as follows.

In this paper, we introduce a new polynomial time complete method for determin-
ing an approximate solution of IA network. We start with a path consistent IA net-
work. An iterative transitive closure algorithm such as weighted path consistency
assigns highest weight to an atomic relation in a label that has maximum likelihood to
be a feasible relation. Intuitively, when the highest weight relation on the edge agrees
with the relation with highest weight in the constraint computed by averaging along
all paths, this relation is the best possible candidate feasible relation in the constraint.
A conflict occurs when the highest weight relation is not the same as that from the
paths. This includes following two possibilities: (a) Highest weight relation on the
edge is present in the averaged constraint, but with a lower weight, (b) Highest
weight relation on the edge is not present at all in the averaged constraint. Following
our intuition, in order to forcefully make the two agree, either we raise the lower
weight of an existing relation to become the highest weight or we introduce a new
atomic relation with highest weight. We term the constraint that exhibit the property
of introducing new singletons as highest weight relation to resolve the conflict as
nasty constraint. This adjustment of weights helps us to reduce the conflicts as and
when they appear in an iteration. In case of conflicts, the solution may or may not
violate any constraint. This helps in computing an approximate and early solution for
hard instances. We prove that presence of nasty constraints in hard instances is re-
sponsible for preventing entropy of constraint from decreasing monotonically. Intro-
ducing the required singletons, restores the monotonic decrease in the subsequent
iterations. Experiments reveal this method solves general IA networks by violation of
small fraction of constraints.

In Section 2, we present TA framework and related work. In Section 3, we summa-
rize weighted path consistency. In Section 4, we introduce the concept of entropy for
weighted TA network with preliminary experiment. In Section 5, we propose that
nasty constraints reflect the hardness of any given problem instance in IA with theo-
retical justification in Section 6, which contains the main result of this paper, a poly-
nomial time complete algorithm for approximate solution of hard TCSP. We report
experimental analysis in Section 7. Section 8 contains conclusions.

2 Interval Algebra and Related work

IA defines thirteen atomic relations that can hold between any two time intervals,
namely before(b), meet(m), ovelap(o), start(s), during(d), finished-by(fi), equal(eq),
finish(f), contain(di), started-by(si), overlapped-by(oi), meet-by(mi) and after(bi) [1].
In order to represent indefinite information, the relation between two intervals is a
disjunction of the atomic relations. Reasoning for the complete interval algebra is
known to be NP-hard [22]. Traditional solution techniques for temporal and spatial
domains are either based on complete[8, 11, 18, 20] or partial instantiation strate-
gies[21]. So far there is no complete method based on complete instantiation strategy
for approximate solutions for qualitative TCSPs.
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Research in phase transition is investigated [9, 7, 3, 5, 4] to study instance hard-
ness. In the context of IA network, it is not possible to have any estimate of number
of solutions. So far we roughly know the hard instances exist for a combination of
parameters. The entropy based analysis of nasty constraints looks to be promising
enough to open up a new study in this direction for qualitative CSPs. Basically to
study a discrete problem consisting of only disjunctions, we are translating it to a
continuous domain by adapting a weighted formalism.

3 Weighted path consistency

In this paper, we use weighted path consistency algorithm as proposed in [13], [2]. In
a weighted TA network W(N) each constraint is represented as a 13-dimensional
weight vector W, € R such that 0 < Wi <1,1<m< 13, ZW," = 1. W;" denotes
the weight of the atomic relation IA,, in the constraint between variables i and j. The
value 0 for ;" implies IA, is absent in the disjunction. We call each W} as weighted
constraint. Given an IA network N, we obtain the corresponding weighted network
by assigning equal weights to all the atomic relations present in a constraint. We
represent the IA-composition table [6] as a 3-dimensional binary matrix M, such that
M;j, = 1 if and only if the atomic relation IA,, belongs to the composition of the
atomic relations IA; and IA;. The composition of two weighted relations Wy and Wy,
resulting in a relation Wj(k) is denoted as W, ® W,;. The intersection of two weighted
relations W and V; is denoted as U;= W; N Vj;, defined as follows [13]:

ikyyr ki
W, (k)= ZZMWW " 1<m<13. U":M 1<m<13
Y Y™, W T nXw

We follow a slightly different approach for computing the averaged constraint
along the paths. For each edge, first we compute the non-zero normalized average of
all vectors that are computed by path-wise composition. This averaged vector is inter-
sected with the edge vector followed by normalization. We use intersection operator
only once which reduces numerical computations. The weighted path consistency
algorithm, unlike the conventional path consistency, modifies only the weights of
constraints. The atomic relations with higher weights are more favorable to be the
feasible ones, whereas those with smaller weights are less likely to participate in a
solution. There will be no occasion when the weight values in the vectors will stop
changing unless it is a network only with singleton labels(trivial case).

4 Entropy of IA network

In this section, we introduce the concept of entropy for IA network in the context of
weighted formalism. In [14, 15, 16], the three properties of measures on entropy
given in [19] are generalized. The Renyi’s quadratic entropy (RQE) is given as
- IOgZ L, (W7 . In the context of minimizing entropy, for the sake of convenience,
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log in the above expression is normally dropped. For the present study, we loosely
define entropy to be without /og [23].

Definition 1: Entropy of a weighted constraint #” is defined as follows
El==% (W))’ where 0<W)<1 and Y W)=

m

Definition 2: Entropy of a weighted network is defined as follows
E, :Z E X
i

The least entropy of a constraint corresponds to a singleton relation and the highest
entropy is when it has non-atomic relations with equal weights. Path consistency
algorithm indeed prevents the entropy of the constraint network from increasing.

Theorem 1: For a given network N, enforcing path consistency does not increase Ey .

We illustrate this with the help of a simplex triangle (Figure 1) for a constraint with a

maximum of three atomic relations. The three vertices C, D and E are the lowest
entropy points that correspond to the three possible singleton labels for the constraint.
The centre A corresponds to the highest entropy corresponding to equal weights for
the three relations. The contours represent states with equal entropy. The entropy
state at an edge indicates a conflict between the two singleton labels.

C
.
— :
£ :
B
5
100
8 g0
B 60
\ € w0
E \ /i» » @:

Figure 1. Simplex Triangle 0 1o 2 o @ 0
constraint tightness d

Figure 2. No. of constraints with fluctuating entropy for
M(n,d,7) for known consistent problems.

In the conventional path consistency, we move from A to C in one step or from A
to B and then possibly to C. In the event of a solution, the search ends at a vertex else
it stops at either A or at B. Ideally, any search technique should choose a descending
path from A to one of the vertices, say D (Figure 1). We have experimented initially
with convex A networks. For our experimental study, we generate random instances
based on three parameters, namely network size(n), constraint tightness(d) and label
size(?) [12], [13]. We experimented with 200 instances for each value of » in the
range [10,100]. There was not a single instance out of randomly generated 3800 con-
vex problem instances with any fluctuation in the entropy. We repeat the same ex-
periment for general IA networks that are known to be consistent. We find that unlike
the convex case, the entropy values of some constraints increase after an initial de-
crease, but again continue to decrease until stabilization i.e non-monotonic behaviour.
Thus for convex network, the entropy value for every edge takes a descending path
from the centre of the simplex to a boundary (Figure 1), a monotonic behaviour. On
the other hand, the trajectory of entropy value of any edge in a non-convex network
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need not be a descending path but a longer trajectory path. The search begins at the
centre towards a vertex, but moves along the periphery of a contour with smaller
entropy.

The number of constraints with fluctuations in entropy is very high for the problem
instances in the hard region [12]. Figure 2 depicts the number of such constraints in
instances with =7, n in the range [10,50] and d in [10, 50]. The peaks in the graphs
(Figure 2) are the regions of hard instances (one to one correspondence of peaks is
not possible due to the different model for generating problem instances used in this
study). This has motivated us to study the behaviour of entropy in order to identify
the cases when entropy increases. This study narrows down to basic fundamentals of
multiplication of two vectors. The difference between entropy of a pair of vectors
consisting of same number of non-zero entries, depends on the relative order of their
highest value. When the number of non-zero entries in the two vectors is not same,
then one cannot conclude clearly as which of the two will have a higher value of
entropy. It depends on the relative distribution of the values within the vector. We
formalize these observations as following results:

Theorem 2: Given two normalized vectors U and V" with same no. of non-zero com-
ponents, i.e. nz(U) = nz(V), |E(U)|=|E(V)| iff max(U) > max(V), where max(U)
is the component with highest value.

Theorem 3: Given two normalized vectors U and V such that nz(V)>nz(U), then
max(¥7)>max(U) is not a sufficient condition for |[E(V) |< [E(U) |.

5 Nasty Constraints

In this section, we identify a new property of weighted IA constraints called nastiness
that is responsible for a difficulty in computing solution of a problem instance. Sup-
pose W is the weighted constraint on the edge (i,j) and ¥ is the averaged constraint
obtained from all possible paths using the weighted composition operator as ex-
plained in section 2. W, is the constraint obtained by weighted intersection of W
and W at the end of the current iteration of weighted path consistency. We study the
impact of replacing W; by W,,, in terms of weights of atomic relations that will in-
crease or decrease with the help of inner product of vectors.

Lemma 1: Given two weighted [A constraints U = [¢;] and V' = [v;], the normalization
factor A = Yuyv; will satisfy the conditions, 2, <A< e and V,,;,, <A<V, Where
ue [uminr umax]a Vi€ [vmim Vmax]'

Theorem 4: W, [argmax(W;)]>W;[argmax(W;)]
iff argmax (W) € Whign where Vp e Wygn, WIpIZA, A=2 uv;.

The normalization factor divides the vector W into two halves, the relations with
weights greater than normalization factor will increase if W,,, replaces Wj. In other
words, if the highest weight relation on the edge is among the higher weight relations
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in the averaged constraint along the paths, then its weight is guaranteed to increase
further. Contrary to this, when the highest weight relation on the edge is not the high-
est weight relation in the averaged constraint, a conflict takes place. Whether this
conflict will lead to a decrease in the weight of the highest weight relation on the
edge by replacing W; by W,,,, is an obvious consequence of the above theorem. We
formalize this condition as the following lemma.

Lemma 2: If argmax(W;) & Wie, then W, ,[argmax(W;)] < W [argmax(WV})].

Our premise is that as the weighted path consistency algorithm iterates, the weights
in the network are adjusted based on the influences of the weights of the edges along
the paths. Thus in an ideal situation (for eg a convex network), above lemma should
not be satisfied at all. There are two possibilities here, the highest weight relation may
exist in the averaged constraint with a lower weight or may be absent i.e. a weight of
zero. In the first case, we solve the conflict by forcing the weight in the constraint
resulting after intersection to be the highest value such that it becomes the highest
weight relation for the next iteration. In the second case, as mentioned in the earlier
section, the entropy of the constraint may or may not increase. In the latter case, a
new atomic relation is forced to dominate other weights in the next iteration. For the
cases when the next iteration highest weight value is less than the highest weight
value in the current iteration, entropy will increase otherwise it will continue to de-
crease. We formalize these observations to introduce a concept of nasty constraints
for IA networks.

Definition 3: A weighted IA constraint is said to be a nasty constraint if it satisfies
either of the following conditions:
(a) If argmax(W;)¢ Wyen and atomic relation at (argmax(W)) ¢ R;;.
(b) If argmax (W) & W,g; and atomic relation at (argmax(W)) € R;.
and W, [argmax(W)] < W, [argmax(17;)]
where R;; : constraint on edge (i,j) in the current iteration of weighted path consistency.

By the study of entropy of weighted IA constraints in the previous section, it is
obvious that by the very definition of nasty constraint, entropy of a nasty constraint
will increase when either of the above two conditions are satisfied. We formalize this
consequence as following result.

Theorem 5: Entropy of a nasty constraint does not decrease monotonically over itera-
tions of weighted path consistency.

A vector that is initially generated with all the components with equal values, this
will correspond to maximum entropy of the vector. If the same vector is subjected to
some operations in an iterative manner such that the value of one of the components
goes on dominating all others, the entropy of this vector will go on decreasing assum-
ing number of non-zero components do not change. A stage will come, beyond which
entropy cannot decrease further and hence stabilizes. We exploit this observation in
the next section as the termination condition of the algorithm proposed in this paper.
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6 Approximate solution for 1A networks

In this section, we propose a method to determine an approximate solution for 1A
networks based on our foregoing analyses. We propose an algorithm to identify nasty
constraints in weighted TA networks and settle these to compute an early solution as
shown in the pseudocode in Table 3.

compute_approx_solution(W(N))
Output: A singleton network t that is a solution
while no solution weighted path_consistency _iteration(W(N)) enddo
weighted_path_consistency_iteration(W(N))
VWi Vk =1 to n, such that k=i and k#j
W(k) =Wy ® ij
W <« normalized non-zero average over W(k)
A =2 wlplwi[pl,p=1to 13
Wavg[i’j] «~Wn Wij
{where ® and M are weighted composition and intersection operators}
partition W such that W:Whighuwlow, Whigthk,W:Q,
VpeWhign, W[pIZL, VqeWioy, W[q]<A
if (argmax(Wy) & Whign)
if (IA(argmax(Wj))£R;;) mark (i,j): nasty constraint endif
if (IA(argmax(Wj)))€R;;) and (W, [argmax(W;)]<Wj[argmax(W;)])
mark (i,j) as a nasty constraint
endif
Waye[argmax(W)] = 1.0
renormalize Wy,
endif
Replace V(i,j) Wi < Wy,(ij)
V(i,j) 7j < atomic relation at argmax(W)
if 7 is path consistent then solution found
V(i,j) if 7j ¢ Cjj then constraint is violated endif
where Cj; is the disjunctive constraint in the IA network N
endif

Table 3. approximate solution algorithm.

Clearly compute_approx_solution is of O(’T) complexity, if we assume that T
number of iterations of weighted path consistency are executed to compute a solution.
As per our foregoing analyses in the previous section, this algorithm captures those
constraints as nasty constraints for which entropy fluctuates. It is observed that there
are some more constraints that are not the nasty constraints, but still the highest
weight relation along the paths is forced to become highest on the edge. These are
those constraints for which a conflict takes place and the highest on the edge is not
absent along the path, but has smaller weight. We term all the constraints (including
nasty constraints) where any time this type of adjustment of weights takes place as
approximated constraints(AC). The algorithm starts with the state of highest entropy
for all the constraints, that corresponds to the starting point when all the atomic rela-
tions in a constraint are assigned equal weights. As the weighted path consistency
algorithm iterates, compute_approx_solution ensures that entropy of every constraint
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to decrease monotonically. In the later iterations, weight of an atomic relation domi-
nates others, leading to the state of least entropy beyond which a bounded variable
like entropy (with a minimum value of -1) cannot decrease. Over iterations of
weighted path consistency, our algorithm reduces the number of inconsistent triplets
in the singleton network by forcing the highest weight relation on the edge to agree
with the one with maximum support along the paths. We claim that on termination, it
will compute a solution. The solution may be an exact one for easy instances and an
approximate one for hard instances. Thus our method is a complete method for de-
termining approximate solution for IA networks.

Theorem 6: compute_approx_solution is a complete algorithm.

7 Experimental analysis

The objective of the experimental analysis is essentially to confirm our theoretical
analyses as discussed in the previous sections. Realizing the algorithm is complete,
we attempt to determine the instances that are known to be consistent and completely
cover both easy as well as hard problem regions of IA networks. The experiments are
conducted on Windows based PC with 2GHz clock speed, 512 RAM and Visual C++
environment. We have experimented with 480 instances of known consistent general
IA networks with » in the range [10,60]. The graphs shown in Figure 4 indicate the
performance of our method.

The model for instance generation is same as that proposed in [13]. The iteration at
which a consistent scenario is obtained, (s) is noted and average of these is taken for
each combination of n and d. This approach gives an empirical estimate of average
number of iterations required to get a solution for general IA networks. We make use
of statistical regression models to analyze empirical results at arrive at the best-fitting
curve. Figure 4(a) shows that the solution iteration depends on the constraint tight-
ness. Figures 4(b) explains that higher the number of approximated constraints higher
is the number of violated constraints. Our method is able to solve 100% of the prob-
lems for # in the range [10,40]. Two instances for 40 nodes and five problems in 60
nodes set of problems are left without a solution, i.e. 95% of success rate. With ex-
perience, we say that this 5% of failure is due to numerical errors.

Any comparison of this method with backtrack algorithm will not be in place. We
feel that comparison of two methods that give different types of solutions does not
help us in this context. However, an outright advantage of our method can be simply
seen by the fact that for 50 and 60 node problems, backtrack is known to take expo-
nentially high computation time, where as our method gives the solution in a maxi-
mum computation time of 80 minutes, which is equivalent to a maximum of 1000
iterations of weighted path consistency algorithm. This method is able to solve even
hard problems in reasonable time despite a large number of nasty constraints.
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de size n

(a)
Figures 4. Linear cubic regression models.

(a) s=0.0136 + 0.7529n - 2.6n°

(b) AC =3.83 + 0.7475n + 0.0480n” - 0.0011n>
(¢) VC=0.73 + 0.16n - 0.00594n* + 0.0001n°

8 Conclusions

The present work introduces a new paradigm for TCSP using entropy-based interpre-
tation of IA as against the known method backtrack. We provide an insight into the
well-known fact that convex networks are easy to solve. General 1A problems with
relations not belonging to any of the tractable classes are solved with help of a com-
plete method. We provide here a linear time algorithm that captures the hardness of
the problem in terms of nasty constraints, exploiting structure of individual problems.
Our algorithm computes approximate solution for hard problems in polynomial time
with exact solution a special case. In the process of handling the conflicts, the link
with the original problem is not lost. It is possible for an interactive choice of nasty
constraints to be settled, that may be crucial to the problem. It is possible to keep
track of iteration-wise resolved atomic relations. User can analyze the impact of
avoiding or choosing a new atomic relation. We propose to extend this study to pro-
pose PTAS with approximation bounds for general IA networks and overconstrained
problems.
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Abstract. Conformant planners solve problems with a correct but ncomplete
description of the initial state, by finding plans that are valid for all possible
assignments of the unknown atoms. Most conformant planners, however, do
not handle universal quantification, which is a problem when the set of all
domain objectsis unknown or very large, and thus can not be enumerated. This
paper introduces PSIGRAPH, a conformant planner that operates with
universally quantified statements in the initial and goal states, as well as in the
action preconditions. Thus, PSIGRAPH does not need to know the complete
set of domain objects. We present the algorithm and the results of its
experimental evaluation, showing that PSIGRAPH is competitive with other
conformant planners. PSIGRAPH is based on Graphplan, but differs from
previows approaches such as Conformant Graphplan in that it does not create
multiple plan graphs.

1 Introduction

Graphplan[3]is a welkknown and wellstudied Al Planning algorithm. From a layer
of initial conditions, it iteratively generates new layers of subsequent conditions that
can result from actions, detects whether these subsequent conditions entails the goal,
and if so, evaluates whether the path of actions that lead from the initial conditions to
the goal is a valid solution. Graphplan repeats these three steps, extending the graph
until a valid solution is found. A large amount of prior work has addressed the
optimization of the closed-world Graphplan, as summarized in [14].

The solution extraction portion of Graphplan has proven to be the most
computationally intensive, so optimizations have included memoizing unworkable
solutions, as presented in the original Graphplan paper, forward checking to detect
invalid solutions in advance, dynamic variable ordering [2], and formulating solution
extraction as a constraint satisfaction problem (CSP). Variations on the latter
approach [10] attempt to construct minimized explanations of why a solution is
unworkable in the form of an unworkable set of propositions at a given time step,
which we refer to as anogood. These nogoods are stored, and future solutions are
checked via an efficient algorithm [9] to detect whether they have a nogood as a
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subset. If so, the solution is not explored further. Moreover, each nogood is
regressed [10] to previous layers, to take further advantage of it.

The above optimizations have been implemented in closed-world Graphplan based
planners. In closedworld planners, all propositions are assumed to be false unless
otherwise noted. There are no unknown propositions. Recent work has explored the
open-world problem, where some propositions are unknown. Conformant planners
do no sensing and attempt to produce a single plan that will work in every
contingency no matter what is unknown. Conformant Graphplan [13] is a Graphplan-
based algorithm that produces a Graphplan for each possible world. More recent
planners, including GPT [4], have expressed conformant planning as a search in a
belief space. MBP [7]uses Binary Decision Diagrams [6] to represent belief states.
CAItAlt-LUG [5] condenses multiple planning graphs into a Labeled Uncertainty
Graph to conduct the search in belief space.

However, none of the above planners handle quantified information, or information
about an infinite number of items. Finzi et al [8] produced an open-world planner,
implemented as a theorem prover in the situation calculus, that could represent
statements like “For all Blocks X, x is not on top of A”, whereas the above planners
would need to make a qualitatively different statement like (Clear A). We use an
open world planning language called PSIPLAN [1] that can represent quantified
statements about negated propositions. Furthermore, PSIPLAN can add exceptions to
these statements, such as “For all Blocks x, x is not on top of A, except if x is Block
B.” Babaian and Schmolze called these statements psiforms. Exceptions to a psiform
represent unknown information. That is, given the previous statement, the state of
Block B being on top of A is unknown. PSIPOP [1] is a conformant partial order
planner based on PSIPLAN.

This paper describes a new planner called PSIGRAPH, which implements a
Graphplan based algorithm using the PSIPLAN language, and is thus able to act as a
fast conformant planner for use in domains where quantification is needed.

In the next section, we review the original Graphplan algorithm, followed by a
description of PSIPLAN. Afterwards, we explain PSIGRAPH, which combines the
two. We then describe the methodology used in testing PSIGRAPH on the Blocks-
World and Bomb-In-Toilet-with-Clogging (BTC) domains. Finally, we evaluate the
results and draw conclusions.

2 The ClosedWorld Graphplan Algorithm

Graphplan constructs a layered, directed, acyclic graph. The first layer is assigned
level 0, and the nodes in even numbered layers represent ground literals. The nodes
in odd numbered layers represent operators. No literal or operator is represented
more than once in a given layer. The initial conditions are assigned to nodes in layer
0. Letting the current layer of operators be called k where initially k=1, Graphplan
repeats the following steps, increasing k by 2 each time, until it finds a solution.

e All possible operators, including maintenance operators (which simply copy a
condition from one layer to the next condition layer) are assigned to layer k.
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e For each operator in level k, Graphplan checks to see whether its preconditions are
present on layer k1. If not, the operator is removed from the graph. If so, a
directed edge is created from each precondition on level k to the operator.

e The effects of the operator are added to layer k+1, with directed edges from the
operator to these effect nodes.

e When all operators have been examined, mutexes are created between pairs of
operators that cannot co-occur. For example, a mutex would occur between two
operators whose preconditions are mutually exclusive.

e Next, mutexes are created between inconsistent pairs of conditions on level k+1.

e After all mutexes have been added, Graphplan evaluates whether layer k+1 entails
the goal. If so, it is possible that Graphplan has found a solution. In the next phase,
called Solution Extraction, Graphplan starts with the goal conditions from layer k+1
and checks to see whether there exists a set of edges from non-mutex actions that
produce them. If so, Graphplan recursively checks to see whether these actions
have non-mutex conditions which produce them. If the recursion reaches the initial
layer, which by definition has no mutexes, then Graphplan has found a solution.

3 PSIPLAN

PSIPLAN [1] is an expressive language designed for open world domains. It offers
limited quantification and tractable, complete reasoning. A database in PSIPLAN
consists of ground literals and psiforms, the latter of which express possibly
quantified negative information. Such quantification makes a database much more
compact since there are often many more false facts than true ones. For example, a
briefcase may have a pencil in it but there may be many things not in the briefcase.
Moreover, for infinite domains, or for finite domains where some objects are
unknown to the planner, quantification is essential. Consider the impossibility of
stating that there is nothing in the briefcase except a pencil if the domain is infinite, or
if the domain is finite but the planner cannot name all the objects in it. In both cases,
one cannot enumerate all ground instances of ~In(x,B) .

To state that briefcase B has nothing in it except possibly pencil P in it PSIPLAN uses
a psiform [~In(x,B) except x=P]. .Here the x is a universally quantified variable and
~In(x,B) represents that no x is “in” B. The exception x=P means that ~In(x,B) is not
necess arily true when x=P. [~In(x,B) except x=P] is equivalent to the standard first
order sentence Vx—/n(x,B)v x=P. Combined with the atom In(P,B), it implies that
P and nothing else is in B.

Psiforms are even more general in two ways. First the main part, which is the part
before the word "except", can be a clause of negated literals. For example, [~In(x,B)
or ~Pencil(x)] states that "for all x, x is either not in B or x is not a pencil" -- i.e., there
are no pencils in B (though there might be other things in B). Second, the exceptions
can themselves be "quantified" in that a set of ground clauses can be excepted. For
example, [~InDir(x,y) or ~TexFile(x)] states that "for all x and y, either x is not in
directory y or x is not a Tex file," which is equivalent to saying that Tex files are not
in any directory. But this is odd. A more reasonable statement might be [~InDir(x,y)
or ~TexFile(x) except y=/tex], which states that Tex files are not in any directory
except possibly the directory /tex.
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In some domains, one can use tricks to represent quantified information without
explicit quantification, such as the use of Clear(x) in the blocks world. But the use of
Clear depends crucially on the requirement that there is at most one block on top of
another. In the briefcase example, we cannot use a trick such as Empty(x) because a
briefcase can have 0, 1, 2 or more objects in it. We would need Empty(x), Empty1(x)
to represent that x is empty except for 1 object, Empty2(x), etc.

The reasoning algorithms for psiforms include entailment, logical difference and
logical image. Entailment is needed because we now have quantification. For
example, if our goal is that from above, namely that no block be on B, [~On(x,B) or
~Block(x)], we can satisfy this with nothing being on B, [~On(x,B)], or with nothing
being a block, [~Block(x)]. Logical difference lets us "subtract" one psiform from
another to see what is not entailed. For example, P1=[~On(x,B) or ~Block(x)]
"minws" P2=[~On(x,B) except x=A], which states that nothing is on B except possibly
A ,, yields P3=[~On(A,B) or ~Block(A)], i.e., to entail P1 using P2 we must also have
P3. Image is the complement of difference. The image of P2 on P1 is the subset of
P1 that is entailed by P2, which is P4=[~On(x,B) or ~Block(x) except x=A]. All three
types of reasoning are used in planning.

Formally, a PSIPLAN database is a set of ground literals and/or psiforms. A
psiform is P=[~P(x) or ... or ~P,(x) except Gy, ..., 0,] where x is possibly a vector of
variables, M(P)=[~P;(x) or ... or ~P,(x)] is called the main form and E(P)={0y,...,04}
are the exceptions. Each ¢; is a substitution that binds a (not necessarily proper)
subset of the vector of variables, x, to constants. The meaning of a psiform P is the
conjunction of the clauses in ¢(P). When P has no exceptions, ¢(P) is the set of all
ground instantiations of P, i.e., P)={M(P)c | M(P)c is a ground clause}. Otherwise,
q)(P):((IJ(M(P)) \(d6(M(P)o) U ... U &(M(P) Gn))) where \ is set difference.

A ground clause C1 entails another ground clause C2, written C1]=C2, if and only
if the literals in C1 are a subset of the literals in C2. A psiform P1 entails a psiform
P2, P1|=P2, if and only if every clause in ¢(P2) is entailed by some clause in O(P1).
The image of P1 onto P2, written P1D> P2, is the subset of ((P2) that is entailed by
P1. Thus o(P1>P2)={p | pc ¢(P2) and ¢O(P1)|=p}. Finally, the e-difference (i.e,
logical difference) of P2 minus P1, written P2-P1, is the subset of ¢(P2) that is not
entailed by P1. Thus ®P2-P1)={p | pe ¢(P2) and ~( ¢(P1)|=p)}. (P1>P2) and (P2-
P1) partitions ¢(P2). We note that image and e-difference can be represented by a set
of psiforms, and that all three operations -- entailment, image and edifference --
require time and space that is polynomial in the size of the database under certain
reasonable assumptions [1] which we make in this paper.

4 PSIGRAPH

We split the description of PSIGRAPH into four parts: the definition of a planning
problem, the overall algorithm, graph generation, and solution extraction.
4.1 Definition of a Planning Problem

PSIGRAPH is given the following:
e A set of initial conditions, which consists of ground literals and/or psiforms
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o A set of goals, which consists of ground literals and/or psiforms.
e A set of operators, each of which consists of:

o a name, which specifies the variables in the operator structure.

o a set of preconditions, which consists of literals and/or psiforms.

o a set of effects, which consists of literals.
In the currently implemented version of PSIGRAPH, we do not allow conditional
effects and disjunctions are limited to psiforms.

The overall PSIGRAPH algorithm is in Figure 1 and is the same as the closed-

world Graphplan algorithm.

4.2 Graph Generation

The graph generation portion of PSIGRAPH is based on that of the closed-world

Graphplan in that each precondition of each operator is checked to see if it is entailed

in the previous layer. If all of the preconditions for the operator are so entailed, the

operator is retained and the effects of the operator are generated for the next layer.

Otherwise the operator is removed from the graph. However, there are three issues

presented by the use of psiforms in the PSIGRAPH domain.

(1) Preconditions may be nearly entailed by propositions.

(2) There may be more than one way to entail a precondition.

(3) Generated psiforms on the next layer may only be partially mutex with other
generated psiforms, and this will make future reasoning difficult.

We explain each of these in turn. But first, we say that a psiform P1 nearly entails

another psiform P2 if and only if the main part of P1 entails the main part of P2,

ignoring exceptions, i.e., P1 nearly entails P2 iff M(P1)[=M(P2).

Algorithm PSIGRAPH
Current-Level = Initial-Conditions; Iterations=0
Repeat
Iterations++;
NextLevel = Generate-New -Layer(Current-Level);
If Find-Plan(Next-Level) == SUCCESS
then Return(SUCCESS);
End if
NextLevel = Current-Level;
If iterations > MAX_ITERATIONS, Return(FAIL);
end Repeat

Fig. 1. The overall PSIGRAPH algorithm.

4.3 Multilinks

The first issue arises when a combination of two or more propositions from a layer
entail a precondition or goal, but neither by itself is sufficient for such entailment.
For example, let a precondition state that block B is clear of anything on top, i.c.,
[~On(x,B)], and let the previous layer include the propositions:

[~On(x,B) except x=C, x=D], ~On(C,B), ~On(D,B)
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Together, these three conditions entail the precondition. In such a case, PSIGRAPH
draws a multilink between the operator and the three prop ositions. A multilink in
PSIGRAPH acts just like a link or an edge in Graphplan. It is a set of edges from one
or more propositions on layer k to an operator on layer k+1. As a plan proceeds these
edges must be followed atomically, that is, all at once or not at all. Note that the
closed-world Graphplan may be viewed as a form of PSIGRAPH where all the
multilinks have exactly one edge.

4.4 Finding the complete set of Multilinks

The second issue is that a precondition may be entailed by more than one multilink.
For PSIGRAPH to be complete, it must find all possible multilinks. Thus it
implements the function Satisfy-Goal, which returns the set of sets of propositions in
a given layer where each set, taken together, entails a given goal. It esubtracts each
potentially helpful proposition from the goal, and recursively calls itself to satisfy the
remainder. The algorithm is in Figure 2 where \ is set subtraction and — is e-
difference.

The first argument to the recursive call is the union of the set of goals without G
and the e-difference of G minus P. The latter is the portion of G that is not entailed
by P. In general, e-difference returns a set of psiforms.

Function Satisfy-Goal (Goals, Props, Sofar)
- Goals is a set of psiforms to achieve.
- Props is the set of conditions to examine.
- Sofar is the current partial solution set.
If Goals is empty then return {Sofar}
/I Return a set whose only element is the set Sofar.
else Let Result = {}
For each P in Props
For each G in Goals
If P nearly entails G
then Result=Result U
Satisfy-Goal((Goals\G) U (G-P),
Props\P, SoFar U {P})
end inner for
end outer for
return Result
end If
end Function

Fig. 2. Satisfy-Goal
The first call for a given Goal is: Satisfy-Goal({Goal}, Props(Layer), {})

where {Goal} is a singleton set containing Goal, Props(Layer) is the set of
propositions in the Layer and {} is the empty set.
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4.5 Partially Mutex

Just like Graphplan, PSIGRAPH generates all of an operator’s effects on the next
layer. For negated literals, determining mutexes between conditions on this next layer
is the same as Graphplan since all literals are ground: If A is an atom, mark as mutex
the pairs A and ~A. With psiforms, mutexes are more complicated because an atom
A might be inconsistent with only partof a psiform P, i.e., P might entail many
ground clauses where A is inconsistent with only some of them. For example,
A=0On(A,B) is inconsistent with P=[~On(x,B)] but P entails many ground literals
besides the one that is inconsistent with A. We cannot mark A and P as mutex
because it is an overgeneralization and may prevent finding some solutions. Instead
we split P into two parts: P1, which represents the subset of P that directly conflicts
with A, and P2, which is the remainder of P. In the above example, we split P into
P1=[~On(A,B)] and P2=[~On(x,B) except x=A].

The above is accomplished using the image and e-difference operation described
earlier. An atom A is inconsistent with a psiform P iff B=(~A). If not, there is no
mutex. If so, we calculate P1=([~A] > P) and P2=(P1-[~A]). Remember that P1 and
P2 are sets of psiforms, and we note that P1 must be a singleton set. If P2 is empty
then no splitting occurs because [~A] entails all of P. In this case, A and P are simply
marked mutex. If P2 is not empty, then node P is replaced by P’=(P1 U P2) in the
graph and A is marked mutex with the single psiforms in P1. P1 and P2 inherit the
uplinks from P. Their downlinks are easily recalculated from P’s downlinks.

4.6 Solution Extraction

Solution extraction of PSIGRAPH follows the algorithm of Kambhampati [10] by

using ExplanationBased Learning (EBL) and Directed-Backtracking (DDB). Several

issues that arise due to the use of psiforms in PSIGRAPH require only minor

modifications to the algorithm

(1) There may be more than one set of propositions that entails a goal or
precondition.

(2) A set of propositions may be mutex, even though there is no pairwise mutex. We
refer to these sets as nogoods.

The first issue is solved merely by following all possible multilinks backwards
during backtracking. Although this increases the search space, the EBL/DDB
algorithm is extended to mark additional sets of unreachable propositions as
memoizations of nogoods. The only difference is that in PSIGRAPH, a failed
solution could return more than one conflict set. Each conflict set is stored as a memo
and regressed. The memo sets are stored in a UB-Tree [9].

The second item above refers to disjunctive psiforms. A disjunctive psiform may
be mutex with a pair of atoms taken together, while being mutex with neither
separately. These sets are detected at graph generation time by scanning the layer for
sets of atoms each of which is mutex to a term in the disjunction. They are stored as
nogoods in the UB -tree.



72 A. Carlin, J. Schmolze, T. Babaian

5 Evaluation

PSIGRAPH was implemented in Allegro Common Lisp, and tsted on the BTC

(bomb in toilet with clogging [11]) and Blocks-World domains. For the Blocks-

World domain, we generated problems using the BWStates program [12] and recoded

them in PSIGRAPH. For BTC, we rephrased the initial conditions as follows. In this

example, there is one toilet, T1, and 2 packages, P1 and P2.

[~Package(x) except x=P1, x=P2],

Package(P1), Package(P2), Toilet(T1), ~Clogged(T1)

The first proposition states that nothing is a package except possibly P1 and P2. We

also rephrased the goal.

[~Package(x) or ~Armed(x)]

i.e., every x is either not a package or not armed. The Dunk(P,T) action had

preconditions Package(P) and ~Clogged(T), and effects Clogged(T) and ~Armed(P).

The Flush(T) action had no preconditions, and effect ~Clogged(T).

We also performed experiments where it was not known whether the toilet(s) were
clogged (i.e, we removed ~Clogged(T1), etc., from the initial state), and the effect
was small. We will soon see that PSIGRAPH is not sensitive to this type of change in
the initial state. We ran our experiments on a 2.4Ghz Dell Linux workstation.

We used two different versions of PSIGRAPH. The first, PG1, performed an

exhaustive solution extraction search on each layer before failing and proceeding to

the next layer. PGl always finds an optimum parallel solution. The second, PG2,
differs from PGl in the following ways:

e (Mod 1) All pairs of nonmaintenance actions were labeled mutex.

e (Mod 2) Solution extraction failed after n nogoods were found, where n is the
number of operators in the domain, unless the number of planning layers was at a
theoretical maximum (in which case solution extraction failed). The last solution
extraction performed before PSIGRAPH gives up is always a complete search.

e (Mod 3) Solution extraction was only attempted every fifth layer.

(Mod 1) means that PG2 finds only linear plans. Problem BTC(40,6) requires 13
timesteps under PG1 and 81 timesteps under PG2, although both have the same
number of nonrmaintenance operators.

(Mod 2) prevent s the planner from getting bogged down in solution extractions that
are likely to fail. As a result, it may return non-optimal plans. But as long as the last
attempt is a full solution extraction, it will never fail to solve a plan because of (Mod
2). This is because solution extraction works just fine on overly long graphs. BTC
was not assigned a theoretical maximum, but the Blocks-World domain has a
maximum number of plan steps of 2 times the number of blocks

(Mod 3) has the same intention as (Mod 2).

Table 1 shows our results in BTC 1-toilet problems. BTC 1-toilet results have been
published for other conformant planners, and a summary in [5] includes results for
CAIltAlt-Lug [5], HSCP, GPT [4], and CGP [13]. The summary shows HSCP as the
fastest iming on this domain, taking 98 seconds for the 20 package problem, 674
seconds for 40 packages, and 5100 seconds for 60 packages. We note that these
planners allow conditional effects but not quantified information, whereas
PSIGRAPH does not allow conditional effects, but does allow limited quantified
information. The effect is that the difference in expressiveness helps make BTC an
easier problem for PSIGRAPH, as the DUNK action has no preconditions that need to
be explored.
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Table 2 compares the BTC 10-package 3-toilet problem (BTC(10,3)) and
BTC(40,6), where the possible clogging of all toilets was unknown, to published
results of WSPDF [8], who used a 333 MHz Sun Sparc 10 Ultra workstation. Finzi et
al use a domain dependant BadSituations marker to limit their search space. In
WSPDF, a BadSituation occurs when a toilet is flushed twice without an intervening
dunk, when a package is dunked when there is an undunked package lower in
number, and when a toilet is flushed when there is an unflushed toilet lower in
number. We did not use the

Table 1. Timings of various planners on various domains. Times are in seconds. PSIGRAPH
was run 5 times on a 2.4 Ghz Pentium processor. All other results come from [5] on a 2.66 Ghz
Pentium 4. Times are in format (x/y), x is in seconds, y is in plan steps. All plans in the same
row produce the same number of plan steps, unless otherwise noted. * indicates no solution

Domain PGl PG2 Caltalt HSBP CGP
Lug

BTC 2.46/39 1.7/39 651 98 465/3

(20,1)

(40,1) * 14.4/79 8009 674 *

(60,1) * 80.2/119 38393 5100 *

Table 2. Timings in the BTC domain for multiple toilets with high uncertainty. PG1 and
PG2 were run using a 2.4 Ghz Pentium 4 processor. WSPDF is reported from [8] on a
333 Mhz UltraSparc 10. * indicates no solution.

Domain PGl PG2 WSPDF
BTC(10,3) | 12.5/7 | 1.2/19 32/20
BTC(40,6) | * 80.3/79 | 114/80

Table 3 . Averaged results of running PSIGRAPH on 10 random examples in the BW
domain. Domains are of the form BW(a,b) where a is the number of blocks and b is
the number of blocks whose location is unknown. Results are of the form x(y)/z,w here
X is mean time in seconds, y is mean plan steps,. And z is the maximum number of
propositions found in a single layer. ' indicates a trial had no solution found after 10
minutes, ‘-‘ indicates the experiment was not run

Domain PG1 PG2
BW(8,0) 3.9(3.6)/ 136 21.6(4.3)
BW(10,0) 28.2(5) /210 *
BW(11,0) 81.7(5.7) 1253 *
BW(12,0) 334.1(4.1)/300 *
BW(15,5) 37.8(4.4) /210 -
BW(20,10) 54.1(5.2)/210 -

above domain restrictions but we did try to limit the search space in PG2 (see above).
As the results show, PG1 produces optimal solutions, even on multiple-toilet
problems. This is because it performs a complete search of the solution space. Its
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disadvantage is that it spends large amounts of time performing failed solution
extractions, and this is enough to make the planner time out for large problems.

PG2, by contrast, finds solutions much faster. The speed of PG2 is in part an
artifact of the simpicity of the BTC domain, as PG2 does not need to spend much
time at all in solution extraction. In these experiments, PG2 was dominated by the
graph generation phase, a trend that would reverse itself on more difficult problems.
Graph generation is a comparatively easy task whereas solution extraction requires
searching an exponential number of possible solutions. Furthermore, if the metric of
finding n mutexes per attempt at solution extraction (Mod 2, where n is the number of
literals on the layer) makes little progress on each iteration, PG2 might take longer
than PG1. Also, PG2 relies on the hope that it will find a solution without exploring
the whole search space. We ran PG2, for instance, reversing the order that the
operators are considered (that is, we tried preferring maintenance actions instead of
preferring non-maintenance actions), and PG2 showed the same difficulties for larger
BTC domains as PG1. Thus, PG2 may prove to be fragile on other domains. The
results above for PG2 should be viewed as an optimistic scenario, not the expected
scenario. PSIGRAPH is presented with a similar dilemma to that faced by a closed-
world Graphplan with a large number of propositions. We note that the BTC domain
will generate approximately 2*P propositions per layer, where P is the number of
packages, as there are P initial conditions of the form (Package P), and P exceptions
to [~Package(x)].

We ran PG1 and PG2 on the Blocks-World domain to test the algorithm in a more
difficult domain as well as to test its sensitivity to the number of unknowns in the
initial state. We used the BWStates program [12] with various numbers of blocks
with various numbers of unknown locations. Each problem was translated to
PSIPLAN, including elimination of Clear and use of psiforms instead. Table 3 shows
the tradeoff between PG1 and PG2.

Table 3 shows that PG1 is better on domains like blocks-world, presumably
because in the blocks-world doing an exhaustive solution extraction early and often is
a good idea since more mutexes will be found anyway. It also shows that PSIGRAPH
is relatively insensitive to unknowns in the domain. Domains (15,5) and (20,10) are
comparable to (10,0), in that both have the same number of known facts in the initial
state. Unknowns will not affect solution extraction; they only affect the time taken
for graph generation as they increase the number of operators to check. It should be
noted that Finzi et al. also timed their WSPDF theorem prover on the Blocks-World
domain, with a domain-specific BadSituation() predicate which favored exploration
of good towers. Their planner produced 17-step plans in 31.2 seconds, with an
additional 50.1 seconds to compile the domain for 20 blocks and 10 unknowns on a
333 Mhz UltraSparc processor. These results are roughly comparable to ours.
However, PSIGRAPH did not rely on any additional domain information, like the
BadSituations..

8 Conclusion

We introduced PSIGRAPH, a conformant planner based on Graphplan that uses the
PSIPLAN language, which allows for limited quantification. PSIGRAPH can work in
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infinite domains, and in finite domains where not all objects are known and admits
very compact representations of domains with a large quantity of negative facts.

We evaluated PSIGRAPH on the BTC and Blocks-World (BW) domains, and
compared results from other planners. Only one of these other planners allows
quantification, namely WSPDF of [8]. For several BTC problems, PSIGRAPH is
faster than most other planners tested. In BW, PSIGRAPH is comparable to WSPDF,
though it is not clear how WSPDF’s domain dependent BadSituations affected its
timings.

Future work will improve PSIGRAPH, investigate more domains, and develop a
better understanding of the differences between PG1 and PG2. We will also expand
PSIGRAPH to allow conditional effects and general disjunction in the initial state,
and will explore the use of binary decision diagrams [6] for both ground and
quantified formulas.
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Abstract. The decentralized and distributed nature of workflow in or-
ganizations demands for support from decentralized and distributed com-
putational systems. However, most conventional workflow applications
use centralized architectures. Agent technology seems to be an adequate
approach for supporting distributed systems. We have extended the ca-
pacities of a multiagent system for knowledge and information distri-
bution in such a way that it can handle general workflow processes in
a decentralized way. A working prototype is reported, and quantitative
experiments have been conducted to show that the distributed workflow
process flow control makes possible better scalability than the centralized
counterpart.

1 Introduction

Within enterprises, streamlining processes have led to the implementation of pa-
perless document circulation by means of workflow management systems (W{MS)
[1,2]. They are today a standard component of many enterprise-wide information
systems and their value is widely acknowledged.

Within commercial and industrial domains, the business process execution
and the process flow control are performed in a decentralized way because or-
ganizations are physically and often logically distributed. In other words, there
is no central entity orchestrating each activity composing the whole business
process. This decentralized and distributed nature of workflow in organizations
demands for support from decentralized and distributed computational systems.
However, most conventional workflow applications use centralized architectures.

In this paper we present an extension of an Information and Knowledge
distribution system [3-5], which is an agent-based information system aimed to
distribute the right piece of knowledge to the right person within different parts
of an organization. In fact, distributing knowledge and information items could
be thought of as a restricted kind of workflow, as it just comprises a document
generation and its distribution, ending with the document reception by a final
user. But if, for instance a document needs to pass through authorization in order
to be distributed, then a more complex workflow is needed, and even this simple
task is beyond the basic version of our knowledge distribution system. So, we
enhanced our knowledge distribution system with general workflow capabilities.
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This paper structure is as follows: After this introduction, we present some
background about our knowledge distribution multiagent system. Then, in sec-
tion 3 we present our proposal. In section 4 a working prototype is presented,
which is validated experimentally in section 5. Then, we compare our work with
others in section 6, followed by a conclusion.

2 Background - Our System Architecture

Site APP
Agent,
Site [LNK
Agent Bridge
Agent

Site
Agent,

= i
E - Inference Engine Monitor
LAD - Local Agent Directory Agent

ESD - External Site Directory
PMD__Page Monifor Directory.

Personal Personal
[ Agent. o Agent PE]

Fig. 1. Knowledge distribution system architecture.

Our workflow system is an extension of an information distribution system
[6], which is based on a multiagent architecture shown in Fig. 1. It comprises
some types of agents which appear in the mentioned figure but from which we
are going to explain just those agents which are important for the work we are
presenting:

Site Agent. This agent, works like a network router; it receives messages
from any agent and distributes the information to the proper users under its
site or domain. The distribution is made by first finding the corresponding users
located in conceptual hierarchies. These hierarchies may represent organizational
departments, interest areas, work groups, etc. Each Site Agent keeps in touch
with others Site Agents so that they all together make a network of agents for
information distribution.

Personal Agent. Each user may have one personal agent that filters the
information addressed to the user and shows it through a web browser, sends
him/her an e-mail or a message by a SMS service.

3 The Proposed Architecture

In our architecture, we are going to take the “personal agent” of JITIK as
the basic workflow executers. The proposed solution for decentralized workflow
process management consists in breaking down the workflow process execution
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and the process flow control into small execution units handled by intelligent
agents, and allowing the agents to reflect the organizational structure and the
way processes are controlled and executed, i.e., distributed and decentralized.

For this purpose, two agent types are required: a new agent type named
Registry Agent for holding process descriptions, keeping track of all the run-
ning processes at every moment and creating process instances on demand; and
the existing Personal Agent for assisting its user/worker to perform his/her as-
signed tasks. In the end, Personal Agents are the actual organizational processes
orchestrators in a distribution and decentralized fashion.

Once all agents (one Registry Agent and one Personal Agent for each user
participating in a process) are up and running, the Registry Agent receives a
process description [7] as input and segments it into atomic task descriptions.
A task description is composed by the process identifier this task belongs to;
the information to be handled which can be a link to a document; the assigned
Personal Agent referenced by its user description in terms of the organization,
i.e., the Personal Agent of the user in department D and position P; a list of
tasks to be enabled right after this task finishes its execution containing the
corresponding Personal Agent reference; the join and split operations to apply;
and the number of flows that converge to this task. After process description
segmentation, the Registry Agent distributes each task description to the corre-
sponding Personal Agent executor. This way, all Personal Agents know what to
do in advance when a task of a process instance is running, resembling the way
an organization works. It is assumed that each task is assigned to only one user,
i.e., a unique Personal Agent.

3.1 Agent Communication

Since all tasks are distributed, Personal Agents need to send messages among
them in order to enable tasks of the same process instance. In Petri Nets, a
token is a marker that specifies in which part of the net is occurring the actual
processing. In our system, a token is an agent message which contains a process
ID, an instance ID and a task ID over which the message recipient must operate.

A task is enabled when its Personal Agent receives the necessary tokens for
task enabling according to a join operation (AND, OR, XOR), e.g. let us assume
that in a process, tasks t,, tp, t. and tq exist and are owned by Personal Agents
PA,, PA,, PA, and PA, respectively, and t,, t, and t. are direct predecessors of
tqy which in turn synchronizes the three incoming flows, i.e., PA; must perform
an AND-join operation in order to enable tg. Therefore, right after PA,, PA,
and PA. finish its task execution, each of them send a token to PA4. And only
when all three incoming tokens are received task ty4 is enabled and ready for
execution. A sequence diagram showing this token passing is illustrated in Fig.
2(a).

When a Personal Agent finishes a task execution and is about to enable the
successive tasks in the process flow, it sends a single enabling token for each
successor task to its owner Personal Agent according to a split operation (AND,
OR, XOR), e.g., let us assume that in a process, tasks ¢, t,,t, and t, exist
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Fig. 2. Enabling workflow tasks.

and are owned by Personal Agents PA,,, PA,, PA, and PA, respectively, and
tn,t, and t, are direct successors of ¢,, which in turn selects one of the three
outcoming flows, i.e., PA,, must perform an XOR-split operation in order to
enable only one of ¢,,t, or ¢,. A sequence diagram showing this token passing
is illustrated in Fig. 2(a), here, task t, was selected and thus the token was sent
to PA,.

A token can be sent by the Registry Agent or a Personal Agent. When the
Registry Agent enables one or more tasks is because a process instance has just
been created by it and the first tasks in such instance process are being enabled.
This is the only case in which the Registry Agent is involved in the process flow
control. When a Personal Agent enables one or more tasks is because it just
finished the execution of one of its tasks. Notice that several tokens can be sent
at a time by each Personal Agent for different process instances. Moreover, when
a task status changes (e.g. from enabled to in-execution), the task owner sends
a message to the Registry Agent to inform the event. This is for monitoring
purpose and will not be explained here.

4 Prototype

The developed prototype for distributed and decentralized workflow process ex-
ecution consists in several software layers shown in Fig. 3.
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Fig. 3. Agent-based workflow software layers.

Agent Platform. The chosen agent platform for developing and executing
our system agents was JADE because of its robustness [8]. Additionally, we used
the JADE ACL messaging mechanism for agent communication.

Data Access. This layer is used for information access support. It allows
agents to acquire information about their user or search other users’ Personal
Agents.

Workflow. Workflow process descriptions [7] taken as system input, are
parsed and then segmented into atomic task description. This way, Personal
Agents are able to know their assigned activities in advance and perform their
tasks when a process instance is generated. This layer also works as information
provider to the upper layer as explained below.

Agent Communication. On top of the Workflow layer the communication
components were developed. These components are used for translating task
descriptions into Tasks, as objects, so that Personal Agent can manage them.
Based on these Tasks, Tokens can be generated and passed among agents for
workflow enactment.

System Agents. Personal Agents, a single Registry Agent (and other system
agent) are running constantly in the platform; they acquire information about
users, such as who and where is his/her Personal Agent, through the Data Access
layer; they rely on the Agent Communication layer for process instance creation,
token passing and task enabling; and furthermore, the Registry Agent creates
process instances and keeps track of all active processes.

5 Experiments

Since it is well known that a distributed application (e.g. using agents) diminishes
the workload among its element while increases the communication, the objective
of the experiments is to demonstrate that the proposed decentralized execution
of workflow processes can be implemented (concept proof) and that performs
better than a centralized approach. Thus, the performance of both approaches
were compared using the elapsed time for executing certain number of process
instances at a time.

Three processes were designed for this purpose, each of them representing
some basic workflow patterns [9]. It was decided to test using the basic workflow
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Fig. 4. Comparison between the centralized and the decentralized versions of workflow

patterns since when combined they form complex workflow processes. The first
testing process represents the sequence pattern which, according to its nature,
was combined with no other workflow pattern. And the second testing process
represents the combination of the parallel split and the synchronization workflow
patterns since they match, i.e., they are the AND split and joint.

An experiment consisted in the creation of an increasing number of process
instances at a time, i.e., first one process instance, then 2, then 3 and so on up
to 20 instances at a time. For each block of instances, the seconds elapsed from
the first instance creation until the last task in terminate of the last process
instance was measured. Thus, at certain moment there were several process
instances running at a time.

The execution of a task consisted on waiting certain amount of simulation
cycles. All tasks were standarized to 5 cycles and each cycle lasts 10 milliseconds,
which means that the total amount of time for executing a task is 50 milliseconds.
Notice that there was no central control on the passing time, i.e., each agent had
to decide how much time had elapsed by its own.

For resembling the centralized approach, all tasks of the testing processes
were assigned to one single agent who had to perform the whole work by itself.
There were other threads along with the centralized version in order to allow all
agents to operate under the same conditions.

For simulating the distributed approach, all tasks of the testing processes
were completely distributed, i.e., one agent were assigned to perform only one
task.

For testing our system with respect to sequential processes, a simple process
were defined in which 42 tasks is sequence were put. In the decentralized case,
each task was assigned to one single Personal Agent. And in the centralized case,
each tasks was assigned to a single Personal Agent. For the centralized case, when
processing a single instance, the elapsed time was of 96.275 seconds and for 20
instances the elapsed time was of 1778.313 seconds. For the decentralized case
the elapsed time was of 79.811 seconds for 1 process instance and 434.517 seconds
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for 20 instances. As can be appreciated in Fig. 4(a) even for 1 process instance,
the decentralized approach overcomes the centralized one.

In other experiments, we tested our system with respect to parallel split
and synchronization, The process used for this test consisted of a single task
(thread) that splits into 40 different thread composed by one task each. After-
wards, all threads converges into another single one. In the centralized case, the
duration of one instance execution was 102.411 seconds and for 20 instances it
lasted 4068.367 seconds, i.e., over an hour for executing 20 instances. And the
decentralized case lasted 47.31 seconds for one instance and 523.287 seconds for
executing 20 instances of the same process. Figure 4(b) shows a comparison be-
tween these two approaches for workflow process execution. It is clear that a
decentralized approach overcomes a centralized one in execution time.

The results presented in this chapter demonstrate that the distributed and
decentralized execution of workflow processes outperforms a centralized archi-
tecture for the basic workflow patterns. It is clear that these results extrapolate
to more complex patterns, which are combinations of the basic ones.

We think these results are clear indication that the decentralized architec-
ture has advantages in terms of scalability, which is a very important issue for
large organizations. Indeed, in the experiments we can see that some of the
performance curves for the centralized version grew faster than linear.

The reason why the decentralized architecture outperforms the centralized
approach, in terms of scalability, is that in the latter we are increasing the number
of process instances over one single thread of execution (one Personal Agent),
eventually saturating it; this single thread becomes a bottleneck and produces
an increasing time overhead. That explains why, in the graphs presented, with
an increasing number of instances, time increases not linearly, but worse (we did
not investigate whether in the centralized case time was polynomial, exponential
or other, but clearly is not linear).

6 Related Work

In general, other agent-based workflow architectures [10-16], emphasize the ne-
gotiation aspect of multiagent systems and their distributed nature. Thus, they
proposed a distributed workflow system as well. However, they centralize the
workflow process execution in one single agent (called Workflow Agent or Trig-
ger Agent). In section 5, a comparison between a decentralized process execution
and a centralized one was presented. Results demonstrate that a decentralized
workflow process execution is better than a centralized one in terms of scalabil-
ity. In addition, in those architecture there are several agent instantiation at run
time under no control. In other words, they assume an environment with unlim-
ited resource while in real environments that cannot be assumed. Our system
does not makes that assumption since all agents are predefined to run at system
start up. Snd besides, the required quantity of agents in our system is linear to
the quantity of workers in the organization.
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Compared to agent-enhanced approaches [17-19] our system architecture al-
lows to automate behavior, i.e. agents can execute tasks on its own without
human involvement, agents react to its environment, agents can adjust them-
selves, e.g., they can create new tasks or new routing depending on the circum-
stances, and finally, agents have high level features such as learning, negotiation,
and planning [20]. In other words, an agent-based application has more benefits
than an agent-enhanced workflow application since in the agent-enhanced work-
flow application agents’ behavior is limited to the possibilities of the underlying
WIMS.

Other architectures have been proposed for distributed workflow engines [21],
distributed components of workflow patterns [22], and a distributed architecture
in which components get communicated via ontological messages [23]. However,
in traditional distributed system, all decisions, coordination and cooperation are
hard-coded at design time. Additionally, the elements of these systems share a
common goal. These are remarkable differences between this kind of systems and
multiagent systems [24] since in the latter, the agents may not share common
objectives and therefore they must act strategically, so that they can achieve the
outcome they most prefer. In addition, agents are assumed to make decisions
about what to do at run time (acting autonomously) while traditional distributed
systems cannot.

7 Conclusions

We presented in this paper a multiagent-based architecture that supports decen-
tralized workflow processes execution. The proposed solution for this purpose
consisted in breaking down the workflow process execution and the process flow
control into small execution units handled by distributed agents.

A prototype was developed in order to prove that the proposed solution for
decentralized workflow process execution performs better than a centralized ap-
proach. Experiments were setup combining some of the workflow patterns and
for different number of process instances. The results were, in the two experi-
ments, conclusive since the decentralized approach outperforms the centralized
version. These results prove that a decentralized approach for workflow process
execution is more scalable than a centralized one.

As future work, we plan to include support for the remaining and more
complex of the workflow patterns [9], allow agents to perform automated tasks
without human intervention, e.g., when a task requires to incorporate informa-
tion automaticaly from particular information sources or alarms to be triggering
because of something happened in a legacy application.

Also, our decentralized proposal makes it possible to start a process execution
and at some part continue it within another organization. This would be inter-
organization workflow, which has great economic potential.
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Abstract. In the present article we presented the results of a simu-
lator in order to evaluate the performance of multiagent systems. We
approached the problem of exploration of unknown environments using
three types of agents: one with ample observation capacities but with-
out moving ability, others with big displacement capacity but whose
observation ability is limited to the recognition of their present posi-
tion (explorers), and finally another group of agents with possibilities
of high displacement and load capacity, and narrow sensorial capacity
(shippers).

In this work we also present a proposal about paths memorized by agents,
based on the creation of a tree of obstacle-free paths. This tree is stored
in a blackboard to which all the shipper agents have access, and enables
them to choose the best trajectory from their current position to the
point in which the samples have been discovered. This work also displays
a strategy of collaboration and conflict resolution based on a contract
net-like mechanism.

1 Introduction

The problem which we solved with this multiagent system consists on the ex-
ploration of an unknown environment [12]. This space is composed by a set
of obstacles and samples (objects to be collected) that have to be loaded and
bring to a special point which we will call ET?. We will analyze three different
approaches to solve this problem:

1. In the first method we have agents who explore and load samples to the
point ET° without collaboration.

2. The second approach besides using previous strategy, incorporates collabo-
ration between agents, such that when an agent discovers samples in the
environment, when returning to the point ET° it leaves landmarks that can
be used by itself or other agents to follow this way and then go back to the
point where samples were discovered.

3. Our approach is to divide the agents in three different types: the first one
with ample calculation and observation abilities (M R'), the second (M R?)
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with great possibilities of displacement and capacities of observation limited
to its present position and the third (M R3) with load and displacement
possibilities as well as capacities of observation limited to its present position.

Proposals one and two were made by Wooldridge in [12], whereas the third
one is our proposal of solution.

1.1 Types of obstacles used in the simulations

In our experiments we used randomly generated obstacles as well as obstacles
with some kind of symmetry that makes some subregions of the environment
become hard to access by the agents.

a) 3] cl

d) &) f

E—— 7+7

al h

Fig. 1. Obstacles used in the simulations

The obstacles of the Figure 1.a) were randomly generated in all the search
space . From now on we will call it type 1 obstacle. We will also identify like
this type of obstacle those that are constructed by the user, as it is shown in
Figure 1.b), guided by a graphical software. In the obstacle of Figure 1.c) the
environment is divided vertically. The agents can move from one side to the
other through a small hole placed in the middle of the obstacle. This will be
identified as type 2 obstacle. Figure 1.d) presents a small box that completely
surrounds the point ET°. This box has a hole in the left bottom corner through
which the agents can leave and go back to ET?. This obstacle will be identified
as type 3. Figure l.e) displays an obstacle that is similar to the previous one,
but in each corner of the box, it has a hole. This will be identified as type 4.
The obstacle of type 5, is displayed in Figure 1.f). Like the type 2, has a vertical
line that divides the space in two equal sized areas. Unlike the type 2 obstacle
this one has several random holes. Figure 1.g) shows type 6 obstacle, made up
by two perpendicular lines that divide the search space in four regions of equal
dimension. These lines have several random holes that enable the communication
between different subregions. Finally, in the Figure 1.h) it can be observed the
type 7 obstacle, that like the type 6, has two perpendicular lines but in this case
it only has one hole that connect subregions.
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2 Experimenting with Wooldridge’s proposals

The first solution proposed by Wooldridge [12] consisted in a set of robots that
do not communicate to each other and which behavior were basically reactive.
Robots leave the main ship (in ET° point) and begins to explore using random
movements, when an agent finds samples then load them and return to ET°
following the decreasing gradient field. The other solution given by Wooldridge
consisted in a multiagent system with a cooperative behavior (simple but very
limited). In that case Wooldridge assumes that the agents return to point ET°
leaving radioactive landmark in the path. Because we couldn’t find numerical
results of Wooldridge proposals, we have to simulate his models in order to
compare these results with our results.

Previously we did some tests to determine the number of runs necessary to
obtain average times that not differ from each other more than 5%.

This strategy of collaboration improves a little the first given solution [2,6,
7], because it leaves at least a sign of the way to follow from the position of
the samples to the ship. Unfortunately if an agent passes over the marks they
are erased. In addition there is no guarantee that when arriving at the group of
samples at the end of the way they remain there. Another inherent problem is
that when arriving at an intersection of ways, there is not a criteria to decide
which path must be taken.

From results shown in Table 1 we obtain the following conclusions:

1. For the case of obstacle 1 and 4 both models fulfilled the total of the task in
100% of the simulations, but the time for collaboration case was 23% better
for obstacle 1 and 13% better for the obstacle 4, than the time taken by the
simulator without collaboration.

2. In the case of type 3 obstacle the time improvement was 28% and in the
100% of the simulation cases task was completed.

3. When using type 6 obstacle the percentage of success in the total fulfillment
of the task did not improve remarkably, but the total time was improved in
a 28%.

4. For the case obstacle 7 the task fulfillment time was improved as well as the
percentage of times that the simulator completes the task until a 100%.

5. Concerning the obstacles of type 2 and 5 their total time was not improved
but an increase of 32% and 26% was obtained respectively.

3 Description of our proposal

Our environment consists of two dimension finite space, that will be represented
by a matrix ET" composed by n x m cells.

Each element ET; ;,1 <7 <n and 1 < j < m they represent only one of the
following components: empty space, a robot mTfC, a number r € N of samples,
or an obstacle.

The samples located in each grid of the search space, are placed randomly
by the simulator.
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without collaboration with collaboration
Obstacle type|Time (s)|success percentage|Time (s)|success percentage
Obstacle 1 574 100 445 100
Obstacle 2 1867 54 4205 86
Obstacle 3 1048 96 761 100
Obstacle 4 468 100 411 100
Obstacle 5 1008 87 2006 100
Obstacle 6 994 92 723 93
Obstacle 7 2856 55 2551 81

Table 1. Simulation results of Wooldridge’s models with and without collaboration
for the seven different obstacle types. We show the total average time to complete the
task and the percentage of success in the different simulations

We also have a distinguished element of ET° with coordinates iy and jo that
we will defined as starting point and that can be any of the ET cells, with the
constrain of not being surrounded by obstacles preventing the access to this
point.

We also divided the agents in three classes taking into account: its observa-
tion capabilities, processing power [11,6, 7], displacement abilities and loading
capacities [10]. These classes are:

1. Class M R!: To this class belongs just one agent. It has observation, com-
munication, calculation and storage possibilities, but cannot move. Its ob-
servation capabilities enable him to determine if an obstacle-free straight
path joining two cells ET; ; and ET, , exists. Similarly it can store the re-
ceived information of the agents of class M R? (shippers) concerning the
obstacle-free straight paths that have been used to reach some ET; ;. It also
has ample communication capacities that enable him to communicate, as
mediator, with all the remaining agents.

2. Class M R?: Here we will have a set of agents having large displacement and
observation capabilities. We will call them explorers. Their processing and
storage power are small and its main function is to explore the environment
to determine the existence of obstacles and samples. These agents contract
the agents of class M R? who will make the recollection of the samples. We
will call them mr,% agents.

3. Class MR?: To this last class belong the agents with large loading and
displacement capacities but with no observation abilities. These agents will
be called shippers and be denoted as mrj. These are in charge to collect
the samples and bring them to the ET? point. These agents use for their
displacement the obstacle-free segments of the path that already have been
discovered by other agents of the same class and which are stored in the
MR agent of class .
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3.1 Behavior of the agents

The explorer agents, in class MR?, leave the ET? point, and move randomly,
same as in Wooldrige’s model (we focus our attention improving the efficiency
of our proposal based in cooperation between agents). If a cell is empty (not
occupied by another agent and without obstacles), these agents will move to it.
Once in the cell they verify the presence of samples, and if it is the case, then
begin the hiring of shipper agents process (belonging to M R? class).

Let us suppose that the explorer agent arrive at the cell with coordinates
u,v in which it discovers samples, then begins a hiring shipper agents process
based on the contract network mechanism [2,6,5] and using KQML [9,3,8,4]
as the communication language. The agents messages are sent to a blackboard
where can be read by the rest of the agents on the system. The agent in M R!
is charged to support all the blackboard information. Shipper agents that are
not currently engaged in a task can read the blackboard to see if they find there
hiring messages.

The explorer agents follow a task allocation rule that tries to reduce the
number of agents that participate in the recollection. For that reason, once the
blackboard was reviewed (agents are ordered decreasingly by their loading ca-
pacity) the shipper agents are selected in that order until the amount of samples
detected by the explorer agent can totally be loaded. The idea behind this process
is to have the smallest possible number of agents moving in the search space and
to minimize conflicts produced by crossing paths.

The shipper agents who have been contracted to recollect the samples follow
the next sequence of steps:

1. With the information stored in the M R! class agent, it determines if between
the points of coordinates u, v and ig, jo an obstacle-free straight path exists. If
it exists then it follows the straight line segment that join them and publishes
in the tree of discovered paths.

2. If it does not find a straight path in the previous step, then it begins to
consult the information stored in the tree of discovered paths. Whenever
it arrives at a node of this tree it follows the same behavior of the step 1,
to try to arrive at u,v. This process continues until it finds a road. In this
case a new obstacle-free segment is added to the tree. Otherwise the tree of
discovered paths overflows and the task is rejected.

3. If the number of rejected tasks exceeds a given threshold, then the shipper
agents move randomly trying to achieve a point where the recollection task
can be continued and apply the step 1. If this process also fails then the task
is kept in the blackboard for later accomplishment.

3.2 The tree of discovered paths construction

In order to understand how the tree is constructed a hypothetical scene is given
as example in Figure 2.

The node labeled by 0 corresponds to ET°, the points labeled by 1,2,3,4,5
and 6, correspond to cells in the neighborhood where there is a certain number
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Fig. 2. Example of construction of the tree of obstacle-free straight paths

of samples to gather. Finally, the segments of straight lines represent obstacles.
Initially the tree is empty. Let us suppose that an explorer agent arrives at
point labeled 2, and at this point we have an obstacle-free straight path. Then
shippers will arrive at this point and will store a first node in our tree having
the coordinates of the achieved point. At this stage the tree is rooted at the
0 node, the coordinates of the point are stored in the node and a descendant
node labeled by 2 is added to it (the coordinates of point 2 are stored in the
corresponding node). This construction stage is displayed in Figure 3.a).

Later the explorer agents discover points 1 and 3, in this order. Given that
they are not reachable by an obstacle-free straight path from 0, then the infor-
mation of the tree is consulted and it is observed that point 1 can be reached
from point 2. This new path is added to the tree as it is shown in the Figure
3.b). Similarly the path to the node 3, from node 2 is added, as it is shown in
the Figure 3.c). After that, points 4,5 and 6 are discovered, in that order, and
added to the tree as it is shown in the Figure 3.c). It is important to notice that
point 5 cannot be reached before discovering point 4 or 6. It’s clear that this is
not a binary tree because more than two paths can be added to the same node.

Many trees can be constructed for the same environment (depending how
samples are discovered). This is not and issue because the tree only is useful to
access new locations based on previously known locations and not to describe
the environment itself.

This mechanism can fail if there is no reachable point from ET? . In order
to avoid this problem the simulator is equipped with a positive integer value
representing the maximum number of allowed failures. When this value is reached
the shipper agents make a first random walk [1]. After that the initial algorithm
is retaken.

3.3 Conflict negotiation between agents ready to collect samples

When an explorer agent mr2, detects samples, it sends a hiring message to all
the shipper agents. This message is attended by all the shipper agents which are
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Fig. 3. Tree of obstacle-free paths for the example on Figure 2

in the ET° point. The agents that are already making a recolection will not be
able to respond to these messages.

The strategy followed in this negotiation consists on diminishing the number
of agents of class M R? which participate in the sample recollection. This is made
by taking the agents that have greater lifting capacity, for which the explorer
agent acts like mediator. In this selection process the shipper agents, are sorted
in decreasing order of their lifting capacity, and are seleced those with greater
capacity until achieving the amount of shipper agents needed to collect the
discovered samples.

This strategy has three basic purposes:

— To diminish the number of shipper agents which travel to a point of the
environment. Doing this we can guarantee that having less agents we reduce
the number of conflicts in crossing paths.

— To maximize the amount of collected samples because the agents are loaded
at their full capacity.

— To diminish the amount of information about the environment that must be
stored in the free-path tree discovered that is updated by each recollector
agent who discovers a new path.

3.4 Path conflict resolution by a negotiation mechanism

The negotiation principle followed by the agents in our system tries to optimize
the global objective that is to collect the greatest possible number of samples
in the smallest period of time. Based on this principle, the negotiation between
agents follows the next rules:

1. If an explorer agent mr2, and a shipper agent mr} try to occupy the same
ET, . cell, the shipper has occupation priority over the explorer agent.

2. If two shipper agents mr2, and mr} try to move to the same ET, , cell,
the shipper agent who is loaded and is going to deliver its load will have
occupation priority. The agent who can not occupy the cell, begins a random

walk and tries to recover its plan some movements later [1].
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3. If two shipper agents mr, and mri try to move to the same ET,, , cell, and
are not loaded then the agent of greater lifting capacity will have ocupation
priority over the other. The other enters into a state of random movements
for recovering later his original trajectory. In the case that both agents have
equal lifting capacity it will be decided randomly who will occupy the cell.

4. If two shipper agents mr3, and mr{ try to move to the same ET, , cell,
and both are loaded then the agent with the greater possible load will have
priority over the other. If both have equal load capacity the decision of who
has priority over the other will be at random. The agent whith less priority
enters into a random movement state and tries to recover its path after
certain number of movements [1].

5. If two explorer agents mr2, and TrL7“,2c try to move to the same ET, , cell,
then it will be decided randomly who will occupy the cell.

3.5 Experimental results under our cooperative model

The experiments were made for different proportions of explorer and shipper
agents, going from a 10% to a 90% of explorer agents (increasing by 10% steps
this amount) and for a 95% of explorer agents. Each one of these proportions
was tested with different obstacle types. In Figure 4 we show the average time
necessary to complete the 100% of the sample recollection, applied to different
obstacle types and for each different explorer and recollector agent proportions.
We can draw from Figure 4 the following conclusions:

1. Independently of the obstacle type, it can be observed that the time nec-
essary to complete the task diminishes with the increase on the number of
explorer agents until a value of 80% but it starts to increase again from
this value which is observed for a 90% and 95%. Evidently more samples
are discovered, but there are very few recollector agents to carry out them
and these samples are left idle in the blackboard until a new opportunity
appears.

2. The best proportion between explorer and recollector agents is between 70%
and 80% of explorer agents.

Now we will compare the results obtained with our proposal against the
results obtained using the two Wooldrige’s models. Analyzing the Figure 5 it
can be observed that the average time invested using our proposal to complete
at 100% the task, with the different obstacle types, was significantly less than
the average time under the Wooldridge’s models. Moreover the worst results
produced by our proposal (for the case of a 10% of explorer agents) were better
than the results obtained using the Wooldridge’s proposal.

4 Conclusions

1. Our proposal of agents with different capacities concerning observation ca-
pabilities as well as loading and displacement abilities, outperform the one
that uses only one type of agent proposed by Wooldridge.
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The negotiation and collaboration strategy for resolving conflicts, based on
giving priority to shippers over the explorers, was quite efficient for these
kind of problems.

The best performance of the system for the sample recollection, was obtained
when using between 70% and 80% of explorer agents.

It has been experimentally shown that learning obstacle-free path method
used in our simulator is a very efficient recognition form of the search space.
In this sense, it must be mentioned that the size of the trees in most of the
cases do not exceed a depth of three levels, and because of that the agents
have a faster way to reach different points of the explored space.

The strategy of random movements of the shipper agents used to solve the
problems of unexpected obstacles in their planned trajectories was quite
effective, because noncollected samples never appeared.

References

10.

11.

12.

Barraquand, J., Latombe, J.C.: Robot Motion Planning: A distributed represen-
tation approach. STAN-CS-89-1257 (1989) Stanford University.

Durfee, E.H.: Coordination of Distributed Problem Solvers. Kluwer (1988).
Finin, T., McKay, D., Fritzson, R.:An overview of KQML: A Knowledge Query and
Manipulation Language. Technical Report (1992) U. of Maryland CS Departemnet.
Ginsberg, M.L.: Knowledge interchange format: the KIF of death. AI Magazine
archive 12 (1991) 57-63.

Haddadi, A.: Communication and Cooperation in Agent Systems: A pragmatic
Theory. Springer-Verlag (1996) Heidelberg.

Huhns, M.N., Singh, M.P.: Agenst and multiagents systems: Themes, approaches,
and challenges. Distributed Artificial Intelligence 1-23 (1998). Morgan Kaufmann
San Francisco CA.

Jennings, N.R.: Coordination Techniques for distributed Artificial Intelligence, In
GMP O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial
Intelligence (1996). 187-210 John Wiley and Sons Inc. New York.

Labrou, Y., Finin, T.. A Proposal for a new KQML Specification.
http://www.csee.umbc.edu/kqml/papers/kqml97.pdf (1997).

Neches, R. Fikes, R., Finin, T. Gruber, T., Patil, R.,Senator, T., Swartout, W.:
Enabling Technology for knowledge sharing AI Magazine 12(3) (1999) 36-56 Fall.
Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In C. Rich,
W. Swartout and B. Nebel, editors, Proceeding of Knowledge Representation and
Reasoning, Morgan Kaufmann (1992) 439-449.

Shoham, Y.: Agent-Oriented Programming, Artificial Intelligence 60-1 (1993) 51—
92.

Wooldridge, M.: Intelligent Agents. In G. Weiss editor, Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence MIT Press Cambridge MA
(1999) 27-77.



Economics of Cooperation:
Social Foraging in Distributed Systems

Ashish Umre! and Ian Wakeman!

! Software Systems Group, Department of Informatics,
University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
(ashishu, ianw)@sussex.ac.uk

Abstract. The sharing and collective processing of information by individuals
in any social system is an attempt to reduce the uncertainty associated with key
features of their environments by collecting and storing information. By
sampling each of its options regularly, an individual gains from being able to
exploit them when they are productive and avoid them otherwise. In this way,
collection of information can be thought of as a solution to the uncertainty
problem that maximises potential opportunities [3], [4]. Some group-living spe-
cies have evolved effective social mechanisms for reducing uncertainties in
their environments. However, doing so may entail certain costs with respect to
attributes such as time, energy and attention. In this paper, we explore the
cost/benefits of cooperation within the domain of distributed systems, where
biologically inspired agents interact with each other using the environment to
disseminate information about resources (foraging sites). In the sections that
follow, we describe briefly the theory of cooperation, social foraging theory,
the simulation model and some experiments to understand/analyse the dynam-
ics of social foraging in stochastic environments.

1 Introduction: Social Foraging and Cooperation

To account for the manifest existence of cooperation and related group behaviour,
such as Altruism and Restraint in competition, evolutionary theory has acquired two
kinds of extension: Genetic kinship theory and reciprocity theory. If the agents are
sufficiently closely related, altruism can benefit reproduction of the set, despite loses
to the individual altruist. The evolution of the suicidal barbed sting of the honeybee
worker could be taken as a paradigm for this line of theory [12].

Many of the benefits sought by living things are disproportionally available to
cooperating populations. The problem lies with the fact that while an individual can
benefit from mutual cooperation, each can also do so even better by exploiting the
cooperative efforts of others. Over a period of time, the same individuals may interact
again, allowing for more complex patterns of strategic interactions. [10] Argues that
there are at least three ways that cooperation can evolve among unrelated individuals:
reciprocity, group selection, and by-product mutualism. Though, kin selection is a
fourth candidate.
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As well as the existence of group, team and partitioned tasks in complex societies,
another facet of higher-level functionality is a shift from individual to social/group
foraging strategies. [18] identified six foraging strategies in ant colonies: (1) ‘individ-
ual foraging’ foraging without cooperation and communication with others; (2) ‘tan-
dem running’ a scout guides one recruit to the food source with or without trail lay-
ing; (3) ‘group mass recruitment’ the scout guides a group of recruits to the source,
usually laying a trail to the nest; (4) ‘mass recruitment’ the scout lays a trail while
returning to the nest which guides recruits to the food source; (5) ‘trunk trail’ semi-
permanent trails guide foragers to long-lasting food sources; and (6) ‘group hunting’
a group leaves the nest and forages collectively in a swarm along a well-defined trail
system. These strategies also appear to be correlated with a decrease in the autonomy
of the individual foragers themselves [19]. That is, there is a shift from information
processing by individuals to emergent properties of a set of essentially probabilisti-
cally behaving individuals mediated through signals, i.c. a set of trail pheromones.
For instance, in an individual foraging strategy the worker must rely on its own in-
formation, navigating back to the nest using the sun or other landmarks (e.g. the de-
sert ant Cataglyphis bicolor).

In tandem running, a successful returning forager can recruit just one individual
and passes on information of where the food source is by physically leading the re-
cruit to the source (e.g. Leptothorax). However, with more complex strategies trail
pheromones can pass the information not just to one other recruit but to many. There
is no need for an individual to be able to navigate back to the nest using the sun or a
prominent rock but can simply orient (‘smell’) their way along a chemical trail (e.g.
Atta). Despite the apparent simplicity of this task, foragers experience a constant
probability per unit distance of losing the trail. Seemingly counterintuitive, this ap-
parently errant behaviour has been shown to be very adaptive at the group-level [20,
21]. Once lost, these workers become scouts who can search for new sites. However,
it appears that the error rate is sufficiently tuned so that enough foragers do not lose
the trail and thus can exploit the source whilst enough become scouts enabling a con-
stant supply of new sources. (Parallel behaviour is known in honeybee foraging in
which the directional information in waggle dances is imprecise) [22]. It seems that
the complexity emerges at the level of the trail network (or group), which can adap-
tively adjust to fluctuating food dispersion or density. Thus, the foragers are a ‘group-
level adaptive unit’ [5, 23], and also see [24].

2 Then again, how advantageous cooperation really is?

The acquisition and use of socially acquired information is commonly assumed to be
profitable. But, there could be scenarios where the use of such information either
provides no benefit or can actually incur a cost. It is suggested [2] that the level of
incompatibility between the acquisition of personal and socially acquired information
will directly affect the extent of profitability of the information, when these two
sources of information cannot be acquired simultaneously, because of cognitive or
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physical constraints. Also, a solitary individual’s behavioural decisions will be based
on cues revealed by its own interactions with the environment.

However, in many cases, for social animals the only socially acquired information
available is the behavioural actions of others that expose their decisions, rather than
the cues on which the decision was based. In such a situation it is thought that the use
of socially acquired information can lead to information cascades that sometimes
result in sub-optimal behaviour.

In our experiments, we look for results that suggest the presence of information
cascades in the context of information sharing in distributed systems. Designing
agents that rely both on individual foraging and shared information, or agents that just
rely on shared information. Ongoing studies are focused on understanding whether
this might happen in a highly dynamic environment; where there are constant changes
in the flow of information about resources that undergo frequent updates.

2.1 Cost of cooperative efficacy

In any social group, individuals possess various behaviours that define the assortment
of the interactions at all sorts of levels, individual, groups, cliques, teams etc. The
social foraging theory suggests that, the functional consequence of an individual’s
foraging behaviour depends on both the individual’s own actions and the behaviour
of other foragers. There may be conflicts of interest between signallers and receivers.
Where such a conflict exists, the receiver’s need to acquire information may favour
sensitivity to the cues provided by the behaviour and appearance of the signaller. In
turn, this sensitivity may give rise to opportunities for manipulation and exploitation
by the signaller.

It is understood that exploitative strategies are unlikely to persist in the long run,
because they generate selection for a change in receiver responses. However, it is
argued, that the evolution of exploitation may prove a recurrent, though, transient
phenomenon. There are costs associated with broadcasting information publicly, as
exemplified by the production of ‘food vocalisations” in many social animals. The
issues that come under this context are, dangers of predation, and mass recruitment to
a very less profitable resource may lead to starvation. This is equivalent to the “Slash
Dot” effect that the Internet sometimes experiences.

Other costs within the context of a social system are cost of misinformation (ly-
ing), cost of accessing/using the resources and cost of signalling/cooperation. We use
foraging games to analyse the economics of Kleptoparasitic! behaviour, to predict the
ecological circumstances under which the behaviour is maintained. Other costs are
expressed as survival rate; if an agent keeps failing/delaying to locate resources for

! Kleptoparasitism refers to all forms of exploitation of others’ food discoveries or captures. It
constitutes the information-sharing models in the Social Foraging Theory paradigm.
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the requested processes/services it gets penalised and if this increases above a thresh-
old, then the agent dies and a new agent replaces the old agent.

3 Model Overview

We implement a discrete-event simulation of cooperative (collaborative) agents,
which share information (through the environment, Stigmergy?) about the location of
resources. A process generator (P) generates processes/requests/tasks with Poisson
distribution. Processes enter the system queue at the start of the simulation, where
they wait to be allocated to /N agents (which are initialised randomly). An agent gets
allocated a process/task. Individual processes/tasks require a certain number of re-
sources/services (r;, r,...r,) that it requires for the successful completion/execution of
the process.

The resource generator (R ) generates a random number of resources for the suc-
cessful execution/completion of a request. When an agent encounters some informa-
tion about a resource/service, it probabilistically stores the information in its resource
vector and/or publishes the information onto a “HotSpot”, if it decides to share it with
others.

HotSpot /i

Agent Resource Vector

Fig. 1. Schematic representation of the information dissemination system.

If the agent encounters a resource it is searching for, it locks the resource, provided
it’s available at the time and marks the resource entry in the target vector (which
contains the list of processes waiting to be finished and the status of the resources)
under the specific process. Once all the required resources/services have been located,
the process is executed. The agent can only lock the resource for a fixed time after

2 The term “Stigmergy” was first introduced by Pierre Paul Grassé, a French entomologist, in
1959. He used the term to describe the coordination of activities of ants in carrying out com-
plex activities, such as nest building or foraging, without direct communication amongst
themselves. It is evident that stigmergy describes a form of asynchronous interaction and in-
formation interchange between entities mediated by an “active” environment.
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which it will have to rejoin the queue. The agent incurs a cost once it has locked a
resource. A resource diminishes by a certain value while the process/task is being

executed. The jth process assigned to the ith agent is p;, and costs it C i Individual
resource cost is Ci;” , for the resource r,. Cumulative cost associated with jth process
is,

v @
C; = Z_; o

Agents can cooperate and form groups to collaboratively execute the process/task
or choose to forage alone. The throughput of the system is calculated as a function of
successfully completed jobs in the minimum time and with minimal costs. Agents
probabilistically (p) cooperate with other agents, and decide to share information
through the HotSpot or not. If the agent incurs a cost which is higher than the cost on

its previous task Ci/’+1 > Ci]. , it then either chooses to collaborate with other agent(s)

by forming a group and/or change its degree of cooperation. This acts as a simple
adaptive learning mechanism and some form of reciprocity. An agent’s cooperative
strategy (probability of publishing/sharing information) changes after every process
or during successive simulation runs. This is more or less an equivalent NASH equi-
librium? for the agent.

We have considered the resource handling time as negligible and the process
execution time as a random time factor. Other agents looking for the same resource
can access the HotSpot and search through the advertised resources/services. The
HotSpot contains the information about resources and their location. Each resource
published at the HotSpot has a reinforcement value (similar to pheromone deposit)
associated with it, which signifies the demand (A) of the resource.

Every time an agent accesses resource information at the HotSpot, it reinforces the
pheromone deposit so that the resource path continues to exist, whereas if the rein-
forcement value goes below a certain value, it gets over written by the first new re-
source that appears in the system. Hence, the table is constantly updated with the
latest information about resource paths. Agents attempt to optimise costs locally and
globally in accordance with the dynamics of their interactions.

3 Nash Equilibrium is a combination of strategies for the players of a game, such that each
player’s strategy is a best response to the other players’ strategies. A best response is a
strategy, which maximises a player’s expected payoff against a fixed combination of
strategies played by the others.
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3.1 Results and Analysis

We analyse some aspects of artificial and biological social systems, such as, optimal
number of agents in the system [11], throughput of the system, degree of cooperation
(which can depend on an implicit factor of relatedness). Demonstration of the use of
Nash equilibrium, to show the “tragedy of the commons” for certain situations both in
the simulations and in real life, e.g. Slash Dot effect. How a certain resource gets over
exploited because of it being over publicised and may lead to its exhaus-
tion/starvation. Similarities with Caraco’s food calling game [1], [15], when agents
individually look for resources and on finding it, decide to publish it or not. Accord-
ing to Caraco’s model if they decide against publishing the information, then they are
more susceptible to predation.

3.1.1 Optimal Group Size?

In general, we observe a peaked fitness function [6] when we analyse the system as a
collection of agents trying to maximise the throughput and minimise the delay in
acquiring information. The peaked function we see in Fig. 2 illustrates the existence
of only one optimal agent population size for which, the throughput of the system is
maximum, given that certain other parameters in the simulation remain fixed, like the
number of resources.

This suggests that initially an increase in the agent population is beneficial in obtain-
ing a good throughput, but the throughput peaks at some point for a certain size of
population implying that there are enough agents to process requests for resources
any further increase will result in delays due to queuing for resources. The Increasing
Fitness plot is an indication of abundance of resources.

—a— Peaked Fitness

7+Increasing
70 4 Fitness/Throuahput

Throughput

Number of Agents

Fig. 2. Optimal Number of Agents.
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3.1.2 Throughput of the System

The time taken to find all the resources for a request can vary depending on the
number of resources required. Therefore, we calculated the average time (t,,,) taken
for finding the various resources over a series of runs and accumulated the data for all
the possible number of resources in the system. We were interested in finding out the
trend that follows in terms of time/hops taken to locate all those resources. As seen
from Fig. 3(a) out that there is an increasing trend with respect to the number of hops.
As the number of required resources increases it takes more time to find them, but the
trend shows that there could be a decrease later on in the system as the agents develop
an optimum response for each request, as the number of resources increase. This also
may lead to a drop in the number of cooperators, meaning that individual foraging
can sometimes also be a useful strategy Fig. 3(b). Fig. 3(c) shows the average cost
incurred by agents over successive simulation runs. The drop in average cost suggests
an increase in information sharing and level of cooperation.
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Fig. 3. (&) Time (,y) to establish a resource path. (b) Number of Cooperators. (C) Average

cost C;g over successive runs.
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3.1.3 Slash dot effect/Kleptoparasitic Behaviour

Slash dot effect, whereby popular data becomes less accessible because of the load of
the requests on a central server. The following Fig. 4 demonstrates the percentage
increase in the number of agents in the queue for a resource e.g. resource 7;; in this
figure. The figure also displays the corresponding decline in the throughput for
processes requiring the service 7.

This implies that popular request for a service can lead to it being highly adver-
tised or “vocalised”, resulting in the depletion and decreased performance of the ser-
vice. Therefore, unless there is a way to adapt to this phenomenon, the services will
continue to fail or perform at a sub-optimal behaviour. Current work is aimed at
studying the possibility of introducing service replication in the locality of the current
service. This will distribute the load of the service and help process more requests.
Also, it will handle to a certain extent the dynamic nature of the system wherein the
services can fail.

-
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Fig. 4. Demonstration of Slash dot effect at a resource r;, and the corresponding drop in
throughput for processes requiring that resource.

Kleptoparasitic behaviour [14] is observed when an agent frequently refers to the
environment for information regarding resources instead of foraging itself. Also,
there isn’t a change observed in its cooperative strategy, if anything, there is evidence
of decreasing cooperation. Implying that the agent is satisfied getting most of its
information from other agents that have published/shared the information and itself
does not gather information.

3.1.4 Vocalisation/Persistence of Resources:

There are various resources that appear and disappear in the system over the duration
of the simulation. The requests and usage of resources helps reinforce their life in the
simulation. The Fig. 5 below shows a graph indicating the appearance and persistence
of resources during one run of the simulation.
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Fig. 5. Vocalisation/Persistence of resources.

After the emergence of a resource, its life depends upon the reinforcement or fail-
ure. The figure gives an indication of the existence and use of resources at particular
times, and helps hypothesize the prospects of their consumption, which is very help-
ful in evaluating the various strategies being used for sharing information. The
perseverance of some particular strategies in the system gives an indication of the
behaviour of agents to particular situations and also, determines if certain behaviours
recur in agents over time, but without them having the benefit of hindsight.

4 Discussion/Conclusions

Our experiments explore various cooperative/competitive strategies that encompass
most aspects of social behaviour. Mixed strategy models [8], [9] showing the
possibility of freeloaders or lying. Ongoing implementations include scenarios like
modelling trust in the system, altruism, and misinformation/malicious agents. To
show how information sharing models can make novel, quantitative, and testable
predictions concerning social foraging theory, within the application domain of dis-
tributed systems e.g. P2P networks.

The experiments reveal some interesting dynamics of the system with respect to
the information dissemination algorithm. Our main objective has been to keep the
agent imperceptible and its behaviour very simple, and to understand the local dy-
namics of interacting agents that lead to complex global behaviours. We draw our
inspiration for this work from biological social networks, e.g. Ant colonies, Bee colo-
nies, and other relevant theories in behavioural ecology. We are currently developing
formalisations for the current algorithmic approach, so as to do a detailed mathemati-
cal analysis of the underlying theory. Our study hopefully gives insights into certain
kinds of behaviour persistent in the system, which bear some resemblance to biologi-
cal social systems. Especially to areas such as foraging, danger of predation, sharing
information regarding food/nest sites etc, [17], [5], and [16]. Issue of trust and reputa-
tion once incorporated into the simulation should yield some more interesting dynam-
ics. The simulation model discussed should eventually be able to help understand
some of the contexts in which cooperation emerges, is beneficial or not, and to what
extent.
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Abstract. In this paper, we present a comparison of the performance
of Harris and SUSAN corner detection applied to corner tracking tasks
in robotic vision. We have tested some corner refining algorithms on
both methods and measured their performance when we applied to real
images of a real-time sequence. We conclude that for the Harris method,
a correlation step using an ideal corner model can improve stability in
corner detection. In the other hand, it is better to use SUSAN algorithm
without using the correlation step because it degrades its performance.
We show also successful applications running at about 8 Hz for both
corner detection methods.

1 Introduction

Current approaches for visual feature tracking include corners, blobs and edges
[1]. Nevertheless, there are some unsolved problems in tracking systems; for
example, complex scenes, occlusion problems, moving objects, highlights and
reflections, significant illumination changes and motion blur.

Interest points or salient points are points that possess unique properties in
an image. Salient features can describe unique objects in an image. One of the
most often used features to describe salient point is cornerness property. A corner
is a point with a high curvature in the intensity space that can be detected from
the discontinuities on the neighborhood of a pixel.

Corner tracking has been used for many applications as diverse as robot visual
localization [1], robot homing tasks using omni-directional vision [2], human-
computer interfaces for augmented reality [3][4], scene modelling [5] or traffic
detection [6].

However, its use in outdoor environment has not been intensively tested.
Work to find optimal parameters and performance evaluation of corner tracking
algorithms remain to be done. Our problem is to determine which algorithm
implement in a robotic corner tracking system for indoor and outdoor environ-
ments. Our main application is directed toward characterizing landmarks ro-
bustly along an image sequence acquired by a mobile robot during the execution
of a navigation task.

© A. Gelbukh, R. Monroy. (Eds.)
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We have compared the Harris and SUSAN corner detection algorithms imple-
mented with some minor refinements. We present the details of our experiments
later in this paper. We have proposed two tests to measure performance of corner
detection algorithms: i)evaluation of corner detection algorithms on benchmark
images and, ii) a stability test. First test is used to find optimal tuning pa-
rameters for the two corner detection algorithms compared in this paper. The
second test proves stability of corner detection when illumination changes are
significant. We also present two sequences where Harris and SUSAN algorithms
perform well in complex environments.

2 Problem formulation

2.1 Harris corner detection

Harris corner detection algorithm was originally developed for robotic applica-
tions[7]. Its goal was to match corner points in stereo image pairs to enable a 3D
reconstruction of the environment. Its work was an improvement of the work by
Moravec [8], who has noted that the difference in intensities of adjacent pixels
in edges and uniform regions of an image are small, but at corners the same
difference is significantly high in all directions.

Computation of the cornerness property in this method is carried out by
convolving a Gaussian mask with the Hessian matrix H of the intensity function
of the image and analyzing the resulting matrix M.

/U42 1!2
M=e "5 @H= {(gg] (1)
with ® a convolution operator.

Cornerness R(z,y) of a point (z,y) is then computed as follows:

R(x,y) = det(M) — k - (trace(M))? = aff — k(o + 3)? (2)

Interpretation of R(z,y) can be related to the behavior of a and § as follows:

— When « and 3 are small, we are in an uniform region.
— if @ > 0 and 8 = 0, the point is an edge.
— if both, a and (3, are positive numbers, we have found a corner.

2.2 SUSAN corner detection

SUSAN [9] is a corner detection algorithm based in the analysis of the gradient
direction of the intensity in a neighborhood around a point. SUSAN stands
for the Smallest Univalue Segment Assimilating Nucleus. The principle of this
corner detector is to count all the pixels in a circular neighborhood that have an
intensity level similar to the central pixel after smoothing with a Gaussian kernel.
This region is named the USAN (Univalue Segment Assimilating Nucleus). When
the USAN is composed of all the pixels in the vicinity, the region is uniform.
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If the USAN is composed of about 50 % of the total pixels, we are in an edge
point. A corner point is present when the USAN only covers less than 25% of
the neighborhood.

2.3 Quality requirements for corner detection algorithms
Main requirements for a corner detection algorithm are [10]:

1. All the true corners should be detected.

2. No false corners should be detected.

3. Corner points should be well localized.

4. Corner detector should be robust with respect to noise.
5. Corner detector should be efficient.

Aspects 1 and 2 are evaluated by testing our implementations using widely
used benchmark test images (Figure 1). Evaluation of points 3 and 4 is done
by performing a stability test for a corner in an image sequence. This sequence
presents a quasi-static image perturbed by illumination noise. Point 5 can be
satisfied by achieving a real-time frame rate for the corner tracking system.

3 Tests and Results

3.1 Parameter tuning for Harris and SUSAN methods.

Harris corner detection method is tuned by choosing a variance o for the Gaussian
kernel to be convolved with the intensity Hessian matrix. Best results for the
variance parameter of Harris detector when applied to benchmark test images
are shown in Table 1.

SUSAN method for corner detection is tuned by adjusting the similarity
threshold parameter. This parameter controls the area of the pixels belonging
the USAN. Best results for the threshold parameter are also shown in Table 1.

For both methods, a different parameter value is needed for each image. This
value is selected by choosing the optimal value of the parameter in order to
detect all the corners present in the image. Given the different strengths of the
corners, this results in some false corners being detected.

3.2 Test Protocol.

Comparison of corner detectors response to benchmark images Table
1 summarizes the results of the best responses to Harris and SUSAN corner
detectors. First column shows to which image (see Figure 1) the detector is ap-
plied. Second column shows the actual parameter values used to obtain optimal
response. Third column presents the number of corners when the raw algorithm
is applies, i.e., no post-processing steps are performed. The results obtained
when local minima suppression and thresholding step are shown in fourth col-
umn. Graphical results for the SUSAN image when the Harris corner detection
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(c) House (d) Lab

Fig. 1. Test images used as benchmarks to tune parameters of the compared corner
detection methods.

method is used and House image processed by a SUSAN corner detector are
shown in Figure 2. Both images were processed using the optimal parameters
shown in Table 1.

We can see that SUSAN detector results in a fewer number of corner points
than the Harris method for all the images. However we have also found that
Harris works better when corner points come from smoother shapes.

Corner stability for image sequences In the corner stability test, we have
applied the corner detection algorithms to a sequence of 1000 frames of a scene
with a fixed target. We have recorded the actual coordinate for the corner, and
we have recorded also the temporal evolution of the position of the detected
corner. We have tested four conditions for both methods: i) without using a
correlation step and non controlled illumination, ii) using a correlation step
and non controlled illumination, iii) without using a correlation step and non
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(a) SUSAN image Harris detector (b) House image SUSAN detector
c=1.0 t=25

Fig. 2. Corner detection response for some benchmark test images using optimal pa-
rameters.

Image Detector Raw Refined

Resp. Resp.

Blocks Harris, o = 1.0 168 111

SUSAN 36 pixels, t=25.0 65 23

SUSAN  |Harris, o = 0.56 168 111
SUSAN 36 pixels, t=25.0 101 36

House Harris, o = 1.0 143 115
SUSAN 36 pixels, t=25.0 28 19

Lab Harris, o = 1.0 956 802
SUSAN 36 pixels, t=25.0 268 145

Table 1. Summary of best responses of detectors when applied to benchmark test
images.

controlled illumination plus an illumination perturbation, iv) using a correlation
step and non controlled illumination plus a perturbation. We summarize the
results of these tests in Table 2. For the sake of space we show only the Gaussian
fitting of the corner localization error and the temporal evolution for the cases
iii) and iv) in Figures 3 and 4 respectively.

The Gaussian fitting parameters were obtained using the cftool provided by
Matlab software. Gaussian fitting is of the form:

@) =ar e (55 (3)

We include also in Table 2 the minimal and maximal errors in corner local-
ization error and the frequency of occurrence along the sequence.
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Gaussian Minimal Maximal
fitting error error
Detector|case ul oo a1 |Pixels|Frames|Pixels|Frames
Harris | i [10.17|1.321| 516 | 10 520 20 5
ii | 7.45/0.678|1106] 7 900 18 1
iii (11.55]1.153| 510 | 12 550 20 5
iv | 3.76/1.188| 835 | 3 200 8 30
SUSAN| i | 5.06/0.044|995| 5 996 6 1
ii | 5.36/0.867| 823 | 5 850 14 10
iii | 3.48/0.242/ 906 | 3 900 5 100
iii | 8.79|1.085| 708 | 4 120 10 550

Table 2. Summary of results for the corner stability test.
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Fig. 3. Corner stability test case iii.
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Fig. 4. Corner stability test case iv.

3.3 Applications

We present in figures 5 and 6, two examples of successful corner tracking ap-
plications. Figure 5 presents the tracking of the point of a leaf in an outdoor
environment. As we found in previous section, SUSAN method is more robust
to illumination changes and in fact, we have obtained better performance with
it for this sequence. Figure 6 presents the tracking of the more salient point in a
ball that is moved over a textured floor. For this setup, Harris corner detection
method has performed better. For both tests, maximal operating frequency was
about 8 Hz using a Pentium IV machine running at 2.41 GHz and using 512 MB

of RAM.
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Fig. 5. Some frames of the tracking of the maximal cornerness point on an outdoor
image sequence using SUSAN method.

4 Conclusions and Perspectives

We have presented two experiments to evaluate the performance of Harris and
SUSAN corner detection algorithms. We have found that SUSAN algorithm
yields better results when the scene includes structured objects. Harris corner
detector performs better for scenes containing unstructured objects. Neverthe-
less, SUSAN algorithm has an error under 12 pixels for a corner stability test
under varying illumination conditions.

We will work toward inclusion of this tracking module in a robotic platform.
More test will be carried out but using images acquired from the robotic vision
system. We will also explore its use for the 3D reconstruction of a panoramic
stereo vision system.
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Fig. 6. Some frames of the tracking of the maximal saliency point of an object in a
complex indoor environment using Harris corner detection method.
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Abstract. Pattern identification in the presence of noise is a main problem in
pattern recognition. An essential characteristic of the noise acting on a pattern is
its local nature. If a pattern is thus separated into enough sub-patterns, only few of
them will be somehow affected, others will remain intact. In this note we propose
a simple methodology that takes into account this property. A pattern is identified
if enough of its sub-patterns are also identified. Since several patterns can share
some of the sub-patterns, final decision is accomplished by means of a voting
mechanism. Before deciding if a sub-pattern belongs to a pattern, sub-pattern
identification in the presence of noise is done by an associative memory.
Numerical and real examples are given to show the effectiveness of the proposal.

1 Introduction

A main problem in pattern recognition is pattern identification in the presence of noise.
In real situations usually patterns appear distorted by noise and must be identified
despite of this. One approach usually used to identify a pattern from a distorted version
of it, is by means of an associative memory by which we reconstruct the distorted
pattern. Associative memories have been used for pattern recovering for many years
[1-13]. Usually, complete unaltered patterns are first used to build a chosen memory
model. Trained memory models are next used to recover a given pattern, given a
possibly distorted version it. This allows pattern identification.

One main feature of the noise affecting a pattern is its locality, i.e. the pattern is
affected somehow at specific parts or locations; other parts remain unchanged. In this
paper we take advantage of this situation and exploit it in two ways. In the one hand,
we decompose the pattern into a set of sub-patterns. In the other hand, we make use of
an associative memory specially designed to filter the noise affecting the patterns’ sub-
patterns. The resulting sets of sub-patterns are first used to build a bank of associative
memories. During pattern recall a possibly distorted version of a pattern is first
decomposed into its sub-patterns. Each sub-pattern is presented to its corresponding
memory for noise cleaning. The cleaned sub-pattern is then used to index into a table
for the set patterns sharing it. A simple but efficient voting mechanism allows to finally
deciding the index of the corresponding pattern.

Lots of models of associative memories have been emerged in the last 40 years,
starting with the Lermatrix of Steinbuch [1], then the Linear Associator of Anderson
[2] and Kohonen [3], and the well-known model proposed by Hopfield in 1982, the
Hopfield Memory [5]. For their operation, all of these models use the same algebraic
structure. In the 90’s appeared the so-called Morphological Associative Memories

© A. Gelbukh, R. Monroy. (Eds.)
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(MAMS) [6] and [7]. While the classic memories found their operation on
multiplications and additions, the MAMS do it in the min and max operations used in
Mathematical Morphology. Several of these models, especially the morphological
models are very efficient to recall patterns corrupted either with additive noise or
subtractive noise. To overcome this problem, MAMS memories and theirs variants
make use of the so-called kernel approach [6]. Kernels for MAMS are however
difficult to find [9]. Additionally, if new patterns have to be added to the learning set
the kernels need to be recomputed again. In [11], the authors describe a memory model
able to handle mixed noise by means of the well-known median operator. Median
operation is however time consuming as know. In this paper we show how by
decomposing a pattern into its sub-patterns, we can avoid the use of kernels and the
median operator. We give numerical and realistic examples where the effectiveness of
the proposal is tested.

2 Basics About Associative Memories

An associative memory as defined in [13] is an input-output system able to associate an

input pattern with an output pattern as follow: a — — b, with @ and b,
respectively the input and output patterns vectors. Each input vector forms an
association with its corresponding output vector. An association between input pattern

a and output pattern b is denoted by (a@,b). For k a positive integer, the
corresponding association will be (ak ,bk) . Associative memory M is represented by
a matrix whose #j-th component is m; [2]. M is generated from a finite a priori set of
known associations, known as fundamental set of association or simply fundamental
set (FS) [13]. If k is an index, this FS is represented as: {(ak,bk ),k = l,p}, with p
the cardinality of the set. The patterns integrating a FS are called fundamental patterns
[13]. The nature of the FS provides an important judgment for associative
classification. If for k=1, P, it holds that (ak = bk), then that memory is auto-

associative, otherwise it is hetero-associative [13].

Fundamental patterns could be distorted with noise. A distorted version of a
pattern @ will be denoted as @ . If when presenting to an associative memory M a
fundamental pattern, M responds with the correct pattern, we say that M presents
perfect recall. If for all patterns of a given FS, perfect recall is obtained, M is said to
present perfect recall.

3 Idea of Solution

As already mentioned, the proposal is based on the locality of the noise affecting the
pattern, i.e. when the object is decomposed into several parts, some of them will appear
more or less affected by noise, some others will not. From these less altered and the
unaltered parts is that the whole object is identified. For example in Figure 1(a) we
have an image of an object for which a numerical representation (a pattern) has been
obtained. In Figure 1(b), we have the same image but distorted with some noise, this of
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course affects also its numerical representation. Finally, in Figure 1(c) it is shown the
same pattern but decomposed into several parts. By obtaining these set of parts (sub-
patterns), as can be appreciated some sub-patterns appear altered, some others no.
From these unaltered sub-patterns is that the object can be identified.

— Y Z[,\'I X5 e ,\',] = XZ[\'l Xz v ,\',-]

(@ (b)

-\‘|=[.\‘|.| X1z o .‘ﬂ,u]

.1':=[\’2,| Xz2 v -\_l,n]

Xk = [\'}..I Xk2 .\'.t.n]

Xm = [T\‘ m,l Xm,2 i X mon ]
(c)
Figure 1. (a) An object and its numerical representation. (b) The same object altered by

noise and its corresponding numerical representation altered also by the noise. (c) The
corresponding pattern decomposed into parts (sub-patterns).

4 Basic Definitions

The steps composing the proposed methodology to recognize an object from its parts
(sub-patterns) are explained next. For this let us have the following definitions:

Definition 2.1. Let B a pattern of an object O obtained somehow (for example as an
image-vector by the standard row scanning method or a feature vector). A sub-pattern
b of object O is a pattern obtained as B but from a part of O.

We have already mentioned that to get the sub-patterns of an object it is necessary to
divide this object into parts and obtain their corresponding patterns. We have thus the
following definition:

Definition 2.2. Let a set of 71 sub-patterns of an object, represented as row vectors of
dimension 7 denoted by b,,k=1,m. The matrix B of dimensions mXxn

containing all of these patterns as its rows is called base pattern.

Definition 2.3. The set of all g matrices B " is called the base set of matrices or

simply the base set, and it is represented as: {B k= l,q}, with g the number of
patterns or objects.
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In what follows, for notation purposes b,i represents the & -th sub-pattern of the

i -th object, with k,k =1,m and i,i=1,q.

5 The Methodology

The proposal is composed of two main stages: 1) memory training and 2) object
recognition. During training the chosen associative memories are built. Also the so-
called voting matrix is build. During testing, the objects’ sub-patterns are presented to
the already trained memories for identification porpoises.

5.1 Learning phase

This phase is composed of two main steps as follows:

Step 1: For each k , take the b; and build associative memory M * . We can select

any among the existing different models (see section 6).

Step 2: Taking into account that several objects can share a given sub-pattern, we build
a matrix V" (voting matrix) of dimensions g x m , with ¢ the number of objects and m

the number of sub-patterns. Matrix J tells us exactly which sub-pattern is in which
object. First row of V' is reserved for first object, second row for the second object,
and so on. To build V', we first fill it of 0’s, i.e. v, , = 0,i=1,qg;j=1,m. We then

convert each sub-pattern b,i of each base pattern B " to a decimal equivalent number,
and assign this number to component v, , of V' . This would mean that sub-pattern b,i

belongs to base pattern B " This completes the learning stage.

5.2 Recalling phase

We have two cases. First case is related with the recalling of a pattern of the FSP,
second case, in the contrary, is focused on the recalling of a pattern of the same FSP
but from a distorted version of it.

Case 1: Recalling a pattern of the FSP. For each base pattern B ¥ of the FSP:

Step 1: We begin by building a voting vector and filling it by 0’s as follows
Z=(,=0 z,=0 - z, =0),

Step 2: Now, for a given base pattern B ! (it can be anyone of them), for each of its
sub-patterns b,i, we operate it with the corresponding associative memory

M* k=1,m, convert it to its decimal equivalent, let say d . We then look for all the
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appearances of d in matrix J at column k, and update the corresponding
component z, of vector Z as follows: For i =1,¢ do z, =z, +1if v,, =d . We

repeat this process for each sub-pattern of B h

Step 3: We finally get the index of the corresponding pattern as:

j=arg max(zi ),i =1,q 1)

1

The whole process is repeated for each B "

Case 2: Recalling a pattern of the FSP from a distorted version of it. Given a

distorted version Ei of one the patterns of the FSP:

Step 1: Again, we begin by defining Z = (Z1 =0 z,=0 - z = 0).

Step 2: For each sub-pattern 1;;( of Ei, we operate it with the corresponding

associative memory M ",k =1,m , convert it to its decimal equivalent, let say d . We
then look for all the appearances of d in matrix V' at column &, and update the

corresponding component z, of vector Z as follows: For i=1,g do

z, =z +1 if Vi = d . We repeat this process for each base pattern.

Step 3: Get the index of the corresponding pattern as:
j=arg max(zi ),i =l,q (2)
i
5.3 Variations
Instead of using the rows of binary patterns to define the base vectors we can use their

columns or diagonals and follow the same procedure to learn and recall patterns. The
idea is to decompose the pattern into sub-patterns for recalling.

6 Numerical Examples

In this section we provide some numerical examples to better understand the
functioning of the proposal. In the next section we give some real examples where we
test the effectiveness of the proposal.

Example 6.1. Let be the following FSP, representing the five vowels of the Latin
Alphabet (A, E, I, O and U; 1 is for the information, 0 is for background):
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01 0 111 1 11 111 1 01
1 01 1 00 010 1 01 1 01
B'=|1 0 1”B*=|11 0’B’=|0 1 0”B*=|1 0 1|”’B°=|1 0 1
111 1 00 010 1 01 1 01
1 01 11 1 1 11 11 1 111

Learning phase:

Step 1: Memory construction. We can use any associative memory. Let us use W
associative memory reported in [6] useful to handle with subtractive noise. Just to
remember, / memories make use of arithmetic subtraction between elements and min
() operator for memory building. For pattern recall they use arithmetic addition and
the max (V) operator. For the details refer to [6]. Because each pattern is composed of
five sub-patterns, and each of these sub-patterns is of size 3, we have then the next five
memories:

0 -10), 0 -10), 0 -10), 0 -10), 0 0 0).
Wi=-1 0 1| wi=[-1 0 1| W'=[-1 0 ~-1| W'=[-1 0 -1| W’=-1 0 -1
0 -10 -1 -1 0 -1 -10 -1 -1 0 0 00

For the details of how W' to W were obtained, the interested reader is refereed to

[6].

Step 2: Construction of matrix J . As explained in section 5.1, we proceed with each
rowof V' :

For pattern B' and first sub-pattern b, = (0 1 0), d=2, thus v, =2. For
pattern B' and second base vector b = (1 0 1), d=5,thus v, =5.If we

continue we this procedure for the remaining base patterns of B " and the sub-patterns
of base patterns B, B>, B* and B’:

25575
7 4 7 4 7
v=l7 2 2 2 7|
75557
55557

This ends the learning stage.
Recalling phase:

Example 6.2. Recalling a pattern of the FSP. Let us take the first fundamental pattern
B' of example 6.1. Let us proceed:
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Step 1: As discussed in section 5.2: Z=(0 0 0 0 0).

Step 2: For pattern recall a W memory uses arithmetic addition between components
and the max (V) operator. For the details, refer to [6]. Now for each b,l of B , We

have:

For bll :(O 1 0): 0 10 (0) ((0+0)v(=1+1)v(0+0)) (0vOvO ) (0).
W‘Ab,‘_[—l 0 —1}[ }:[(—I-FO)V(0+1)v(—1+0)}—[—1v1\/—1]—[]
0 -10 0) L (0+0)v(-1+1)v(0+0) 0vOvO 0

010=2,,. We look for the appearances of 2 now into first column of V" . As can be

y

101=35,,. We look for the appearances of 5 now into second column of V. As can

seen it appears only in the element v;; =2 of V' ,so: Z = (1 0 0 0 0).

For b;:(l 0 1); {0 -1 0} [1] {(0+1)v(—1+0)v(0+1)J [lv—lvl

W aby=|-1 0 -1 (=1+1)v(0+0)v(=1+1)|=| 0vOVO
-1 -1 0 (“1+1)v(=1+0)v(0+1)) (0v-1vi

1

be seen it appears in the first, fourth and fifth positions of V', so:
Z=(2 0 0 1 1)
If we continue this way, it can be easily shown that Z =(5 0 0 2 2).

Step 3: We finally get the index of the corresponding pattern as:
j=arg max(5,0,0,2,2)= 1. Thus the desired pattern is pattern B', that is the

pattern we were looking for.

Example 5.3. Recalling a pattern of the FSP given a distorted version of it. Let us now

take the following distorting version of fundamental pattern B L

00 0
11 0
B'=[1 0 1
111
1 01

You can observe that in this case sub-patterns bl1 and b; appear distorted. The
other three are not altered. Proceeding as before:

Step 1: As discussed in section 5.2: Z = (0 0 0O O).
Step 2: Now for each b,i of B’ , we have:
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For B}:(O 0 0); 0 =1 0Y (0 ((0+0)v(-1+0)v(0+0)) (O0v-1v0) (0).
W'Abi=|-1 0 —1|a|0]=|(=1+0)v(0+0)v(-1+0)|=|-1vOv-1|=|0
[0 -1 0] [o] {(O+0)v(—l+0)v(0+0)} {w—wo] [o}

000 =0,,. We look for the appearances of 0 now into first column of V. As can be

seen, it does not match any element of V', so: Z = (O 0 0 O 0).

(0+1)v(-1+1)v(0+0) 1vovo) (1
(—1+1)v(0+1)v(—1+0)}=[0v1v—1}=[1]'
0

(~1+D)v(-1+1)v(0+0)) (0vOvoO

For

b;:(l ! 0):W2/\bl—[?1 (;1 ?1}{1}:

-1 -1 0 0

110=6,,. We look for the appearances of 6 into second column of V. As can be

seen, again it does not match any element of V', so: Z = (O 0 0 O 0).

If we continue this way, it can be easily shown that Z = (3 0 0 1 1).

Step 3: We finally get the index of the corresponding pattern as:

j=arg max(3,0,0,1,1) =1. Again the recalled index coincides with the index of the

desired pattern.

7 Results with Real Patterns

In this section the proposed methodology is tested with more realistic patterns. For this,
we make use of the twelve patterns shown in Figure 2. Tests were performed with four
associative memories: morphological associative memories M and W [6], and
af3 associative memories M and W [8]. Just to remember, M memories are good for

additive noise and W memories are good for subtractive noise. For the details about the
operation of both memories, the interested readers is refereed to [6] and [8].

Figure 3 shows the recalling results. As you can appreciate, 100 percent of perfect
recall was obtained with min (W) memories morphological and @ff from 5 to 15% of

noise. From then on, the performance falls little by little. However as can be seen W
memories show a better performance than M memories.

8 Conclusions and Ongoing Research

In this note we have described a simple but effective methodology for the recalling of
patterns distorted by mixed noise. Instead of adopting the kernel method used in [6], or
the median recently proposed in [11], we prefer to decompose each pattern into a set of
sub-patterns. This way we can take advantage of the locality of affecting noise. During
memory construction, sub-patterns sets are first used to build a set of memories. Next,
during pattern recall a given pattern, possibly distorted by noise is also decomposed
into its set of patterns. Each sub-pattern is operated by its corresponding memory. The
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filtered result is then used to recover the pattern to which the sub-pattern belongs.
Finally, the index of the pattern is recovered by simple voting mechanism.

A

NCAOZ =M

(@) 0% (b)5% (c)10% (d) 15% (e) 20% (f) 25% (g) 30%
Figure 2. (a) Patterns used to test the proposal. Their size is 31x37 pixels. For testing

these patterns were distorted by mixed noise at percentages of: (b) 5%, (c) 10%, (d)
15%, (e) 20%, (f) 25% and (g) 30% percent. One version of each letter is used.

Nowadays, we are looking for the formal propositions (Lemmas and Theorems
and Corollaries) that specify the conditions under which the proposed methodology can
be used to perfectly recover a given pattern from a distorted version of it. We are also
looking for more real problems where the proposal can find applicability.
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Results

100%

80%

60%

40%

20%

Percentage of Recall

0%
0% 5% 10% 15% 20% 25% 30%

B MAM Min @ MAM Max O AlfaBeta V O AlfaBeta A

Figure 3. Recalling results obtained by applying the proposed methodology to the set of
patterns shown in Fig. 2.
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Abstract. In this paper we describe a way to build an associative memory for object
classification. The operation of the new architecture is based on the functioning of
the well-know mid-point operator widely used in signal processing. The proposal is
an alternative to the one described in [H. Sossa, R. Barron, R. A. Vazquez. Real-
Valued Pattern Classification based on Extended Associative Memory. In Proc.
Fifth Mexican Conference on Computer Science (ENC2004), 213-219 (2004). The
proposal is tested with image of realistic objects.

1 Introduction

One important problem in computer vision is object classification. The solution to this
problem would strongly influence the functionality of many systems such us: content-
based image retrieval systems, video indexing systems, automatic robot guidance systems,
object tracking systems, object manipulation systems, and so on. Many approaches to
solve this problem have been proposed in the literature: the well-known statistical ap-
proach, the structural approach and the neural approach. The idea of using associative
memories to solve the object classification problem is relative new. Refer for example to
[1-7].

In this paper we describe an associative model by which we can get the class index of
an object given a description of it terms of some its features. We propose a new way to
build an associative memory combining well-known set operations of min and max and
midpoint operator well-used in signal processing. We show several examples with nu-
merical a real patterns where the effectiveness of the proposal is tested.

Rest of paper is organized as follows. In section 2, the proposal is described in detail.
In section 3, a numerical example to better follow the functioning of the proposal is given.
In section 4, experimental results with images of realistic objects are provides, while in
section 5, conclusions and directions for further research are given.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 131-140
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2 The Proposal

Let (xg,l' s5:1,)65 e R",i=1,...,m aset of p fundamental couples (SFC), composed by
a pattern and its corresponding class-index. The problem is to build an operator M, using

this SFC, that allows to classify the patterns into their classes, i.e. M®x® =i for
&=1,..., p and that even in the presence of distortions it classifies them adequately, i.e.

M®3x° = 1, where X “is an altered version of x°. A first approach in this direction

S

was presented in [7]. Operator & is chosen such that when operating vector x° with ma-

trix M, produces as result the corresponding index class of pattern x°.

Matrix M is build in terms of a function ¢ as follows:

%
M= : (1)
Do

where each ¢i represents the i-th row of a matrix M and this function is a codification of

all patterns belonging to the class i.
Function ¢ can take several forms. In this paper we propose well-known mid-point to

build function ¢ .

2.1 Mid-point operator

Arithmetic averaging is widely used in pattern recognition to perform Euclidean distance
classification. Arithmetic averaging allows obtaining representative vectors of different
patterns to be classified. Representative vectors computed this way are useful only when
standard deviation of all patterns belonging to the class i, is low.

Mid-point operator usually used in signal filtering could be an alternative to get also
representative vectors for each class. We preferred to use mid-point operator because as
we will next see it allows better classification results than arithmetic average operator and
other known operators.

Mid-point operation works as follows: Given a set of p values: f; < f, <---< f
_St,

Jnia = , 2)
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With respect to average operator, mid-point value f, ., is always between values f,

and f,, while f,, s position will depend on the distribution of values: f,-+- f,, de-

1 m
finedas f, , szfl )
m i

For the case of vectors, mid-point operator takes the form:

i 7l.j +/1ij
A B 3
¢, 5 3)
where
P
J _ &
Vi _;il(xi ) 4)
and
P
J _ &.J
A _cf/:\l(x[ ) 5)

i stands for the object’s class and j goes from 0 to 71, the size of the pattern. As you

can appreciate, the idea is to build a hyper-box enclosing patterns belonging to class #, by
means of max “V > and min “ A ” set operators.

Example 1. Suppose we want to build matrix M., from the following set of associa-

mid
tions:
pattern class pattern class pattern class
(1.0,1.0, 1.0) 1 (4.0,4.0,4.0) 2 (10.0, 9.0, 10.0) 3
(1.0, 2.0, 1.0) 1 (4.0,4.0,5.0) 2 (9.0, 9.0, 10.0) 3
(2.0, 1.0, 1.0) 1 (4.0,5.0,5.0) 2 (10.0, 10.0, 10.0) 3
(1.0, 1.0,2.0) 1 (5.0,4.0,4.0) 2 (10.0, 11.0, 11.0) 3
(2.0,2.0,2.0) 1 (5.0,4.0,5.0) 2 (10.0, 9.0, 11.0) 3

According to equations (4) and (5): y, =(2,2,2), y, =(555) and
7y, =(10,11,11). Also, A, =(LLl), 4,=(4,44) and A, =(9,9,10). Thus
¢ =(1.51.51.5), ¢, =(4.5,4.5,4.5) and ¢, =(9.5,10.0,10.5). Finally:
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15 15 15
M _, =45 45 45
9.5 10.0 10.5

An advantage of mid-point operator over other operators to build matrix M is that the
distance of representative to farthest class elements is always the same as can be appreci-
ated in Figure 1 (a). For other operators such the well-known arithmetic average operator,
representative vector is not always at the center (Figure 1(b)).

Other adavantages of mid-point operator over other operators are the following:

1. It is less expensive to compute a min an a max than adding up all vectors
associatedd to a class as for example with arithmetic average operator.

2. Itis less expensive to compute a min an a max than to order a vector for the case
of median operator.

3. Itis less expensive to compute a min an a max than to compute inverse matrices
and probabilities as for example with Bayesssian classifier.

represenfafive ¥ represenfafive
recfor

recfor

Figure 1. (a) Representative pattern obtained by means of mid-point operator is always at
the center between farthest class elements. (b) Representative vector obtained by means
of arithmetic average operator is not always at central position. This depends on distribu-
tion values of class elements.

2.2 Pattern classification

Pattern classification is performed as follows. Given a pattern x°eR , not necessarily

one of the already used to build matrix M, , class to which x is assigned is given by

m n

i=M®x* :arg[/\v
l

I=1 j=1

m, —x]} (6)
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Operators V = maX and A = min execute morphological operations on the difference
of the absolute values of the element 1, of M,,., and the components x ; of pattern x°

n

to be classified. Thus Vv , and
Jj=1

mi

‘ is the metric of the max between row / of M

m,j—xj

n
pattern X°, thus it can be written as d(x,m, ) = ]_\il m; —x,|, m rowof M, .

From the point of view of this metric, pattern classification consists on assigning pat-

$

tern X~ to the class which index of row of Mmid is the nearest.

Conditions for correct recall of either a pattern of the FS or from an altered version of
one its patterns are given as:

Theorem 1 [7]. Let d;= Vv d(X,4) and R, ={X:d(X,¢i)Sdi} hyper-boxes

x class i
centered at ¢ and semi-side d,,i = 1,...,m . 1f d(¢;,¢,) > Zmax{d[,dj}, then:
i) Riij:Q,lﬁi,jSm,i;tj.
i) xeR; implies d(x,¢,) <d(x,4,).
iii)  xeR; implies d(x,¢,) <d(x,4,).

3 Numerical Example

To better understand the idea of the functioning of the proposal, let us study the following
numerical example.

3.1 Classification of a pattern belonging to the training set

From example 1, let us take pattern (10.0,9.0,11.0) that we know it belong to class 3,
and let us verify that it is correctly classified. By applying equation 6, we have:

1.5-9.0,
4.5-9.0,
10.0-9.0

[ =1:max[1.5-10.0,
[ =2:max[4.5-10.0
I =3:max[9.5-10.0

1.5-11.0]] = max[8.5,7.5,9.5]=9.5
45-11.0]]= max[5.5,4.5,6.5]= 6.5
10.5—11.0]] = max[0.5,1.0,0.5] = 1.0

9

5 5
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I=1

Thus [ = arg[
i

/3\(9.5,6.5,1.0)} —arg[1.0]=3.

Then the pattern (10.0,9.0,11.0) is assigned to class 3.

3.2 Classification of a noisy pattern

From example 1, let us now take distorted version (9.3,10.5,11.5) of pattern
(10.0,9.0,11.0) belonging to class 3. Let us verify that in presence of noise, it is as-

signed to class 3.
/= 1:maxﬂl.5—9.3,
I=2:max[4.5-9.3
/=3:max[9.5-9.3

1.5-11.5] = max[7.8,9.0,10.0] = 10.0
4.5-11.5]]= max[4.8,6.0,7.0] = 7.0
10.5—11.5]]= max[0.2,0.5,1.0] = 1.0

1.5-10.5,
4.5-10.5|
10.0-10.5

3

> >

Thus i = arg[;\l(I0.0J.O,l.O)} = arg[1.0]=3.
i

I=

Then the pattern (9.3,10.5,11.5) is assigned to class 3.

4 Experimental Results

In this section, the proposal is tested with the set of realistic objects shown in Figure 2.
Objects were not directly recognized by their images but instead from invariant descrip-

tions of them. With these invariant descriptions matrix M, is built. Twenty images of

each object in different positions, translations and scaled changes were used to get the in-
variant descriptions.

@ (b) (© (d) (e)

Figure 2. The five objects used in the experiments. (a) A bolt. (b) A washer. (c) An eyebolt.
(d) A hook. (e) A dovetail.
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4.1 Training phase

To each image of the 20 images of each object a standard thresholder [8] was applied to
get its binary version. Small spurious regions from each image were eliminated by means
of standard size filter [9]. Next, to each of the 20 images of each object (class) seven well-
known Hu geometric moments invariant to translations, rotations and scale changes were
computed [10]. After applying methodology described in Section 2, matrix M, is:

mid

0.4394 0.1598 0.0071 0.0028 1.96E-5 0.0011 —-847E-6
0.1900 8.72E-5 747E-6 128E-14 7.23E-14 -293E-10 —-1.6E-14
M, =10.7092 0.2895 0.1847 0.0730 0.0088 0.0394 —-0.0015
1.4309 1.6009 0.7944 0.2097 0.0831 0.1565 0.0118
0.2475 0.0190 25E-5 B.66E-5 482E-9 120E-5 -1.4E-9

4.2 Classification

Three sets of images were used to test the efficiency of proposal. A comparison with oth-
ers proposals was also performed. First set of consisted of 100 images (20 for each of the

five objects) different from those used to get matrix M, ;. Set number two consisted on

other 100 images (20 for each five objects) but projectively deformed. One image of each
object is shown in Figure 3, where you can easily appreciate the deformation introduced
to the objects. Finally, set number three consisted on other 100 images of five objects (20

for each object) different of those used to get matrix M, . Figure 4 shows one image of

each object. The idea is to verify to which class the object assigned by the classifier.

- -
@ (b) (© (d) (e)

Figure 3. First image of each object projectively deformed to test performance of proposal.
(a) A bolt. (b) A washer. (c) An eyebolt. (d) A hook. () A dovetail.

With the first set of images the associative memory built by means of mid-point opera-
tor provided 100% of classification. All objects were put in their corresponding class.
Thus, performance of proposal was of 100%.

With second set of images, consisting of deformed objects, proposal provided also
100% of efficiency. Again, all objects were correctly sent to their corresponding classes.
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T

Figure 4. First image of each object not belonging to the classes of objects to test pro-
posal. (a) Wood bolt. (b) Hook with thread. (c) Open eyebolt. (d) Key. (e) Open S.

Bolt | Washer | Eyebolt | Hook | Dovetail

Wood bolt - - - 100% -

Hook with thread - - - 100% -

Open eyebolt - - 45% 55% -

Key 25% - - 75% -

Open S - - 100% - -

Table 1. Percentage of classification for set number three when proposal is applied.
M M, . Euclidean Bayesian M, .,
prom median mi

Bolt 100% 90% 100% 100% 100%
Washer 100% 100% 100% 100% 100%
Eyebolt 100% 100% 100% 100% 100%
Hook 100% 95% 100% 100% 100%
Dovetail 100% 75% 100% 100% 100%

Table 2. Comparative classification
schemes when first group of objects is used.

percentages with respect to other classification

Mpmm M, .. Euclidean Bayesian M, .,

Bolt 100% 100% 100% 100% 100%
Washer 100% 100% 100% 80% 100%
Eyebolt 100% 70% 90% 90% 100%
Hook 100% 50% 100% 100% 100%
Dovetail 100% 90% 100% 70% 100%

Table 3. Comparative classification percentages with respect to other classification
schemes when second group of objects is used.

For third set of images, Table 1 summarizes the classification results. From this table
you can appreciate that in general, the objects were associated to the classes of more simi-
lar objects already learned. This experiment was only performed to verify that the pro-
posal sends unlearned objects to their most similar object classes.
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Compared to other recently published approaches [7] and classical approaches (Euclid-
ean and Bayesian approach), as can be appreciated in Tables 2 and 3, proposal offers bet-
ter or competitive classification results, with the advantages already mentioned in Section
2.1.

5 Conclusions and Ongoing Research

In this paper, we have proposed a very simple way to build an associative memory based
on mid-point operator. It uses min and max set operations to build memory. Proposal has
been tested in different scenarios with images of real objects represented by their moment
invariants. Results obtained with proposal are comparable and in some cases better than
other proposals as shown in Section 4.

One thing that can be done to probably improve the performance of the proposal is to
normalize the values of the invariants so that each feature has the same range of values.

One main drawback of mid-point operator is the presence of outliers in the data. This
question will be faced in future works.

Nowadays, we are testing others ways to build function @, especially when the values

of ¢@ are so close and do not satisfy Theorem 1.
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Abstract. In this note we describe how an associative memory can be applied to
restore a word to its original “position” given a permutation of its letters. The idea
is to first memorize a set of original words with different number of letters. Then
the issue is to find the correct word given a permutation of its letters. We provide
the formal conditions under which the proposal can be used to perfectly restore
the desired word. We also give several examples to show the effectiveness of the
proposal.

1 Introduction

A very well known word game is the following: Suppose we are given a set S, of p
different words of different cardinality C (wl. ),i =1,2,..., p (by cardinality we mean

the number of letters of word W, ). From this set, at random, we have a word w; but

with its letters scrambled. After scrambling, some of the letters of the words will
remain in their original positions, but some others not. The issue is to find the
corresponding original word.

We humans do have a notable capacity to solve problems like this by iteratively
exchanging the positions of the scrambled letters and making guesses. An exhaustive
rearranging of all possible combinations would allow us to sooner or later find the
searched word. By taking into account the orthographical rules of forming words
would reduce the searching space. When the number of words, p, grows, the
complexity of searching also grows.

Associative memories have been used for years to recover patterns from the
unaltered or altered patterns keys. See for example [1-9]. In this work we propose to
use an associative memory to restore a given word given a permutation of its letters.

2 Basics About Associative Memories

As defined by several researchers, an associative memory, denoted as M is a device
with the capacity to relate input patterns and output patterns: X - M — y, with x

and y, respectively the input and output patterns vectors. Each input vector forms an
association with a corresponding output vector.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 141-150
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An associative memory M is represented by a matrix whose #j-th component is
m;. Matrix M is generated from a finite a priori set of known associations, known as
the fundamental set of associations, or simply the fundamental set (FS). If £ is an
index, the fundamental set is represented as: {(xg,y‘f |&=12,...,p; with p the

cardinality of the set. Patterns that form the fundamental set are called fundamental
patterns.

If it holds that X° =y° V £ € {1,2,. . p}, then M is auto-associative, otherwise
it is hetero-associative. A distorted version of a pattern x to be recalled will be denoted
as X . If when presenting a distorted version of X" with we {1,2,..., p} to an
associative memory M, then it happens that the output corresponds exactly to the

associated pattern Y, we say that recalling is robust.

3 Basics of Median Associative Memories

Median associative memories (MEDMEMs) first proposed in [9], have proven to be
very powerful tools to recover patterns from distorted versions of their corresponding
keys. Two associative memories are fully described in [9]. Due to space limitations,
only hetero-associative memories are described. Auto-associative memories can be

obtained simply by doing X° =y° V& 6{1,2,... p}. Let us designate Hetero-
Associative Median Memories as HAM-memories.

3.1 Memory construction

Two steps are required to build the HAM-memory. Let X€ Z" and y € Z" two
vectors:
Step 1: Foreach £=1,2,---, p, from each couple (Xét ,yé) build matrix: M¢ as:

A(ylsxl) A(y13x2) A(yl’xn)
A(yz’x1) A(yz’xz) A(yzaxn) 1)
A(ym’xl) A(ym’XZ) o A(ym’xn) mxn

Step 2: Apply the median operator to the matrices obtained in Step 1 to get matrix M
as follows:
P
M:med[Mg]. )
&=
The #j-th component M is given as follows:
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m, :ng;dA( f,xé). €)

3.2 Pattern recall

We have two cases:
Case 1: Recalling of a fundamental pattern. A pattern X", with w € {1,2,- N p} is
presented to the memory M and the following operation is done:

MO x". “4)

The result is a column vector of dimension 7, with i-th component given as:

i

(MO, x"), = n}édB(my.,x;”). 5)

Case 2: Recalling of a pattern from an altered version of it. A pattern X (altered

version of a pattern X" is presented to the hetero-associative memory M and the
following operation is done:

MO, X . (6)

Again, the result is a column vector of dimension #, with i-th component given as:

(M0,x) =q}§ldB(mU,xj). %)

i

Operators A and B might be chosen among those already proposed in the literature. In
this paper we adopt operators A and B used in [5]. Operators A and B are defined as
follows:

A(x, y) =x-y (8.2)

B(x,y)=x+y (8.b)

Sufficient conditions, for perfect recall of a pattern of the FS or from an altered
version of them, according to [9] follow:

Proposition 1 [9]. Let {(X“,y“)| a =1,2,...,p} with X* € R", y* € R"” the
fundamental set of an HAM-memory M and let (Xy Yy ) an arbitrary fundamental

couple with y e {1,---,p}. If n}édgij =0, i=l-m, & =m, —A(yiy,x;) then

(MOBxy)i =yli=1..m.

Corollary 1 [9]. Let {(x“,y"‘)| a =1,2,...,p}, x“ eR", y“ eR". A HAM-
median memory M has perfect recall if for all @ =1,---,p, M“ =M where
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M= y§<> A (X§ )t is the associated partial matrix to the fundamental couple (Xa 9 )
and p is the number of couples.

Proposition 2 [9]. Let {(X“,y“)| a :1,2,...,p}, x“eR", y* €eR" aFS with

perfect recall. Let 77“ € R” a pattern of mixed noise. A HAM-median memory M has
perfect recall in the presence of mixed noise if this noise is of median zero, this is if

med7? =0,Va.
j=1

3.3 Case of a general fundamental set

In [10] was shown that due to in general a fundamental set (FS) does not satisfy the
restricted conditions imposed by Proposition 1 and its Corollary, in [10] it is proposed
the following procedure to transform a general FS into an auxiliary FS’ satisfying the
desired conditions:

TRAINING PHASE:

Step 1. Transform the FS into an auxiliary fundamental set (FS”) satisfying Theorem 1:
1) Make D = cont, a vector.
2) Make (XI,YI)Z(XI,yI).
3) For the remaining couples do {
For £ =2 top {

<o

X :§§_1+D; £ =x"

Xy ey Dy ey oy

Step 2. Build matrix M in terms of set FS’: Apply to FS’ steps 1 and 2 of the training
procedure described at the beginning of this section.

RECALLING PHASE:
We have also two cases, i.€.:

Case 1: Recalling of a fundamental pattern of FS:
é

1) Transform X° to ig by applying the following transformation:

Xt =xf+gf
2) Apply equations (4) and (5) to each ié of FS’ to recall §§ .
3) Recall each yé by applying the following inverse transformation: yé = §§ — yé .

Case 2: Recalling of a pattern y‘f from an altered version of its key: X ;
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1) Transform X to ;: by applying the following transformation:
x* =% +%%.
2) Apply equations (6) and (7) to ié to get ;5 , and

3) Anti-transform §§ as y§ = §§ —y§ to get yg.

In general, the noise added to a pattern does not satisfy the conditions imposed by
Proposition 2. The following result (in the transformed domain) state the conditions
under which MEDMEMs present perfect recall under general mixed noise [11]:

Proposition 3 [11]. Let {(X“,ya)| o= 1,2,...,p}, x“eR", y*"eR"a
fundamental  set x"'=x°+D, y§+1 = yé +D, E=12,....p,
D= (d oo, d )T, d = Const . Without lost of generality suppose that is p odd.

£ T
Thus the associative memory M =y~ 0, (Xé) has perfect recall in the presence of

noise if less than (n-i—l)/ 2—1 of the elements of any of the input patterns are
distorted by mixed noise.

4 The Proposal

The proposal to solve the problem described in section 1 is composed of two phases:
Construction of the banks of memories and restoration of the word. The steps of each
of these two phases are next explained. Also, in which follows, letters of words are
represented in decimal ASCII code before further processing. This way letter “A” is
represented thus as 65 in decimal ASCII code, letter “B” as 66, and so on.

4.1 Phase 1: Construction of the bank of memories

This phase has two steps as follows. Given a set S, of p different words with

different cardinality C (Wi ),i =12,....p:

Step 1:  Group words according to their cardinality.

Step 2:  For lowest cardinality C to biggest cardinality C,

lowest iggest :
1. Codify each word as explained.
2. Due to each FS does not satisfy conditions stated by Theorem 1 and
Corollary 1, transform corresponding FS to auxiliary fundamental set
FS’.
3. Built corresponding memory M.
4.3 Phase 2: Word restoration

This phase follows four steps. Given a scrambled word:
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Step 1:  Codify word in decimal ASCII code as explained.

Step 2:  Transform codified version as explained in step 1 of case 2 of recalling
phase (Section 3.3).

Step 3:  Apply equations (6) and (7) to transformed version.

Step 4:  Anti-transform recalled pattern to get desired pattern (step 3 of case 2 of

recalling phase (Section 3.3)).

S Numerical Example

To better understand the functioning of the proposal, let us suppose that we are given

the following two sets of Spanish words grouped by cardinality 4 and 5 as follows:
{Gato, Sebo, Trio} and {F¢lix, Lanar, Opino}.

Represented in decimal ASCII code, these two sets are as follows:

{(71,97,116,111),(83,101,98,111),(84,114,161,111)}
and
{(70,130,108,105,120),(76,97,110,97,114),(79,112,105,110,111)}.
Phase 1: Memory construction:

Step 1: Transformation of FS to auxiliary FS: Suppose thatd =10 :

First FS. Words Gato, Sebo and Trio Second FS. Words: Félix, Lanar and Opino
Transformed vector Difference Transformed vector Difference
(71,97,116,111) (0,0,0,0) (70,130,108,105,120) (0,0,0,0,0)
(81,107,126,121) (-2,6,28,10) (80,140,118,115,130) (4,43,8,18,16)
(91,117,136,131) (-7,3,-25,20) (90,150,128,125,140) | (11,38,23,15,29)

Step 2: Construction of memories:

According to the material exposed in Section 3.1 we have to memories, one for words

of cardinality 3 and one for words of cardinality 4:

0 26 _45 40 0 -60 -38 -35 -50
60 0 22 25 10
S U TS
e M?*=|38 -22 0 3 -I2
0 14 -5 o 35 -25 -3 ~15
50 10 12 15 0

Phase 2: Word restoration:

Example 1: Given altered version Lanra, reconstruct corresponding word (Lanar):

Solution:
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Step 1: Codification of word: Decimal ASCII code for scrambled version Lanra is:
(76,97,110,114,97).

Step 2: Transformation of word: By adding difference vector (4,43,8,18,16) to altered
version we get transformed vector (step 1 of case 2: Recalling of a pattern from an
altered version of its key):

(76,97,110,114,97) + (4,43,8,18,16) = (80,140,118,132,116)

Step 3: Application of corresponding memory transformed version: In this case we
apply matrix M?* and equations (6) and (7) to transformed version. We get:

(80,140,118,115,130)

Step 4: Anti-transformation of recalled pattern to get desired pattern. As explained in
section 4.3 this is done by subtracting from recalled pattern corresponding difference vector. In
this case vector (4,43,8,18,16). We get:

(80,140,118,115,130) - (4,43,8,18,16) = (80,140,118,97,114),

which corresponds as you can appreciate to word: Lanar.

6 Experimental Results

In this section we show how the proposal described in section 4 can be used to recover
a given word from a scrambled version of its letters. For this the set Spanish words
shown in Table 1 is used:

Number of letters per word and words used in the experiments

5 7 9
ABRIR DECIMAL CASADEROS
FELIX FLUVIAL COLIBRIES
IBIZA FORMADO INCOMODEN

LANAR IDIOTEZ POPULARES
OPINO LINCHAR VIOLENCIA
PANAL OSTENDE -
RUEDA SEMANAL -
RUGBY - -
TRINA - -

Table 1. List of words used in the experiments.

6.1 Memory construction

Each word is first codified in decimal ASCII as specified. Each set of codified words,
beginning by words cardinality 5 and ending with words of cardinality 9, is then
transformed to its corresponding auxiliary fundamental set. First codified word of each
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set is used to build corresponding associative memory. At the end of the process we
end with six matrices: M', M? and M*. Matrix M' codifies the information of
words with 5 letters. Matrix M? codifies the information of words with 7 letters, while
matrix M codifies the information of words with nine letters.

6.2 Recalling of each fundamental set

Each word of each set was transformed and presented to its corresponding memory. Of
course, due to Theorem 1 and its Corollary all words were perfectly recalled.

6.3 Recalling of a word from a distorted version of it (first experiment)

In this experiment less than 50% of the letters of each word of Table 1 were
exchanged. In the case of words of five letters two letters were chosen, in the case of
words of seven letters three letters were chosen, and in the case of the words of nine
letters four letters were exchanged. One scrambled version of each word was
generated. Each scrambled version was processed as described and the results were
summarized in Table 2. As can be seen from this table, in all cases the desired word
was correctly recalled. This of course is an expected result due to the noise added to the
patterns satisfies the conditions for recalling specified by Proposition 3.

6.4 Recalling of a word from a distorted version of it (second experiment)

In this experiment more than 50% of the letters of each word of Table 1 were
exchanged. In the case of words of four letters two letters were chosen, in the case of
words of seven letters six letters were chosen, and in the case of the words of eight
letters four letters were exchanged. One scrambled version of each word was
generated. Each scrambled version was processed as described and the results were
summarized in Table 3. As can be seen from this table, in some cases the desired word
was not correctly recalled, in other cases it was. One can ask why of this fact. In the
one hand it was simply because the percentage of 50% given by Proposition 3 was
surpassed. In the other hand we have to remember that if the noise added to a pattern is
median zero, it does not matter how the pattern is altered it should be correctly
recalled. This is exactly what is happening in this case. Let us take for example altered
version FDOAMOR (decimal ASCII code: 70 68 79 65 77 79 82) of word FORMADO. You
can easily verify that the noise added to word DECIMAL (decimal ASCII code: 70 79 82 77 65
68 79) is:

70 68 79 65 77 79 82

70 79 82 77 65 68 79

0 -11 -3 -12 12 11 3

By arranging the component of last row and by taking the median we have that the
median of the noise added to word in ASCII code equals median (-12,-11,-
3,0,3,11,12)=0. Thus despite more than 50% of the components of the word are
modified correct recalled is obtained. In the remaining cases the word was not correctly
recalled because more than 50% of its components were altered and because the noise
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added to the word has no median equal to 0. From this we can conclude that
Proposition 2 is a stronger than Proposition 3.

Word | Generated word | Recalled word Word Generated word | Recalled word
ABRIR AIRBR ABRIR DECIMAL DECLMAI DECIMAL
FELIX XELIF FELIX FLUVIAL ALUVIFL FLUVIAL
IBIZA 1AIZB IBIZA FORMADO | FOOMADR FORMADO

LANAR LANRA LANAR IDIOTEZ ZDIOTEI IDIOTEZ
OPINO OIPNO OPINO LINCHAR LIACHNR LINCHAR
PANAL PALAN PANAL OSTENDE ESTONDE OSTENDE
RUEDA RAEDU RUEDA SEMANAL SAMANEL SEMANAL
RUGBY RUGYB RUGBY - - -
TRINA RTINA TRINA - - -
(a) (b)
Word Generated word | Recalled word
CASADEROS | CESADAROS | CASADEROS
COLIBRIES | COLIBIRES | COLIBRIES
INCOMODEN | INCOMODEN | INCOMODEN
POPULARES | PUPOLARES | POPULARES
VIOLENCIA | VIOCENLIA | VIOLENCIA
(©)

Table 2. Recalling results. (a) Words of five letters. (b) For words of 7 letters. (c) For
words of 9 letters. In all cases the desired word was correctly recalled.

Word | Generated word | Recalled word Word Generated word | Recalled word
ABRIR ARIRB ABRIR DECIMAL LACEDMI ABAFJAI
FELIX FXLEI FELIX FLUVIAL UILLVAF CIRSFAI
IBIZA 1ZAIB IBIZA FORMADO | FDOAMOR FORMADO

LANAR LNARA LANAR IDIOTEZ TENIZDO IDIOTEZ
OPINO ONOPI OPINO LINCHAR NCLRHIA LINCHAR
PANAL PLANA PANAL OSTENDE DTNSOEE PTUFOEF
RUEDA REAUD RUEDA SEMANAL MSEALNA QCKALAJ
RUGBY RYBUG RUGBY - - -
TRINA TANIR TRINA - - -
(a) ()
Word Generated word | Recalled word
CASADEROS | SACORADSE | CASADEROS
COLIBRIES | RIESBCLIO | COLIBRIES
INCOMODEN | MEDONCNOI | JODPNPEFO
POPULARES | LAROPUSEP | POPULARES
VIOLENCIA VAICNELOI VIOLENCIA
(©

Table 3. Recalling results. (a) Words of five letters. (b) For words of 7 letters. (c) For
words of 9 letters.

It is worth to mention than during recall if the value of a recalled letter goes under
the value 65 (‘A’) or above the value 90 (‘Z’), this value is to 65 and 90. This way in a
recalled word we avoid having symbols different from letters.
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7 Conclusions and Present Research

In this brief note we have shown how an associative memory can be used to find
(recover) a desired word given a scrambled version of it. The scrambled version is first
taken to a transformed domain were it can be operated by the corresponding memory.
This operation automatically reorders the letters of the scrambled word.

In the general case we do not know from which word a distorted version was
obtained. We are actually working through an efficient method that allows to recognize
a given from a distorted version of it without having to compare it with all possible
words. We are also looking for more real situations were the proposal could find
applicability.
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Abstract. The problem of developing artificial learning systems cannot
be confined in the realm of computer science and researchers in this field
are called to face an ambitious question reverberating on several disci-
plines. A deeper investigation in this sense reveals an intriguing paral-
lelism between conceptual theories of knowledge and mathematical mod-
els of intellect. Hybridisation strategies and meta-learning approaches are
discussed in conformity with the indications of a comprehensive episte-
mological inquiry into artificial intelligence.

1 Introduction

The progress attained in artificial learning in the last few decades gave rise to the
rapid proliferation of several applications, some of them exhibiting commercial
software facets. Also, the oncoming development of new branches of research
and the continuous broadening of application environments favoured the ma-
chine learning appealing to a new generation of young scientists and specialists.
However, if we refer to the very ultimate goal of the research in artificial intel-
ligence (AI), addressing the thorough emulation of human capabilities, a still
long route remains to be covered. In this direction, it makes sense, at least in an
academic perspective, to investigate theoretical models of intellect, in order to
deepen our understanding of human and artificial cognitive mechanisms.

This work takes part in the epistemological debate around the validity of arti-
ficial learning methods, not only in terms of contingent performance results, but
also considering the theoretical assessment of their inherent foundation. Moving
from the classical debates about the human intellect, we propose a critical inquiry
to highlight the strict connection existing between philosophical constructions
and scientific approaches to artificial learning. Putting emphasis on the twofold
character of human thought, combining apriority and adaptivity, we analyse the
typical conceptual schemes which formalise the common reasoning mechanisms.
It should not come as a surprise the resort to the speculative investigations for
tackling questions pertaining to the computer science sphere of activity. Actu-
ally, it has been observed that the scientific progress would grow faster if the
close relationship between mathematical and philosophical concepts is properly
understood and esteemed [1]. Bearing in mind this guideline, we draw up a sur-
vey of the various concepts of human intellect, steering our research in the realm
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of artificial learning. The resulting epistemological analysis is helpful to show
connections among the ideas developed by thinkers and scientists far separated
in time and space. Particularly, the problem of learning is tackled in the article,
by establishing an extensive definition of learning by induction which is involved
with the Hume’s predicament concerning the plausibility of generalisations [2].
In the context of Al system development, we underline how the mechanism of hy-
bridisation could produce a synthesis among adaptivity and apriority (similarly
to what happened in particular moments of the philosophical debate). More-
over, to escape the riddle of induction, we propose a peculiar epistemological
approach, claiming the possibility for inductive processes to justify themselves.
In this way, we address the field of meta-learning as a promising research di-
rection to vitalize the studies in artificial intelligence. By the end of the paper,
we shall be able to briefly illustrate also a particular meta-learning framework
developed according to the indications provided by the epistemological inquiry.

2 The quest for a theory of knowledge

Since from the ancient times, philosophers tried to find a rationale behind the
processes of knowledge acquisition and the mechanisms of learning. A first rele-
vant construction of a theory of knowledge could be traced back to Plato. The
Greek philosopher emphasised the inadequacy of human senses, stating that the
ability to think is founded on a priori concepts embedded into the human mind,
namely the Ideas [3]. These abstract concepts are endowed with complete worthi-
ness and possess true and eternal existence. This is the reason why the Platonic
philosophical establishment is also referred to as realism, indicating the reality
of a priori Ideas, opposed to the unreality of experience. Engaging in controversy
with the Platonic realism, a different conceptual perspective called nominalism,
related to the Cynic school of philosophy, stated the impossibility of grasping the
universal concepts without the recourse to sensible experience. In this way, the
Ideas lose any existential connotation and are regarded only as labels indicating
ensembles of objects.

The realism and the nominalism have represented the keystones of the philo-
sophical debates in the subsequent centuries. On the one hand, Platonic realism
advocates committing to apriorism for grounding a theory of knowledge, that
should always start from a base of eternal immutable universal concepts. On the
other hand, nominalism considers the sensible experience as the only source of
knowledge, thus resorting to adaptivity for adequately tackling the natural plu-
rality. Plato’s principle of apriority provide for an answer about the possibility
of knowledge, but it does not suffice to approach another fundamental question
concerning intellect: how is learning possible? This kind of inadequacy was quite
soon identified as a “leak” into the Platonic construction: Aristotle recognised
that Plato’s formulation cannot generate any form of learning, since Ideas are
detached from the world where the universal concepts become incarnate. To
solve this problem, the Aristotelian theory is based on the assumption that the
communication of Ideas with the physical world is resolved in the meeting be-
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tween form and matter [4]. The Aristotelian forms are characterised by an a
priori universal reality and represent the formative principle in human learning.
However, forms possess also a dynamic nature, being able to originate all the
extraordinary variety of the physical world, during their encounter with matter.
Aristotle’s construction can be seen as the first attempt to approach the debate
about the theory of knowledge by combining apriority with adaptivity of mind.

Actually, the divergences between Aristotle and Plato were minimised by
the thinkers of the years to come and the lack of clarity in Aristotelian theory
contributed to the mediaeval controversy involving the sustainers of nominalism
and realism. The theory of knowledge evolved through a debate strongly biased
by the role played by theological thinking. The famous “Occam’s razor”, deny-
ing any resort to universal a-priori concepts to attain knowledge of the world,
founded the problem of knowledge on direct experience and encouraged the sci-
entific research and the development of the coming philosophy of empiricism.

The epistemological problem assumes the connotation of the “specific prob-
lem” of the modern philosophy: rationalism and empiricism can be seen as means
to grasp the reality outside the mind. These means share the awareness of mental
representations and external reality, but differ in their approaches. Rationalism
answers the question of knowledge by highlighting the misleading nature of sen-
sitivity and by proposing a metaphysical construction to bridge the gap between
mental representations and external reality. Empiricism underlines the reveal-
ing character of sensitivity, trying to learn external reality by questioning our
senses (denying any apriority for our mental representations). Again, the oppo-
sition between intellectual apriorism and natural adaptivity stands out, with a
reprise of the dualism of realism and nominalism. As concerning the problem of
learning, the empirical perspective is based on inductive approaches affirming
the foundation of the knowledge of the world on simple sensible data. Partic-
ularly, Hume stressed the empirical tendencies by examining possibilities and
limitations of human cognitive experience. In [2], the Scottish thinker faced the
causality problem and, in his argumentations, the idea of a necessary connection
cause-effect is ruled out both in aprioristic sense and in relation to any source
of experience. In this way, the causality principle is spoiled of necessity, loosing
epistemological justification: only habit is responsible of human generalisations.
This consideration is pregnant of significance in our inquiry, since it asserts that
induction is not a valid form of reasoning and, consequently, a criticism is raised
with regard to the scientific method that aims at generalisation.

Similarly to Aristotle, Kant tried to solve the problem of knowledge com-
posing the breach between rationalism and empiricism. In [5] it is shown how,
although knowledge cannot transcend experience, nevertheless it is partly char-
acterised by an a priori component that is not inductively inferable from expe-
rience. The novel epistemological argumentation asserts that science is based on
synthetic judgements a priori that, even if can be evoked by experience, should
be founded on a very solid base that induction could never offer to a general
law. Again, the keystone of a unifying theory consists in its effort of combining
apriority with adaptivity of mind. In the following, we start an analysis of formal
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Fig. 1. The working mechanism of a rule-based artificial intelligent system.

modelling of intellect to underline the connection existing among mathematical
concepts and philosophical positions.

3 Mathematical concepts of intellect

When dealing with logical reasoning, a concept can be thought as a rule by
which an instance domain is partitioned into a subset of instances satisfying the
rule, and another subset whose instances do not satisfy the rule. The process
that allows to advance from general concepts to particular rules is referred to as
deduction. If we intend to design an Al system working on the basis of deductive
reasoning, then we should pay attention in providing it with a priori knowledge,
namely a database of general concepts and rules, useful for tackling world prob-
lems. Deductive approach can be easily brought back to the Platonic realism: the
role of a priori principles is emphasised in the knowledge construction process
and experience of sensible world is just an afterthought.

When the reasoning process allows us to advance from particular observa-
tions to general concepts, then the logical inference performed is referred to as
induction. An Al system, designed to reason in terms of inductive inferences,
needs no a priori content: its action will be driven by the observation of real
objects and the consequent generalisation processes. Induction could be related
to the nominalistic approach: the role of universal principles is underestimated
and general concepts become names, assigned to classes of similar objects.

The deductive inference is characterised by an additive, demonstrative, non-
ampliative nature, which is able to preserve truthfulness. On the other hand,
inductive learning preserves falsity and does not preserve truthfulness, thus show-
ing a non-additive, non-demonstrative nature. Moreover, induction helps to go
beyond deductive attainments, since inductive conclusions entail more informa-
tion contents than those embedded into the premise concepts.

An analysis of mathematical models of intellect can be focused in the field
of artificial intelligence, in particular reviewing rule-based models and connec-
tionist systems. Assuming that a priori knowledge has to be embedded into a
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Fig. 2. The structure of an ANN composed by two unit layers, plus an input layer.

machine, an Al system can be endowed with a base of logical rules, similar to the
high-level cognitive concepts utilised by a human in conscious decision-making
processes. The mathematical formalisation of this concept of intellect makes use
of name variables, rather then numbers, and logical inferences represent the basis
of reasoning and knowledge acquisition. This direction in the theory of intellect
has been usually referred to as rule-based AI or, with a misnomer, symbolic AI [6,
7]. The basic working plan of a rule-based system follows the reasoning process
of a human expert to solve a real-world problem. All the possible situations in a
particular environment are codified in a number of rules of the typical form: “IF
antecedent THEN consequent”. The necessary relationship between antecedent
and consequent formalises in a logical form the knowledge of the expert (as
sketched in figure 1(a)). When the system has to face a particular problem, the
real occurrence is translated into a logical form, consistent with the knowledge
base, and a concatenation of inferences produces the final solution, as depicted
in figure 1(b). The question about the possibility of learning is re-proposed in
rule-based Al, since the deductive inferences operated by logical systems do
not prove to build up a model of intellect with actual knowledge enlargement
capabilities. Moreover, combinatorial complexity undermines the foundation of
rule-based AI. Actually, systems of logical rules are doomed to perform well in
limited domains, since the amount of concepts to be formalised is not prohibitive.

Artificial neural networks (ANN) are computational models that, loosely mo-
tivated by biological systems, exhibit some of the properties of the brain [8,9].
They are composed by a number of simple processors (neurons) working in par-
allel, without any centralised control. The neurons are arranged into a particular
structure (usually organised in layers), where a system of weighted connections
guarantees the information flow through the network (see figure 2). Neural net-
works are commonly regarded as learning machines that work solely on the basis
of empirical data. The only means for acquiring knowledge about the world in a
connectionist system come from observational instances and there are no a priori
designed conceptual patterns that could lead the learning process. The lack of
any kind of conceptual cognition and the resort to data for developing knowl-
edge let us review the connectionist approach as an empirical attitude in the
context of the theory of intellect. Neural networks have shown their effectiveness
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in a number of applications, however they exhibited also a variety of problems
that in many cases limit their profitable employment. In particular, the most
relevant difficulties are related to the lack of transparency of neural networks
(that represents also an obstacle for the a priori knowledge exploitation), and
the number of training samples required for learning (that could be prohibitive
when dealing with large, complex real-world problems).

4 Complexity, hybrid strategies and fuzzy logic

The conducted analysis would suggest that every attempt to develop a com-
prehensive mathematical model of human intellect could be frustrated by a
combinatorial complexity explosion. In fact, methods based on adaptivity are
subjected to combinatorial explosion of the training process. On the other hand,
approaches related to apriority have to face combinatorial explosion of the knowl-
edge base complexity. A lesson can be derived from those remarks: the matter
of combining adaptivity and apriority assumes paramount relevance in artificial
intelligence, similarly to what happens in the debates for understanding human
intelligence. As already pointed out, Aristotle perceived that the lack of adap-
tivity would have doomed the Platonic theory of ideas to cut off every kind
of learning capacity. Correspondingly, the Kantian construction of a theory of
knowledge, based on synthetic judgements a priori, implicitly expressed the urge
for a combination of the aprioristic contents of intellect with its adapting ca-
pabilities. Also in recent lines of inquiry, related to the field of philosophy of
science, the mechanism of hybridisation has been appraised as a more correct
attitude for developing consistent research in the AT field [10]. Hybridisation, in
fact, appears to be a much more effective practice to produce successful mod-
els, in place of the abused appeal to “paradigms” (that disorderly evolve in a
quite exaggerated number in Al contexts, with respect to what happens in more
consolidated sciences, such as physics).

Nevertheless, the problem of complexity is deeply rooted in some kind of
contradictions that can be highlighted once again by referring to the conceptual
discussions of the past. Aristotelian logic hardly conciliates with the theory of
forms: while the first describes laws governing definitive and eternal truths, the
latter emphasises the dynamic and adaptive role of forms in a mutable world. In
modern times, Kant operated a “Copernican revolution” to explain the modali-
ties of the knowledge construction process. The novel epistemological assessment,
while stating that it is impossible to know the thing-in-itself of the world real-
ity, transfers the focus on the cognitive subject and her own peculiar ability of
perceiving phenomena. This way of understanding reality could be hardly rep-
resented by the logical mechanisms, which seek for the absolute essence of the
thing-in-itself. When the mature logical tradition of the early 1900s resolved
to eliminate any uncertainty and subjectivity from the knowledge construction
process, a definitive impediment disturbed the mathematical dream. Godel the-
orems of incompleteness established that the price for the exactness is paid in
terms of completeness. A different direction to resolve the Aristotelian contra-
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diction, opposing rigid logical schemes to the plasticity of human thought, was
undertaken by accepting uncertainty in reasoning process. Fuzzy logic invali-
dates the cornerstones of formal logic (namely, the law of excluded third and the
principle of contradiction) and brings forward a form of approximate reasoning
that, while renouncing exactness, fits better the vagueness of real world situa-
tions. Into the inherent nature of fuzzy logic, admitting a subjective capability
of expressing different degrees of truth, it is possible to trace the echoes of the
modern philosophical attitude toward the theory of knowledge, as expressed by
Schopenhauer’s words. “The world is my representation” [11] could be intended
as the ante litteram statement of the novel conception of knowledge embedded
in the fuzzy way of reasoning.

5 Learning through induction

As we have already pointed out, the problem of establishing a proper definition
of learning has troubled thinkers and scientists for many times. We assume that
learning occurs by increasing the amount of available knowledge, namely by
enlarging the base of knowledge determined by a “deductive closure”. In order
to derive some new pieces of information, the “inductive leap” appears to be a
necessary mechanism, therefore we concentrate on induction to properly discuss
an epistemological assessment of learning practices.

It is straightforward to relate this kind of definition of learning, connected
with induction, with the conceptual disputes dating back to Hume’s argumenta-
tions about the generalisation plausibility. It should be noted that the intriguing
unsafety of induction does not regard only the guarantee of generating correct
conclusions: it is also doubtful whether the basic inductive mechanisms possess
credibility, in any meaningful sense. The crux of the matter in Hume’s argu-
mentation relies in the inability to define a rationale behind inductive activities,
since no finite number of observations could be enough reason to suppose any-
thing general. This consideration ultimately prevents the support of any degree
of confidence in any prediction. Following this line, only habit (namely, repeated
observation of regularities) is responsible for the generalisation practice [2].

The problem of induction represents the starting point also for modern nat-
uralism, suggesting a new attitude to tackle generalisation [12]. Moving from
the observation of the defeat of traditional epistemology, that was not able to
escape the stalemate of the Hume’s predicament, the new claim of naturalism
consists in reducing the human knowledge to a natural phenomenon, falling un-
der the activity sphere of science. In this way, epistemological problems become
scientific concerns, thus reducing the role of the theory of knowledge: an implicit
reshaping of epistemology is applied, admitting the out-of-reach character of tra-
ditional investigations. Following the naturalistic view, inductive processes are
endowed with the faculty of justifying themselves, and epistemological concerns
address a higher conceptual level where basic learning practice leaves room for
meta-learning investigations. In other words, the attention is shifted from mere
justification of induction toward the problem of performing a suitable selection
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among inductive hypotheses. Of course, these aspects are intrinsically connected
and their examinations cannot be conducted in a separate fashion. Nevertheless,
it seems that an interesting approach could be grounded on a modified basic
perspective. Instead of reviewing our mind activity as a process triggered off
only by the experience of particular regularities in the world, we could think of
our inductive mechanisms as a perpetual motion of the mind, which naturally
generalises from observations along different lines, and progressively becomes
skilled in tracing the correct directions.

In practice, artificial learning, recognised as the empirical science of inductive
methods, provides a laboratory to develop and evaluate generalisation strategies.
If inductive practices scatter in several directions, then producing successful gen-
eralisations is just a matter of defining the proper bias which helps to find the
way in each circumstance. Meta-learning should be able to provide the neces-
sary knowledge of the world and guidance for determining the proper direction in
generalisation processes. The meta-learning activity should rely on the assump-
tion that previously successful strategies of induction are supposed to generate
hypotheses which can be generally considered better supported. In other words,
predictive success provides one of the most powerful basis to assess inductive
conclusions. Following this approach, where inductive practices are evaluated
by resorting to induction, meta-learning strategies should be employed in the
field of artificial learning, supported by the current directions of epistemological
investigations. In the following we are going to take a closer look at the computa-
tional methods of artificial learning, briefly reviewing the limitations of common
base-learning strategies and the potentialities of meta-learning approaches.

5.1 Computational methods and induction: being MINDFUL when
learning

The applied research in the field of artificial intelligent systems often deals with
empirical evaluations of machine learning algorithms to illustrate the selective
superiority of a particular model. This kind of approach, with multiple mod-
els evaluated on multiple datasets, is characterised by a “case study” formula-
tion that has been recognised and criticised in literature [13,14]. The selective
superiority demonstrated by a learner in a case study application reflects the
inherent nature of the so-called base-learning strategies, where data-based mod-
els exhibit generalisation capabilities when tackling a particular task. Precisely,
base-learning approaches are characterised by the employment of a fixed bias,
that is the ensemble of all the assumptions, restrictions and preferences presid-
ing over the learner behaviour. This means a restricted domain of expertise for
each learning model, and a reduction in its overall scope of application. The
limitations of base-learning strategies can be theoretically established: the no
free lunch theorems express the fundamental performance equality of any cho-
sen couple of learners (when averaged on every task), and deny the superiority
of specific learning models outside the case study dimension [15].

Obviously, if we want to perform pragmatic investigations of particular do-
mains, base-learning approaches represent a quite satisfactory way of proceeding
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Fig. 3. The design of the MINDFUL system; the kernel of the system is represented by
a neuro-fuzzy learning scheme.

to obtain adequate results. On the other hand, whenever we are interested in fol-
lowing a line of research with a broader scope, involving more general theoretical
issues and some kind of cross-domain applications, the resort to somewhat dif-
ferent methodologies is advisable. By focusing the attention on the role of bias,
we characterise the meta-learning approach as a dynamical search of a proper
bias, that should be able to adapt the learner behaviour to the particular task
at hand. The research field of meta-learning represents a novel approach aiming
at designing artificial learners with enhanced capabilities, possibly capable of
profiting from accumulated past experience [16,17]. In this way, the formula-
tion of the model evaluation could overcome the case study dimension and the
limitations of the base-learning strategies.

The conducted epistemological inquiry, in the way it has been described
in this paper, ultimately directed our investigation to design a particular meta-
learning framework, namely the MINDFUL (Meta-INDuctive neuro-FUzzy Learn-
ing) system, which we are going to synthetically describe. (Obviously, the com-
prehensive presentation of the MINDFUL system, together with the discussion of
its realisation and evaluation do not concern the scope of this article, see [18] for
further details.) To compose the schism between aprioristic knowledge represen-
tations and adaptive fitting to data observations, our meta-learning methodology
is centred on the integration of apriority and adaptivity, conjugating the expres-
siveness of a rule base with the effectiveness of a neural model. Moreover, this
kind of hybridisation takes into account the problem of complexity, and aims
at combining the neural network learning capabilities with the representational
power of fuzzy logic. In this way, the learning framework is based on the em-
ployment of a neuro-fuzzy integration which provides the additional benefit of
arranging the available knowledge in a comprehensible and manageable fashion.
Actually, the neuro-fuzzy scheme had to be adapted to fulfil the meta-learning re-
quirements. The important point here consists in consenting inductive practices
to evaluate past experiences of induction and to project successful generalisations
beyond the analysed situations. For this purpose, the MINDFUL system has been
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organised in order to employ the same neuro-fuzzy learning scheme both as base-
and meta-learner (figure 3 depicts the general scheme of the system). In prac-
tice, base-level tasks are tackled following a consolidated approach which exploits
neural learning for deriving from data a base of interpretable knowledge, useful
for solving each specific problem at hand. At the same time, a meta-learning
activity is brought forward, where the same knowledge-based methodology is
adopted. In this case, a set of meta-features (describing the properties of tasks)
is correlated with the bias configurations adopted during the base-level activity
(different learning parameter settings are acknowledged as distinct biases of the
system). In this way, the meta-learner provides an explicit meta-knowledge, in
terms of fuzzy rules, representing a significant form of high-level information to
direct the learning process of the base-learner in novel circumstances.
MINDFUL does not pretend to furnish a definitive solution to the meta-
learning questions, neither to stand as an arrival point for our investigation.
Nevertheless, it is an attempt toward a systematic study of meta-learning, where
hybridisation issues and epistemological grounds are particularly emphasised.
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Abstract. This study deals in its first stage with some neuro-fuzzy algorithms
used to learn fuzzy inference systems. Two categories of neuro-fuzzy learning
approaches are described and compared. The first contains the conventional
learning approaches, which were developed by Ichihashi, Nomura, Wang and
Mendel. The second consists of another method developed by Shi and Mizumoto.
The comparison is based on practical properties related to structure and
parameters learning. Then, the drawn conclusions and the mentioned properties
are used to provide a comparison between the considered neuro-fuzzy methods
and a developed defuzzification-based learning algorithm for fuzzy systems. The
advantages of this algorithm over the neuro-fuzzy ones are clearly emphasized.

1 Introduction

Due to the importance of fuzzy inference systems in the linguistic representation of
human knowledge and expertise, the design of these systems has been given a great
deal of attention in the literature. Design methods using data-driven neuro-fuzzy
learning approaches, where a neural network learning procedure is used to identify
Takagi-Sugeno-Kang (TSK) fuzzy model parameters, have been devised [1-7].

This study addresses first two categories of neuro-fuzzy learning approaches: The
conventional ones and another new approach [1-6]. An overview of these learning
methods is given and then they are compared using structure and learning-related
properties. Based on the comparison results and the mentioned properties, a
defuzzification-based learning algorithm for fuzzy systems [8-10] is brought into
picture and compared with the considered neuro-fuzzy methods. The advantages of
this algorithm as they relate to practically important properties; such as the simplicity
of setting the initial fuzzy system, the avoidance of non-firing states, linguistic
interpretability, etc., are emphasized.

2 TSK Fuzzy Inference Models

In a TSK fuzzy system of zero order [7], the antecedent part of each rule is composed
of linguistic variables and the consequent is a crisp value. Hence, in a system
with p inputs, X, j=1,2, ..., p, and one output, y, the rth rule, 1 <r<k, is expressed as

follows:

R, :IF x;is A}, and x, is A,, and ...and x , is A, THEN yis y,. 1)

pr’
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In (1), 4; are the rth rule fuzzy sets assigned respectively over the input variables x;
and vy, is the rth rule crisp consequent. Based on the rules structure, the number of
membership functions (MF’s) on each input variable is equal to the number of rules
and each MF on an input variable participates in only one rule.

The output value corresponding to input vector X; = (Xii, Xaj, ..., Xpi) is computed using
a weighted average formula as follows:

yi 225:1 hriyr/zl::I hri' (2)

The use of product for “and,” which is applied in neuro-fuzzy methods, gives the
firing strength of rule r expressed as:

h,; = Hf:] Ajr (xji) . (3)

3 Neuro-Fuzzy Learning Methods

Two main neuro-fuzzy learning approaches are of interest here: the conventional one
developed in [1-4] and the new approach [6].

3.1 Conventional Neuro-Fuzzy Methods

Referring back to Section 2, we note here that Eq. (2) was used by Wang and Mendel
[4] and Nomura [3]. Ichihashi [1,2] used a simplified version of (2) to get the system
output:

_\k
Vi = 2t Py )
Ichihashi and Wang-Mendel used Gaussian MF’s while Nomura used triangular ones.
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Fig. 1. Conventional neuro-fuzzy Fig. 2. Conventional neuro-fuzzy system
system with non-firing states with no non-firing states

To avoid initial non-firing states, the firing strength of at least one rule (See (3)) and
for any input x; must differ from zero. Hence, any region in the input space must be
covered by all the MF’s of at least one rule. This requires a special setting of the
initial MF’s. For a system with two inputs, say, there has to be as many MF’s having
the same shape on each input as there are distinct ones. Fig. 1 illustrates the case of a
4-rule and 2-input system where non-firing states exist if x; is anywhere in the regions
outside those assigned for the rules. In Fig. 2, however, non-firing states are avoided
since the MF’s are assigned as required. Undoubtedly, the process of initial MF’s and
rules assignments gets more difficult when the number of these MF’s and rules
increases and when the system has more than two inputs (See Section 3.3.4).
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When n training input-output data (X;, yi4), where 1 = 1,2,...n, are given, then they are
used in an error back-propagation learning to modify the parameters of an initial
fuzzy inference system, whose form is given in (1), and minimize the data
approximation error. The following error function is usually adopted:

Ei=(ya=»)"/2 (5)
The center and width of triangular MF’s, the mean and variance of Gaussian ones and
the crisp consequents are updated by the gradient-descent method:

a(t+1)=a(t)-a[OE;(t)/da] :a(t)+a[yl~d —yi(t)] oy;(t)/oa , (6)

where o is a learning rate, t denotes the current iteration and a is the parameter of
concern .

Once a data pair (X; , yiq) is presented to the system and the system parameters are
updated based on (6), then the system output for the same input x; changes at each
update and also the error E;. The tuning of the system parameters for the input data x;
stops when the step size, d= | E;(t+1) — E;(t)|, between two consecutive iterations
drops below a given threshold. Then another data pair is presented to the system and
the procedure is repeated. When all the data are presented to the system (learning
epoch), the total error E is calculated as follows:

E=25" E; /n=%" (viy—v:;)’ /n. (7)
If this error is smaller than some desired error, Eg4, the learning stops. If not a new
learning epoch begins. However, the performance of repeated epochs would not
necessarily lead to E < E4. Hence, the number of epochs is also be considered as a
stopping criterion.

In the above-described type of learning (pattern mode), the tuning of the system by a
given data (x; , y;q) affects the tuning of the system by all the subsequent data points.
This effect is absent in the batch learning mode since the parameters are updated only
after the whole data set is used. Actually, for a point (X;yis), the adjustment
Aa=a(t+1)—a(t) of a given parameter a is still computed as in (6). But, this
adjustment is stored. When all the data pairs have been used, the total adjustment is
computed as Aa =237 ;A.a/n. In fact, batch learning is equivalent to the use of (6)

with E;replaced by E .

3.2 New Neuro-Fuzzy Approach

The major difference between this approach (Shi and Mizumuto [6]) and the
conventional ones is that all the combinations of the MF’s assigned over the input
variables are used to form the antecedents of the rules. This difference along with
pattern learning entails modifications in the properties of the algorithm. An overview
of the new approach is provided for a system with two inputs.

Let A, s =1,2, ..., [y and Ay, q=1,2, ..., I, be the MF’s on input variables x; and
x, respectively. Then, k=/;xI, fuzzy rules are constructed in the form:

Rule (s-1)l; +q: If x, is A;; and x; is 454, THEN y is Y p)i214- ()
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With Ay pyiorgpi=Ai(x1)%A2(x2;) denoting the firing strength of the rule in (8), then the
output is calculated as follows:

U b

vi=2 zh[(s—1)1_7+q]iy(s—1)lz+q PIDN. (€))

s=1g=1 s=Ig=1 [(s=1)l;+q]i

3.3 Properties-Based Comparison

The conventional and new neuro-fuzzy learning approaches are compared here based
on properties related to their structure and the applied learning procedure.

3.3.1 Type of Membership Functions

Both conventional and new neuro-fuzzy methods require that the MF’s be
differentiable with respect to their parameters. This is due to the gradient-descent
method (6). Also, any change in the form of the used MF’s requires that the
parameters updating formulas be rederived.

3.3.2 Type of Logic Operations and Error Function

The use of Egs. (2)-(4) and (9) in neuro-fuzzy means that the fuzzy AND, OR and
THEN are respectively represented by product, sum and product. This is essential for
the gradient-descent formula (6), and the involved derivative. Also, the adopted error
function influences the parameters updating formulas.

3.3.3 Type of Learning

The considered neuro-fuzzy algorithms, use pattern learning (Section 3.1). Referring
to Fig. 2 and (2)-(6) it can be seen that more than one training example affect the
same system parameters. Hence, by adjusting these parameters based on a data point
and then going to the next, should lead to a compromise between the parameters and
their affecting points that is not as good as the one obtained using the batch mode of
learning (Section 3.1). In fact, this aspect becomes more serious when more data
points affect the same system parameters, as in the new neuro-fuzzy approach
(Section 3.2) where the MF’s are less localized. Hence, the batch mode of learning
should be more suitable for the type of fuzzy inference structure used in the new
neuro-fuzzy method.

3.3.4 Setting of Initial MF’s and Rules

The major concern in the conventional methods is the avoidance of initial non-firing
[5]. Hence, on each system input, there must be a number, d,,; of distinct MF’s with
each repeated r,, times to give rules antecedents covering the whole input space. As
explained in Section 3.1, this is not simple especially when the number of rules, & ,
and input space dimension, p, increase. To make things easier, two formulas are set.

With d,,xr,,~k and 7,,/~d,<(p-1), then

d,; =k/(p=1) and r,, =Jk(p-1) . (10)

Of course, p is application-dependent. Hence, k needs to be chosen to give integer d,,,
and 7, In the new neuro-fuzzy approach, the assignment of initial MF’s and rules is
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simple. As long as the adjacent MF’s on each input overlap (Fig. 3), then the coverage
of the entire input space is guaranteed and initial non-firing is avoided (Section 3.2).

3.3.5 Simplicity of Learning Formulas

The learning formulas in the conventional and new methods are determined using (6).
In the conventional methods, each MF is used once in the rules. This makes the
application of (6) with y; as in (2) or (4) and, thus, the learning formulas simple and
easily extended to systems with a high number of inputs as compared to the formulas
in the new approach, where each MF on a specific input is used with all the
combinations of MF’s on the remaining inputs (See (9) and also [6]).

3.3.6 Number of Tuning Parameters

For a given number of rules, k>2 , and a number of input variables, p>2 , the number
of tuning parameters in the conventional approach , (2p+1)k, is greater than that in the
new approach, which is given by 2(I,+[+...+l,)+k where /; is the number of
membership functions on input x;. This can be verified as follows: Since /;<k,
=k, ..., [,<k, with equalities that cannot be satisfied simultaneously except for: (a) k =
1 for any p, (b) p=1 for any k, then for k>2 and p>2, [,+[,+...+], <pk. In cases (a)
and (b), which rarely occur in practice, the conventional and new neuro-fuzzy
approaches have the same number of parameters.

3.3.7 Fitting toTraining Data

A MF in the new neuro-fuzzy method covers a larger area in the input space as
compared to the conventional approach (Compare Figs. 2 and 3). Hence, for the same
set of data points, the 2 parameters of a MF in the new approach need to be adjusted
to accommodate a larger number of data. Consequently, the fitting to training data in
the new approach is less precise than that in the conventional one for the same
number of rules. Data fitting results are provided in Section 3.3.8.

3.3.8 Linguistic Interpretability

Based on the studies in [11,12], The linguistic interpretability problem in neuro-fuzzy
learning relates to the highly overlapping and complex MF’s obtained after training.
This prevents the simple assignment of linguistic labels to these MF’s and leads to the
generation of rules lacking a clear linguistic meaning. The issue of tradeoff between
precision and interpretability has also been noted in the mentioned studies.
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The main reason behind the MF’s complexity obtained in the neuro-fuzzy methods
relates to the unconstrained learning of the MF’s parameters. As can be seen in Figs. 2
and 3, the parameters of the MF’s assigned on an input variable are changed based on
common data points; i.e., located in overlapping regions of the input space, and also
on separate data points. Hence, these MF’s tend to pass each other, exchange
positions, etc., as shown in Figs. 4 and 5. This would hinder the linguistic
interpretability of the final fuzzy system. The use of crisp rules consequents does also
contribute to the deterioration of the linguistic interpretability aspect.

Fig. 4 shows the final MF’s obtained over input x; after training a 9-rule neuro-fuzzy,
Wang-Mendel system using 81 data points retrieved from the non-linear function used
in [6] and given below. The least data approximation error E=0.000612 was obtained
after performing 100 epochs. The MF’s interpretability did not improve for a smaller
number of epochs.

y=(2x,+4x,+0.1)>/37.21, —1<x,x,<1 . (11)

Fig. 5 shows the final MF’s over input variable x; for a 9-rule fuzzy system trained by
the new neuro-fuzzy approach and the same data used in Wang-Mendel’s method.
The least data approximation error E=0.00194 was obtained after performing 16
epochs. After epoch 16, the error value got bigger and no improvement was obtained
in the MF’s interpretability.
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neuro-fuzzy method

3.3.9 Firing State Problem

In the considered neuro-fuzzy methods, the learning process changes the parameters
of the MF’s and even duplicated ones (conventional) become distinct during or after
learning (See [5]). Hence, even if the initial MF’s are as in Figs. 2 or 3, they may turn
out to be similar to those in Fig. 1 or having no overlap between adjacent ones due to
the unconstrained learning. This causes non-firing states. Hence, the learning may not
complete the specified number of epochs. Fig. 6 shows the initial MF’s used on x; and
X, in a 9-rule Nomura system trained using the 81 data points noted in Section 3.3.8.
The learning stopped after the second epoch.

4 Defuzzification-Based Learning

A new defuzzification-based algorithm for learning fuzzy rules [8-10] is first
summarized here, and then, compared with the considered neuro-fuzzy ones. The
comparison is based on the properties addressed in Section 3.3.
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4.1 Defuzzification-Based Algorithm

Consider a two-input, one-output fuzzy inference system. Let Ay, s = 1,2.../;, and
Ay, q = 1,2,...,I; be overlapping MF’s assigned on input variables x; and x,
respectively and in a manner that the specified ranges of these variables are covered.
Then, k=/;xI, fuzzy rules are constructed as in (8) but with y.;.+, replaced by
overlapping MF’s assigned on the output variable y and denoted as Cp. )iy for
1</(s-1)I,+q] <l;xl,. These MF’s do not need to be all distinct but they have to cover
the entire specified range of the output variable.

The fuzzy output, corresponding to a crisp input pair X;{=(Xji , X»;), is obtained using
the CRI[13]:

Cu(y)= 15[(5—1’)72“‘*');]5/1X12[ A (x3) N Ao (X5 ) NCrs_ (V)] (12)
The fuzzy OR, AND and THEN are represented here by maximum, minimum and
minimum respectively. Other operations can be used as well and (12) can be
generalized easily to systems with higher dimensional input spaces. Now,
defuzzification applies to the normalized version of Cy(y) , denoted Coy,(y), as [8-10]:

Fy[Con(9)] = [ [Sci(a)+(1-8) cx(a)]der . (13)

[ci(m),ca(m)] is the a-level set of Cy;,(y) and 8 is a parameter whose values are in [0,1].
Eq.(13) is used to train initial fuzzy systems based on input-output data. All initial
rules consequents are required to be equal to the left-most output fuzzy set, which is
to be formed by a flat and a decreasing part or a decreasing part only.

Given the training input-output data (X, yia), With X; = (X1, X2i, ..., Xpi), and X;, Yig
being within the specified input and output ranges, the learning starts with an initial
fuzzy system as specified above. The algorithm computes the fuzzy outputs for all x;’s
using (12) and then defuzzifies their normalized versions using (13) with 6=1. Here,
due to the above-noted initial rules consequents, all the defuzzified values will be
equal to the smallest value of the output range. Hence, Fi[Coin(y)] <yiq for all i=1, 2,
..., n. For these defuzzified values, the total error E is computed using some error
function, which could be as in (7) or any other function, and compared with a desired
error E,. If E<E,, then the learning stops. Otherwise, & is decreased from 1 to 0
passing by discrete values. For each &, the error is computed and compared with £,.
The decrease in & causes an increase in the defuzzified values. They are then made
closer to the desired outputs. Whether the change in J satisfies the error goal, then the
learning stops. Otherwise, the algorithm starts another learning round (or epoch) from
5 =1 but with new rules.

These new rules are obtained by raising each rule consequent by one fuzzy set. If this
leads to a violation of F{[Cyi(y)]<Vis, it can be reestablished by repeatedly lowering
the consequents of the rules triggering one fuzzy output with defuzzified value greater
than its desired counterpart. Once the inequality is reinstated, then the decrease in J'is
repeated and the error is computed and compared with E, . This process is repeated
until either the error goal is satisfied or no more raise in the rules consequents is
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possible or when the raise and lowering of the rules consequents result in a previously
obtained system. When the learning ends, the algorithm delivers the final fuzzy
system, the resulting error and the final & value. A complete description and
justification of the learning steps in this algorithm was offered in [9].

4.2 Properties-Based Comparison with the Neuro-Fuzzy Algorithms
4.2.1 Type of Membership Functions

Unlike the considered neuro-fuzzy learning methods, the defuzzification-based
algorithm can accommodate any type of MF’s. This is because the learning is based
on the use of (12) and (13) with no derivatives involved. Also, changing the form of
the MF’s does not require new formulas for learning.

4.2.2 Type of Logic Operations and Error Functions

Again, since no derivatives are used, then there is no restriction on the use of
operations for AND, OR and THEN as in the considered neuro-fuzzy approaches.
Furthermore, since the error function is not differentiated, then any error function;
such as, the mean-square error, (7), root mean-square error, mean absolute error, etc.,
can be used.

4.2.3 Type of Learning

The objective of the learning process applied in the deffuzification-based algorithm is
to reduce the total error resulting from the whole data set rather than the point-wise
error. So, the type of learning applied here is compatible with batch mode. This is
preferable due to the existence of only one parameter and a fixed number of output
fuzzy sets from which the choice is made to form a good compromise for all the data
points (See Sections 3.1 and 3.3.8).

4.2.4 Setting of Initial MF’s and Rules

As explained in Section 4.1, the setting of the rules antecedents is easy and is done in
the same way as in the new neuro-fuzzy approach. Hence, with overlapping MF’s
over each input, initial non-firing is avoided (See Eq. (12) and Section 3.3.4). Further,
the initial rules consequents are equal to the left-most of the fuzzy sets assigned over
the output. This guarantees that for d=1 the defuzzified output for any crisp input be
equal to the lowest value of the output range. Requiring also that the right-most of the
fuzzy sets assigned over the output be formed by a flat and an increasing part or an
increasing part only guarantees that no defuzzified output for any input and any
5€[0,1] exceeds the highest value of the output range. These can be checked easily by
referring to (12), (13). In the considered neuro-fuzzy approaches, however, it is not
specified how the initial crisp consequents are assigned. Also, we do not have bounds
on the system outputs nor specified values for the range of the output variable.

4.2.5 Simplicity of Learning Formulas

The defuzzification formula (13) is the one used for learning and it applies to the
output fuzzy set after it is determined using (12). Hence, the learning formula remains
simple even if the dimensionality of the system input or the number of rules increases.

4.2.6 Number of Tuning Parameters
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In the defuzzification-based algorithm, there is only one crisp parameter, J, to be
updated. However, if we consider the fuzzy consequents of the rules, which are also,
changed, then the total number of parameters is equal to (k+1). This is less than the
number of parameters used in the neuro-fuzzy methods (Section 3.3.6).

4.2.7 Fitting to Training Data

The data fitting in the defuzzification-based algorithm is expected to be less precise
than that in the considered neuro-fuzzy approaches. This is because the algorithm has
a smaller number of parameters.

4.2.8 Linguistic Interpretability

The learning process described in Section 4.1 does not change the initial MF’s
assigned over the system inputs. Also, the consequents of the rules are selected from
specified fuzzy sets over the output variable. Hence, with the input and output fuzzy
sets assigned appropriately to permit a simple and clear linguistic labeling, then the
generated rules will have a clear linguistic meaning. This serves well the issue of
linguistic representation of knowledge but it is at the expense of accuracy as expected
(See [11,12]). Data over-fitting, however, hinders the noise insensitivity and the
generalization capability of the learning algorithm as shown in [9,14].

A 9-rule fuzzy system, with three triangular MF’s on each input (as in Fig.6) and 7
triangular MF’s on the output, was trained by the defuzzification-based algorithm.
The 81 data noted in Section 3.3.8 were used. The final system had an error
E=0.01234 and &= 0.45.

4.2.9 Firing State Problem

Since the input MF’s are not changed by learning, then unlike the considered neuro-
fuzzy methods, the problem of non-firing states does not arise during or after learning.

5 Conclusion

This study has first provided a description and comparison between conventional and
a new neuro-fuzzy system from the point of view of structure and learning-related
properties. Both approaches require differentiable MF’s, use fixed logic operations
and error function, apply pattern learning and suffer from non-firing states during or
after learning and from the lack of good linguistic interpretability. The new neuro-
fuzzy approach, however, turned out to have a simpler setting of initial MF’s and
rules to avoid initial non-firing and smaller number of tuning parameters. Yet, the
conventional approach has less complex learning formulas and more precise data
fitting.

Then, a defuzzification-based algorithm has been summarized and shown to possess
better properties than the considered neuro-fuzzy approaches. It does not require
differentiable MF’s nor fixed logic operations and error function. Setting the initial
MF’s and rules is even simpler than that in the new neuro-fuzzy method. The
possibility of non-firing during of after learning is eliminated. Also, the algorithm
provides completely interpretable Mamdani-type fuzzy systems with rules having
fuzzy antecedents and consequents. Further, the algorithm employs batch learning,
and its formulas apply easily to higher dimensional input spaces.
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Although the algorithm provides less precise data fitting, this is not a disadvantage
since it first provides fuzzy systems, which can easily be given a clear linguistic
meaning. Besides, the available data in practice are noisy. This makes the reduced
precision a needed aspect to improve noise insensitivity and generalization
capabilities, as shown in [9,14]. Also, fuzzy modeling becomes more consistent with
Zadeh’s principle of “tolerance for imprecision” [13].

In fact, performance criteria related to noise insensitivity and generalization
capabilities were introduced in [14] and the algorithm was examined and compared
with ANFIS [15] using non-linear functions and a practical robot navigation case
[14,16]. The performance advantages of the algorithm were demonstrated in these
studies. Criteria-based performance comparison should also be done with the
considered neuro-fuzzy approaches and also with an advanced method [17]
accounting for noisy data.
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Abstract. We argue that the performance of a genetic algorithm can be
improved by the codification of its operative rates into the chromosome.
In the case of the flowshop problem the claim is that mutation and
crossover rates allow the genetic algorithm to adapt better and faster
than the traditional genetic algorithm. We support our claim with a
simple “toy model” with two instances of flowshop problem, an special
case of scheduling with multiple applications to industrial problems. We
refer to that genetic algorithm as Intelligent Genetic Algorithm (IGA)
since its ability to self-modify its operative characteristics.

1 Introduction

Genetics algorithms have been applied to various optimization problems (Gold-
berg [5]). In this paper, a genetic algorithm is improved using local search pro-
cedures, and self-adaptation rates of genetic operators.

In the literature, many hybrid algorithms ([10,4,7,14]) of GA’s were pro-
posed for flowshop optimization problems, those algorithms are a combination
of traditional GA and artificial intelligence techniques (e.g tabu search, simulated
annealing). In those studies, it was clearly shown that the performance of GA’s
for scheduling problems was improved using neighborhood search algorithms.

Flowshop problems are included into scheduling problems. Great efforts are
devoted to its economical importance. Unfortunately, finding optimal scheduling
for a general production process is an NP-hard problem (Garey and Johnson,
[3]). This means that traditional operations research techniques such as inte-
ger programming (branch and bound techniques [13]) or dynamic programming
(Bellman and Dreyfus [1]) are not adequate to deal with large scale problems.
Therefore, the interest of many researchers has been oriented to find good solu-
tions (not always a global optimum) in a reasonable time. Considering this, the
use of metaheuristics techniques are well suited.

A major issue for metaheurists is the fine-tuning for parameters, i.e tabu
list length (for tabu search), initial temperature (for simulated annealing) or
crossover and mutation rates (for genetic algorithms). In this article, a modifi-
cation is made to traditional GA, creating the ”intelligent” Genetic Algorithm
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(IGA) which doesn’t need fine tuning of crossover and mutation rates. This
technique was originally used with simple optimization landscapes ([17]) and to
travelling salesman problem instances ([18]) with encouraging results.

This article is organized as follows: section 2 includes a general description
of the flowshop problem as well as details for the 2 treated problems, also a
brief introduction to GA is provided. Section 3 contains specific details about
representation of flowshop problem, Section 4 includes details about the exper-
iments done, Section 5 shows the most representative graphics and comments
about experimentation and Section 6 has the conclusions and future work of this
article.

2 Problem Description

Flowshop problems in particular, are a special case of scheduling problems and
scheduling problems arise in the combinatorial optimization area. General as-
sumptions for flowshop are (more details in Dudek et al. [2]): 1) jobs are to be
processed by multiples stages sequentially, 2) there is one machine at each stage,
3) machines are available continuously, 4) a job is processed on one machine at a
time without preemption, and 5) a machine processes no more than one job at a
time. For this paper, n jobs are processed in the same order on m machines. Con-
sidering this, this paper works with a sequencing problem of flowshop scheduling
of n-jobs.

Considering notation from Ishibuchi [8], the completion time and process-
ing time of job j on machine ¢ are t¢(i,7) and ¢p(i,7) respectively. The n-
dimensional vector = (z1,2,...,Z,) represents the sequence of n jobs to be
processed, where xj; denotes the k-th processing job. Completion time for each
sequence x is calculated by:

te(l,z1) =tp(1,21) (1)
tc(i,l‘l) = tc(i - 1,$1) + tp(i,$1),i =23,...,m, (2)
to(i,xg) =to(i — 1, ap—1) + tp(i,zr), k =2,3,...,n, (3)

to(i,zk) = max{tc(i — 1,a), te(i,zp—1)} + tp(i, zp),
1=23,....mk=23,...,n (4)

Flowshop scheduling problems are to determine the sequence of x of n jobs
based on a given scheduling criterion. According to Johnson’s work [11] the
reduction of makespan if one of the most extended criteria, also reduction of
tardiness is employed. The makespan is the completion time of the last job:

Makespan(x) = tc(m, x,) (5)
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Also maximum tardiness is other criteria used, it is defined as the maximum
tardiness of the n jobs to schedule, that is:

Tardiness =
max{tc(m,1) —dy,tc(m,2) —ds,..., tc(m,n) —d, } (6)
tc >d

where d; represents due date for job 1.

2.1 Genetic Algorithms

Genetic algorithms are one of the heuristic optimization algorithms widely used
by many researchers in solving various problems, were introduced by Holland
[6]. Genetic algorithms mimic the mechanism of genetic evolution in biological
nature. In biological terms, it consist of a chromosome composed of genes, each
one of them with several alleles, into the optimization field, this chromosome is
a string that usually represents a possible solution to some optimization prob-
lem, each string is composed of bits with specific values. Initially, a number of
chromosomes form an initial pool of solutions. The process of crossover and mu-
tation will be carried out in the pool, after that an evolution is completed and
new chromosomes (offspring) will be generated.

GAs have two major processes. First, GAs randomly generate new solutions.
Second, the evolution of those initial solutions is done according to the genetic
operators such as reproduction (selection of the fittest), mutation (exploration
operator) and crossover (exploitation operator).

3 Problem Representation

3.1 Chromosome

Configuration for flowshop problem using GA uses a string base codification,
where each individual in the population represents a possible sequence of jobs to
be done. For example, the sequence z = (1, 3, 2,4) represents a sequence of 4 jobs,
where job 1 is done first, followed by jobs 3, 2 and 4. That kind of representation
is currently used to solve scheduling problems using GA.

3.2 Genetic operators

In this paper, two genetic operators were used : crossover and mutation in order
to exploit results (crossover) and explore solutions (mutation). The crossover
operator is the two-point order crossover and for mutation, it is used the shift
change, details for such operators can be found in [14]. Such operators work
selecting a random number and compare to the operation rates if it is smaller
then the operator is applied to that individual.

In order to improve search for new solutions, a local search procedure was
used, this procedure consisted in the permutation of size 1 for every population
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element, selecting the best one. For example, for individual (1,2, 3), the possible
neighbors would be (2,1,3),(3,2,1) and (1, 3,2) this local search avoid the use
of large populations, also it doesn’t require important computational resources.

The reproduction of individuals is made using the so-called tournament re-
production of size ¢, where =2, it function by selecting by random N/t sets of ¢
elements and passing the element with the highest fitness of each set to the next
generation, this procedure is done ¢ times to assure that the population number
N remains constant. Ties broken by random.

For the IGA, the standard genetic operators for binary codification [5] were
used.

3.3 Fitness function

The fitness function used combines two objectives, minimize makespan and max
tardiness. Using equations 5 and 6 it is possible to create a global equation for
the ¢-th individual, that is:

f@) = —log(MaxTardiness;) — log(Makespan;) (7)

The log function is used in order to re-normalize the values of makespan and
tardiness. As the GA nature is maximize, the use of ”-” allows to get better
results (i.e., small makespan and small tardiness)

3.4 Intelligent GA

The “Intelligent Genetic algorithms” are a modification of traditional genetic
algorithms in which the crossover and mutation rates are codified into the chro-
mosome, for this paper, a string of 5 bits was used to codify in binary. In this
manner, the max value (in decimal) is 2° = 32 so it is possible to configure
value rates between 0 and 1 with an interval of 1/32 = 0.03125. The translation
process consists in translate from binary to decimal and divide that value by the
max value possible. Using this configuration, a complete individual is by exam-
ple [1,2,3,4/00101|11000] representing that the first job to be processed is job
1, followed by jobs 2, 3 and 4, also the mutation probability is 00101 = 0.15625
and the crossover rate is 11000 = 0.75. Two types of genetics operators were
used, those applied to the flowshop configuration and those applied to the op-
erators rates configuration, for the flowshop configuration, two-point order (for
crossover) and shift change (for mutation) were used. The traditional two par-
ents, two points crossover and change between 0 and 1 mutation operator were
used to the chromosome section that codifies operators rates. The sequence used
was: first apply operators to flowshop section followed by the application of
operators to codification rates section.

This self-codification allows the algorithm to avoid selecting optimal muta-
tion and crossover rates, a time-consumption task that must be completed before
run any standard GA. Special attention must be on IGA since self-adaptation
capacity allows to apply GA into time-dependent landscapes.
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4 Experiments

The experiments were realized using a flowshop problem of 5 machines-10 jobs
(5M10J) and 5 machines-30 jobs (5M30J).

Table 1. Processing times 5M10J

j1[52]33134]35]36]37[38[39]j10
m1|32[ 1 |61[42[62[61] 3 [97]26] 9
m2|21]27(87(45[59|24(71[34]20] 28
m3[10[42[66]75[41[24] 3 [36]85| 74
m4[51]19]23[85[86/81[93[31[75] 23
mb5|33[45[58(97(91(85[30(38[17| 51

Table 2. Due date times, 5M10J

job|Due date
jl 674
j2 396
i3] 431
j4 369
jb 626
j6 597
7 790
i8 437
9] 656
jlol 780

Table 3. Processing times 5M30J (jobs 1-10)

j1[52[33134 135136 37[38139]i10
m1(32[ 1 [61[42[62[61] 3 [97]26] 9
m2[21[27(87[45[59(24(71[34]20] 28
m3|10[42[66(75(41[24] 3 [36/85| 74
mA[51]19|23[85(86|8193(31[75[ 23
mb[33(45(58(97(91(85(30(38[17] 51

Table 1 shows the processing times for job n in machine m, for example, job
2 in machine 2 takes 27 time units, job 10 in machine 5 takes 51 time units.
Table 2 shows the due date for each job. Tables 3,4 and 5 include the processing
times for 5M30J, table 6 shows the due dates for 5M30J problem.
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Table 4. Processing times 5M30J (jobs 11-20)

115

j13[j14

i15

716

17

718

19

ml

47

35|88

84

79

94

56

m2

29

81|94

7

19

75

47

m3

43

4985

79

34

93

64

m4

25

83|80

83

45

88

49

mb

50

40

85|78

7

48

44

Table 5. Processing times 5M30J (jobs 21-30)

i1l

12

j13[j14

i15

716

17

718]j

ml

43

38

65|92

78

45

67

71

m2

38

8

76193

83

32

37

80

m3T47]

277

417797

797

35

387

697

m4

49

28

51|78

78

46

78

80

mbd

43

17

78|83

82

46

35

86

Table 6. Due date times, 5M10J

job|Due date|job|Due date|job|Due date
1 674 11 674 21 436
2 396 |12| 707 |22| 456
3 431 13 569 23 764
4 369 14 671 24 645
5 626 |15 509 (25| 738
6 597 |16| 465 |26| 451
7 790 17 490 27 611
8 437 18 492 28 746
9 656 |19| 429 (29| 420
10/ 780 |20| 613 |30| 651
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5 Results

The experiments carried out where done considering the problems mentioned in
previous section, the objective of that experiments was to compare standard GA
versus Intelligent GA. Both GA types used a population size of 500 individuals,
and 510 generations. The provided results considers the average value for 20 runs
per experiment.

For the standard genetic algorithms several experiments where done using
different crossover and mutations rates. In this paper, results for fixed mp (mu-
tation probability) and ¢p (crossover probability) are provided, the graphs shows
results for mp = 0.4-cp = 0.1, mp = 0.01-¢p = 0.01 which are compared with

the IGA performance.

e +
€0.4m0.1  x
001 *

Average Fitness

14 - -
0 100 200 300 400 500 600

Generations

Fig. 1. Fitness comparison, 5 machines, 10 jobs.

T
Mutation Rate ~ +
Crossover Rate  x

0- -
0 100 200 300 400 500 600

Generations

Fig. 2. Operative Rates, 5 machines, 10 jobs.

Figure 1 shows the comparison between average fitness for mp = 0.4-cp = 0.1,
mp = 0.01-cp = 0.01 and IGA considering 5M10J problem, data showed are the
average fitness for the entire population. For this case, mp = 0.01-¢p = 0.01 and
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IGA  +
€0.4m01  x
€0.0Im00L  *

Average Fitness

0 100 200 300 400 500 600
Generations

Fig. 3. Fitness comparison, 5 machines, 30 jobs.

T
Mutation Rate
Crossover Rate

x+

L
200 300 400 500 600
Generations

Fig. 4. Operative Rates, 5 machines, 30 jobs.
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IGA have similar results. All three configurations find rapidly the optimal value
(at generation 25 aprox). It is important to mention that 5M10J problem has a
feasible space 10! = 3628800 size, which is very simple to solve using exhaustive-
search procedures, the reason to use such landscape is to gain experience with
the IGA and track their results.

The operative rates for genetic operators are showed in figure 2, one the
IGA has find the optimum, it reduces its mutation and crossover rate, the latter
achieving its stable value faster than mutation rate, this is related with the im-
pact of the operator, i.e. mutation is a more destructive operator than crossover,
then the search for new possible solutions continues by more time than the ex-
ploitation of results already found.

Figure 3 shows the comparison between mp = 0.4-cp = 0.1, mp = 0.01-
c¢p = 0.01 and IGA considering 5M30J problem, data showed are the average
fitness for the entire population. As this graph shows, it is clear that IGA have
better performance than mp = 0.01-cp = 0.01. The convergence of IGA take
more time than the others, the reason is that the IGA have to modified its
operative ranges. Also, mp = 0.01-¢cp = 0.01 has a better performance than
mp = 0.4-cp = 0.1, although mp = 0.4-cp = 0.1 goes faster to a local optimum,
moreover mp = 0.4-cp = 0.1 has more changes between every generation this is
because the mutation and crossover rates are relatively high, allowing to loose
good solutions.

Figure 4 shows the mutation and crossover rate along the 510 generations
of the experiment, note the changes in the rates, first descending to values of
0.15 for mutation and 0.16 for crossover. Again and similar to 5M10J mutation
rate takes more values before get stable. Both crossover and mutation rates
remains with the same value once an optimum is reached, and off course by the
population effect (all individual have the same operation rates).

6 Conclusions

This article presents an application of a called “Intelligent Genetic Algorithms”,
a type of genetic algorithm which is able to modify its operational rates in
order to achieve a global optimum. Such characteristic could be very important
specially for problems in which the environment changes over time. Also IGA
avoid fine-tuning of parameters, mostly always a time-consuming task.

The examples treated in the article are flowshop problems with 5 machines-
10 jobs and 5 machines-30 jobs problems, in both examples treated, IGA have
a better performance than standard GA, however it is possible to prove that
by adjusting standard GA parameters it could perform better that IGA. Then
the main application for IGA seems to be problems in which the environment
changes over time, since the IGA can adapt to changes modifying its operative
rates. In the case standard GA once the change occurs and since the majority
of population is in the “old optimum” it can not be able to move to the new
optima.
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Abstract. Ant Colony System (ACS) applied to the traveling salesman
problem (TSP) has demonstrated a good performance on the small TSP.
However, in case of the large TSP, ACS does not yield the optimum
solution. In order to overcome the drawback of the ACS for the large
TSP, the present study employs the idea of subpath to give more infor-
mation to ants by computing the distance of subpath with length 3. In
dealing with the large TSP, the experimental results indicate that the
proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. In comparison with the original ACS,
the present algorithm has substantially improved the performance. For
a certain graph, the solution performance has been enhanced up to 72.7
% by utilizing the proposed algorithm.

1 Introduction

Ant System(AS) is a meta-heuristic algorithm proposed by Dorigo et al.[1] that
has been inspired by the foraging behavior of ant colonies. Real ants are capa-
ble of finding the shortest path from a food source to their nest by exploiting
pheromone information. Ant System was applied to the complex combinato-
rial optimization problems such as the traveling salesman problem (TSP) and
the quadratic assignment problem (QAP). Currently many ongoing research ac-
tivities has been performed to investigate many different discrete optimization
problems like vehicle routing, sequential ordering, graph coloring, and routing
in communication networks.

In the present study, the Ant Colony System has improved the efficiency
of the existing ant system and it has been applied to analyze TSP. In context
with the Ant Colony System, the ants acting like agents perform parallel search
for the TSP and find a good solution. During this process, the ants are able to
exchange information each other indirectly but globally by using pheromone [5].
Each ant constructs the path for TSP with the iterative procedure to select a
next visiting city by jointly utilizing informations on the greedy heuristic and
the past experience. Several meta-heuristic search algorithm are applied to find
an optimal solution for TSP which is well known as a NP-hard problem.

The TSP can be expressed by a complete weighted graph G = (V, E). Here V
is a set of vertices and |V| = n, it represents all cities that the sales person has to
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visit. The E denotes a set of edges. Each edge (4, j) € E has a weight d;; which
represents a distance between any two cities ¢ and j (i, j € V). Consequently, the
TSP can be converted to a Hamiltonian circuit problem which find a shortest
path from a starting city by visiting each city only once and returning to the
starting city on a complete weighted graph. The TSP is classified as symmetric
TSP and asymmetric TSP. In the asymmetric TSP, the distance of the paired
vertices (i, ), d;;, could be different for the circulating direction. In other word,
there exists at least one edge which satisfies d;; # d;;. In the symmetric TSP,
di; = dj; is satisfied for every edges in E.

The original ACS algorithm is capable of finding an optimal solution for the
small size of TSP. The original ACS uses information on distance of adjacent
neighbors only. However, in case of the large TSP, ACS does not yield the opti-
mum solution. In order to overcome the drawback of the ACS for the large TSP,
the present study employs the idea of subpath to give more information to ants
by computing the distance of all possible subpath with length to construct a tour
for a solution. In dealing with the large TSP, the experimental results indicate
that the proposed algorithm gives the solution much closer to the optimal solu-
tion than does the original ACS. For a certain graph, the solution performance
has been enhanced up to 72.9 % by utilizing the proposed algorithm. In com-
parison with the original ACS, the present algorithm has considerably improved
the performance. The detailed discussion has been made for the existing and
proposed algorithm for the ant colony optimization to solve the large TSP with
a symmetry.

2 Ant Colony Optimization Algorithms

The Ant Colony Optimization(ACO) algorithm is easily applicable to handle
the TSP. In the ACO algorithm, the pheromone trails consist of the connecting
edges and 7;; represents the measure of possibility to visit a city j directly from
a city ¢. The heuristic information is expressed as 7;; = 1/d;;. The values of 7;;
and 7;; are stored at pheromone matrix and heuristic matrix, respectively. For
each ant, tours are constructed by the following procedure : (1) choose a start
city in random fashion and place an ant; (2) according to values of 7;; and n;;,
construct a path by adding a city that the ant has not visited yet; and (3) after
all cities have been visited, go back to the starting city and complete one path.
After all ants have completed their tour, they may deposit a certain amount of
pheromone according to the tour they have constructed [7,8].

The Ant System(AS) is a initially developed ACO algorithm and it is quite
easy to apply the TSP. However, due to the simple pheromone updating rule,
there is a certain tendency the AS leads to the local optima situation. Therefore,
the AS gives the optimal solution only for the small TSP. To improve the perfor-
mance, several extensions of the AS was devised. These extensions include elitist
AS, rank-based AS, and MAX-MIN AS. The main difference between the orig-
inal AS and these extensions is the way to update the pheromone[4]. The ACS
algorithm is the framework of this study and it is the ACO algorithm by adopt-
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ing the basic idea of the AS. Its performance has been improved by overcoming
the drawbacks of the AS. The ACS has been applied to various combinatorial
optimization problems and it has demonstrated a good performance.

The ACS proposed by Gambardella and Dorigo[9] differs from the AS in the
following features:

1. By using a more aggressive action choice rule, compared to the AS, the ACS
more actively exploits the search informations accumulated by the ants.

2. Pheromone evaporation and pheromone deposit take place only on the edges
belonging to the best-so-far tour.

3. Each time an ant uses an edge (4,j) to move from city ¢ to city j , it re-
moves some pheromone from the edge to increase the room for selecting the
alternative paths.

In the initial stage of the ACS with a given graph G = (V, E) and |V| = n, m
ants (m < n) are placed on m cities in random fashion. According to the tour
construction rule, each ant repeatedly chooses a next visiting city and constructs
a path. In this process, whenever an edge is added to a path, the local pheromone
updating rule is applied to update the pheromone on each edge. When the path
is constructed, the local search is applied to improve the constructed path. Then
the pheromone is updated only at the global optimal path with the minimum
length among all paths constructed so far. Figure 1 shows the ACS algorithm
for the TSP.

algorithm: ACS for TSP {

Initialize Data;
while (not terminate) {
place m ants at m cities;
repeat (for each ant)
apply tour construction rule to build a trail;
apply local pheromone updating rule;
until (construct a solution)
apply local search;
apply global pheromone updating rule;

Fig. 1. Algorithm: ACS for TSP
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2.1 Tour Construction Rule

If ant £ is located at city ¢, then a next visiting city j can be chosen according
to the pseudo-random proportional rule, given by equation (1).

. ) arg max;ecpnrk {ralna)”}, fa<aqo
J= i ; (1)
J, otherwise

where (3 is a parameter which determines the relative importance of pheromone
Ti; versus heuristic information 7, N;* is the set of the remaining cities to be
visited by ant k positioned on city i. g is a random variable uniformly distributed
in [0,1], qo is a parameter to satisfy the range, 0 < ¢o < 1, and J is a random
variable selected by the following probability distribution.

ko Imiglngl® i ie N
P 2 ient [rallna]? £Ien @

In the equation (2), the probability to select an edge (i, 7) in a path is dependent
on the amount of pheromone, 7;; and heuristic information, 7;;. Each ant select
a city j as a next visiting city which has a large level of pheromone and a short
distance. If § = 0, the selection of a next city depends only on the pheromone
level, 7;;. Therefore, in the general situations, 3 > 1, according to reference[4],
a good performance is achieved at 2 < 5 < 5.

2.2 Local Pheromone Trail Update

Unlike the AS, the ACS uses a local pheromone updating rule. Whenever an
ant constructs a tour of the TSP and select an edge, the pheromone level for a
selected edge is updated by applying the local updating rule equation (3).

Tij = (1 = &)mij + &m0 (3)

where £ is the variable to satisfy the range, 0 < ¢ < 1. According to numerical
experiment, the best performance is achieved at £ =0.1 [4]. The value of 7
represents the initial pheromone level and the best performance is obtained at
70 = 1/(nC™"), where n is the number of cities in the TSP and C™" is the
length of a path constructed by the nearest-neighbor heuristic. In other word,
the pheromone level at each edge is initialized by the length of a path which is
constructed by the greedy method. By applying the equation (3), whenever an
ant selects an edge (4, j), its pheromone level, 7;; at a selected edge is reduced. As
a result, the once selected edge has the much lower probability to be selected by
the following ants. This treatment increases the probability to select the edges
that have not been visited yet and it prevents from a stagnation behaviour which
is a certain tendency to repeatedly choose an once selected edge. In other words,
ants do not converge to the generation of a common path. In this study, we only
consider symmetric TSP such that 7;; = 7;;.
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2.3 Local Search

The local search is basically included in the ACO algorithm. After all ants have
completed to find their own path, the locally optimum solution can be obtained
by 2-opt or 3-opt procedure which exchange two or three edges involved in the
constructed path. If this local search is applied to construct a path of the TSP,
the ACO algorithm together with a local search can improve the solution con-
structed by an ant[10]. In this proposed algorithm, a 3-opt method is employed.

2.4 Global Pheromone Trail Update

In the procedure of a Global Pheromone Trail Update, the pheromone update is
allowed only for the most optimum path among all constructed paths, according
to the equation (4).

Ti; = (1 — p)mj + pATib;, Y(i,j) € T (4)
where ATz»b; is the amount of pheromone to be added to edge (7,7) in the op-
timal path. C®® represents the length of global optimal solution. Thus, the re-
lation between the pheromone level and the optimum path length is expresses
as ATz»b; = 1/C% . The parameter p is the pheromone evaporation rate. The
deposited pheromone is decreased with increasing the pheromone evaporation
rate, p. In experiments, the best performance is obtained at p = 0.1.

3 Proposed Algorithm

The ACS algorithm adopts a global pheromone update as well as a local pheromone
update. If the global pheromone update is used, the information about the best
path among all constructed paths is delivered to ants which start to search
for the solution. On the other hand, the local pheromone update decreases the
pheromone on the edge which is just visited by ants. Therefore, this procedure
increases the probability to select the edges that have not been visited yet and it
can avoid a stagnation behaviour and increase a room to find a optimum path.
However, in case of a graph having a large number of vertices, it is difficult to
find the optimal path by only using the heuristic method.

In the ACS, m ants are placed randomly on m cities and start to search
for the optimal path. During the searching process using the local pheromone
updating rule, if the current visiting city is highly probable to be included in an
optimal path, the probability to find an optimum path is definitely increased by
constructing the path based on the current visiting city.

In the present study, to give the more precise information to ants for con-
structing a optimum path, the value of 7;; in equation (1) is not determined just
by using the distance of adjacent neighbor and it is determined by using the sub-
path s,, with length w, 1 < w < n. Here w refers the number of edges including
subpath. Using the information about the length of subpath s,,, we precompute
the length of all city 7 based subpaths which can be constructed from w number
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of edges, (i,7)(4,k)...(z,t). Then the next visiting city is selected as a city which
is located at the subpath with the minimum length among all possible subpaths.
In other words, in the searching process of a next visiting city j from the city i.
the tour path is constructed by selecting a city which minimize the value of s,,.
According to this algorithm, the equation (1) can be modified as follows:

- Jarg maxic i {ralna*?)’}, it g <o
=9 : ; ()
\ otherwise
Through numerical procedure of this algorithm, we need to make the list of the
nearest neighbor first, and then we have to find the minimum distance between
the neighboring cities in the list. For instance, if we assume the subpath length
w = 3, we first compute the distance of subpath (i, 7)(7, k)(k,t), dij + djr + di
for every city j adjacent to the current city i. Then the nearest neighbor list,
l; is arranged by sorting with an ascending order. As illustrated in the Figure
2, this procedure marginally increases the total execution time owing to its pre-
processing treatment. As implied in the local pheromone updating method rep-
resented by equation (3), it is quite important how to evaluate a initial value of
pheromone, 7y because it continuously influences the tour construction process.
In the original ACS, a initial value of pheromone is obtained by 79 = 1/(nC™").
Here C"™" is the length of path which is constructed by the Greedy method. On
the other hand, in the present proposed algorithm, a initial value of pheromone
is evaluated by the following expression (6) which has a governing parameter,
cev,

70 = 1/(nC*") (6)

Since C*" is generally smaller than C™", every path in this proposed algorithm
has the much higher level of initial pheromone. Moreover, using equation (3)
together with a initial value of pheromone, 7y governed by the subpath infor-
mation C*", the present proposed algorithm can search the adjacent neighbors
more precisely.

If the original ACS is applied to the TSP with large number of cities, it
is very difficult to find an optimal solution. In the search procedure of optimal
solution for the TSP, if the correct and optimal algorithm is applied, the shortest
path is quickly found at the beginning of the search process. Otherwise, the
optimum path could be constructed by gradually improving the solution through
the numerous iterations. However, in case of a large TSP, it is nearly impossible
to construct a optimal path by applying the iterative search for all possible paths.
Therefore, it is necessary to include cities in a path which are quite probable to
construct the optimal path. By setting the initial value of pheromone large, the
proposed algorithm constructs the path much closer to a optimal solution at the
initial stage than does the original ACS algorithm. In other words, the proposed
algorithm can increase a probability to find an optimal path at the beginning
of path construction stage by choosing a nearest neighbor with the subpath
information. However, it is necessary to note that, if the length of subpath, w,
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is set to a quite large value, it is susceptible to be a local minima. If the length
of subpath, w, is set to a small value, then there is no difference with original
ACS and the algorithm performance is greatly reduced. Therefore, it is very
important to set s, with the proper value. Figure 2 shows the schematics of
proposed algorithm. Here the italictype parts represent the major improvements
against the original ACS.

algorithm: Proposed ACS for TSP {

preprocessing steps:
construct a distance matrix;
construct a nearest neighbor list by Sw;
Initialize Data;
while (not terminate) {
compute 7o with S : 70 =1/(nC°");
place m ants at m cities;
repeat (for each ant)
apply tour construction rule to build a trail;
apply local pheromone updating rule;
until (construct a solution)
apply 3-opt local search;
apply global pheromone updating rule;

Fig. 2. Proposed Algorithm

4 Experimental Results and Discussion

The proposed algorithm has been implemented into the aco-code in reference
[11]. For the validation, we used the graphs in the TSPLIB library [12]. The ex-
periments on the proposed algorithm have been performed at Enterprise RedHat
2.1 (PentiumIV 1.7 GHz, 768MB). For each test, we have chosen the parameters
which were proved to yield the optimal solution from the previous experiments.
These problem parameters are given as £ = 0.1,p = 0.1,8 = 2,990 = 0.9 and
m = 10. The initial value of pheromone in the equation (6) is evaluated by using
70 = 1/(nC*3) and the information of subpath is obtained from s3. For each
ant, 100 seconds of CPU time are allocated for one search process and the path
search is repeated 10 times. For each graph, the optimum and averaged value is
obtained from the results of 10 executions.

Table 1 shows the results obtained from the original ACS and the proposed
algorithm for the graphs with less than 1000 cities for the length of subpath
3, s3. Here, ’Instance’ represents the graph name in TSPLIB and "Known op-
timal’ represents the known length of the optimal path for the corresponding
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graph. The ’Best’ and "Average’ of original ACS denote the optimal and aver-
aged lengths calculated by the Dorigo’s algorithm[8]. On the other hand, the
'Best’ and ’Average’ of proposed ACS corresponds to the optimal and averaged
lengths computed by the proposed algorithm. The 'NNChangeRate’ in the last
column represents the changing rate in the next visiting city which is determined
by the proposed algorithm with sz, versus to the original ACS. As shown in the
experimental results, in case of the graphs with small number of cities, the origi-
nal and proposed algorithm can find the optimal solution within the fairly short
period.

Table 1. Experimental results for the graphs with less than 1000 cities

Instance| Known | Original ACS | Proposed ACS | NNChange
Optimal| Best [ Average | Best | Average| Rate(%)
att 532 | 27686 |27686(27704.28|27686|27705.88 36.47

d 198 | 15780 |15780|15780.19|15780| 15780.1 23.23
lin 318 | 42029 |42029|42086.48|42029(42087.58 19.18
pcb 442 50778 |50778|50835.83|50778|50831.57 13.57
rat 783 | 8806 | 8806 | 8819.88 | 8806 | 8821.01 24.65

d 1291 | 50801 |50801 50874.87|50801 50863.21 7.20

In case of the graph att532, experimental results obtained by the proposed algo-
rithm indicate that the changing rate of the next visiting city is more than 35%,
compared to the original ACS. This situation can be occurred when the graph
has the more complexity and the large number of edges. Since the generated
subpaths in this complex graph situation are rapidly increased, the possibility
to change the next visiting city becomes higher. On the other hand, in case of
the graph d1291 having more than 1000 cities and simple edge connection among
cities, the NNChangeRate is only 7% because the probability to change the next
visiting city becomes lower for the simple graph situation.

However, in case of the graph with more than 1000 cities and high complexity,
it is quite seldom to find an optimal solution by employing the original ACS.
Table 2 illustrates the experimental results of the graphs with more than 1000
cities. As shown in Table 2, in case of the large graph, the proposed algorithm
finds the solution much closer to the optimal solution than does the original
ACS. The 'ITmproved Rate’ at the rightmost column represents the improvement
rate of the searching path constructed by the proposed algorithm, compared
to the original ACS. This improvement rate is evaluated by the relation, 100 -
{(c-a)/(b-a) * 100}. Experimental results simulated by the proposed algorithm
indicate that the only 0.5% improvement is obtained for the graph, rl 1889 and
the 72.7% improvement is for the graph, r1 5915. Even if the improvement rate
has a certain level of sensitivity for the specific graph, experimental results for
most of the large graphs show that the proposed algorithm yields more than
30% of improvement. These experimental results suggest that, in dealing with
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the large and complex graph, the proposed algorithm is much better than the
original ACS in terms of efficiency and performance improvement.

Table 2. Experimental results of the graphs with more than 1000 cities

Instance| Known Original ACS Proposed ACS ||NNChange|Improved
Optimal(a)[Best(b)[ Average |Best(c)] Average || Rate(%) | Rate(%)

d 1655 62128 62153 | 62357.89 | 62147 | 62352.75 11.0 34.0

fnl 4461 | 182566 |186492|186986.05|186361|187032.61 29.75 3.4

pcb 3038| 137694 | 139098 |139749.38| 138933 (139661.64 26.37 21.8

rl 1889 316536 317349 (319232.81|317345|318849.68 20.12 0.5

rl 5915 565530 |576654 |581050.39|575837|581286.21 21.05 72.7

u 1432 152970 |153204 (153579.93|153131(153612.97 1.47 31.2

vm 1748 | 336556 |336765|337531.19|336679|337641.23 25.69 41.2

pr 2392 | 378032 |378838|380344.11|378654|380418.47 20.03 32.8

In general, the proposed algorithm shows a good performance for the most
of the graphs. However, as shown in Table 2, the performance is still sensitive
to the characteristics of each graph. Since the original ACS basically adopts
the greedy heuristic algorithm to search for an nearest neighbor, the search
process to find a optimal path could be highly influenced by the distance from
the nearest neighbor. Thus, the performance of the ACS algorithm could be
improved by changing the value of parameters according to the size of graph
or number of edges in the graph. In case of the graph ul432, NNChangeRate
is just 1.47% but the solution obtained by the proposed algorithm is up to
31.2%. This result implies that, in this particular graph, the performance can be
significantly improved by changing few cities in visiting order. In contrast to the
graph ul432, the graph fnl 4461 is another extreme case. In case of the graph
fnl 4461, NNChangeRate is nearly 30% and the improved rate is only 3.4%.
Since a changing rate of the nearest neighbor list is quite high according to the
information on subpath ws, it can be speculated that a graph fnl 4461 could
have the much higher complexity. Therefore, in this type of a complex graph,
any meta-heuristic algorithms may yield the similar trend for the solution of
TSP. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.

5 Conclusion

In this study, we propose an algorithm which improve the performance of the
original ACS for the TSP. For the construction of tour, the original ACS search
the adjacent cities first, then select a city with the minimum distance as the
next visiting city. However, in order to optimally choose the next visiting city,
the proposed algorithm uses the information on subpath such that the distance
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of all possible subpaths with length w are precomputed and select a city having
the much higher probability to construct a optimal path. If the length of subpath,
w is long, there is a possibility for stagnation. Therefore, it is quite crucial to
select the proper subpath length, w. In the ACS, the information on subpath
Sy highly influences the initial value of pheromone, 7. Since the value of 7
is continuously used in the updating process of local pheromone, it eventually
influences the tour construction process.

In case of the graphs with small number of cities, the original and proposed
algorithm can find the optimal solution within the fairly short period. For the
large TSP, with the same CPU time, the proposed algorithm finds the solution
much closer to the optimal solution than does the original ACS. Even if the
improvement rate has a certain level of sensitivity for the specific graph, exper-
imental results for most of the large graphs show that the proposed algorithm
enhances the improved rate more than 30%. For a certain graph, the solution
performance has been improved up to 72.7% by utilizing the proposed algo-
rithm. The experimental results suggest that the proposed ACS algorithm could
be improved by varying the subpath length, w according to the characteristics
of graphs.
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Building Block Filtering Genetic Algorithm

Jun Lu, Boqin Feng and Bo Li

Xi'an Jiaotong University

Abstract. A Building Block Filtering Genetic Algorithm(bbf-GA) is proposed
which introduces building block candidates filtering and exploiting to improve
traditional GA. Various recognition functions are designed and tested by ana-
lyzing the features of building blocks during the evolution of GA search for
symmetrical TSP, and one of them is adopted to filter building block candidates.
A position representation for TSP and relevant bbf-based genetic operators are
designed to exploit the building block candidates. The proposed TSP special-
ized position representation can decrease the computational workload of bbf-
GA, such as edge comparison, computation of individual similarity, abstraction
of uniform edge, and operations in bbf-based genetic operators. Experimental
results show that comparing with traditional GA, Building Block Filtering Ge-
netic Algorithm can improve the efficiency of search remarkably by reducing
unnecessary search in GA.

1 Introduction

The GA’s search strategy is commonly described by the pattern theorem and building
block hypothesis. The building block hypothesis (Holland1975; Goldbery 1989) [
states that the GA works well when short, low-order, highly-fit schemas recombine to
form even more highly fit higher-order schemas. The ability to produce fitter and
fitter partial solutions by combining building blocks is believed to be the primary
source of the GA’s search power, thus improving the ability of GA to exploit known
building blocks in limited populations and to explore new building blocks at the same
time is essential to improve the search of GA.

Numerous researchers have studied on defining and exploiting building block. For-
est and Mitchell™ designed a class of fitness landscapes ( the “Royal Road” function)
to measure the effects of genetic operators on building block in binary encoding
mechanism. Wu ez al. ¥! compared two different GA representation schemes with a
floating representation scheme and examine the differences in building block dynam-
ics. Kemenade'® compared and identified building block by calculating the difference
of the fitness value caused by the change of allele in binary coding, and utilized it in
the proposed three-stage GA.

Zhou peng et al. " applied reduction mechanism to find uniform partial solutions
from local optimal solutions generated by heuristic method, then reduced the scale of
the instance by multi-reduction algorithm, finally the solution of the original problem
could be reverted after iterative operations. Schneider ez al. ' proposed an efficient
parallel method to reduce the instance of TSP to a smaller one by finding backbones
which are actual uniform partial solutions from local optimal solutions and eliminat-
ing them from original problem to get even better solutions in a very short time and a
few observables of interest corresponding to this parallel approach.

These research works inspire us to find the way to guide the search of GA by filter-
ing building block from similar parts among populations. In this paper, the search of
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instance of symmetrical Traveling Salesman Problem (TSP) is used to evaluate vari-
ous recognition mechanisms, and one of them is adopted and a Building Block Filter-
ing Genetic Algorithm (bbf-GA) is proposed. The structure of this paper is as fol-
lows. In next Section we introduce the chromosome representation for TSP (position
representation) that we proposed, as well as compare and analyse various
recogniztion functions and their filtering results. After that, the bbf-GA is described
detailed in Section 3 and experimental results are presented in Sections 4. Finally,
conclusions come in Section 5.

2 Recognition of Building Block

The Traveling Salesman Problem has been in the focus of studies for many years. In
order to investigate the features of building block during the typical evaluation of a
GA search, several testing instances in TSPLIB!” are chosen.

As to TSP, Building blocks can be taken as the “best” edges. For a certain node,
the “best” edge is not the shortest edge that takes it as vertex (greedy algorithm can
hardly find the optimal solution), but the edge that synthesized with other “best” edge
to make the shortest full-path. Thus, it is impossible to determine an edge is good or
not just by the comparison of edges’ length. Calculating the difference of the full-path
length when the connected edge of a vertex is changing could identify best edges.
However, the computational work of this is as hard as that of the solution search itself.

In the first place, we use traditional GA to solve TSP. The known optimal solution
is inputted at the beginning of algorithm and all edges in the solution are taken as
“best” edges, which are the building blocks. Then we look into the distribution and
change of building blocks in each individual during running process of algorithm to
find the way to filter building blocks. In order to improve the calculating efficiency,
position representation is designed.

2.1 Position Representation

There have been many different representations used to solve the TSP problem using
GA ™ such as ordinal representation(Grefenstette 1985), adjacency representation
(Grefenstette 1985), metrix representation(Fox and McMahon 1992), edge represen-
tation (Homaifar and Guan 1993), and path representation etc. The most natural rep-
resentation is path representation. For instance, path (1-3-2-6-5-4-1) can be repre-
sented as (1,3,2,6,5,4) directly. However in this representation, the individual has a
cycle topology. The meaning of genic segment just shows the relationship between a
node and its previous and next node, but is independent of its position in chromosome.
Different individual, such as the four shown in the left column of Table 1, may repre-
sent the same path.

In algorithms based on path representation, it takes much time in recognizing the
same edges in two individuals. Thus, we propose a position representation inspired by
adjacency representation (Grefenstette 1985). In position representation, each indi-
vidual is composed of two parts: right adjacency (RA) and left adjacency (LA), which
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means the subsequence node and previous node of the node that represented by genic
position (in adjacency representation individuals only have right adjacency). E.g.
path(1-3-2-6-5-4-1)can be represented as(RA)(3 6 2 1 4 5)and(LA)(4 3 1 5 6 2)
where the 3rd position in(RA)is 2 which means edge (3-2), and the 2nd position
in(LA) is 3 which also means edge (3-2).

The position representation of the four individuals is depicted in the right column
of Table 1. For individuals in position representation, it only needs two operations to
judge whether an edge in them is the same or not. E.g. the following comparison is
used to judge whether edge (4-5) in individual 2 exists in individual 3 or not.

if(individual2.RA[4]==individual3.RA[4] || individual2.RA[4]==individual3.LA[4])

It’s easy to find from Table 1 that six edges of those four individuals are all the
same. Although position representation requires more memory, it reduces the compu-
tational work for the comparison of allele among individuals. What is more, it bene-
fits bbf-based genetic operators depicted in Section 3.

Table 1. The comparison of path representation and position representation

osition
path representation position representation
individual 1 2 3 4 5 6 1 2 3 4 5 6
3 6 |2 1 4 5
1 1 3 2 6 5 4
4 3 1 5 6 |2
4 3 1 5 6 |2
2 1 4 5 6 2 3 3 T 12 7 2 5
3 6 |2 1 4 5
3 2 6 5 4 1 3 ) 3 T 5 s 2
4 3 1 5 6 |2
4 6 2 3 1 4 5 3 T 12 7 2 5

2.2 Recognition function of building block

Firstly, Simple Genetic Algorithm (SGA) is used to investigate the distribution of
building blocks in the evolution of a GA search for Ludwig’s drilling problem 280.
Unfortunately, the results in early stage are depressed. When the population size is set
to 400, only 30 edges are as same as those in the optimal solution even iterate to the
1000™ generation. In order to reduce runtime, new individuals in each generation are
optimized by 2-opt algorithm in probability Ph (that is so-called memetic algorithm).
2-opt algorithm can eliminate path crossover effectively, but cannot guarantee to find
optimal solution ®). The amount of building blocks among the population in the 20™
generation during the evolution of a search is shown in Fig. 1 (where x-axis is the
serial number of buiding blocks, which are the edges in the optimal solution and y-
axis is the relevant appearing frequency in the population). We can see that some
building blocks have a quite high appearing frequency at the beginning of evolution.
Thus, it is possible to recognize building block by certain statistic methods to avoid



198 J. Lu, B. Feng, B. Li

useless and repeatable search for known building blocks. In order to find the relation-
ship between the amount of building blocks among individuals and the length of the
path of individuals, we analyze these two features of individuals. The results are
shown in Fig. 2.
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Fig. 2. Distribution of path length / build blocks in individuls

From Fig. 2 we can see that the amounts of building blocks among individuals in
populations are ranged from 180 to 230, and the amount of building blocks and the
path length do not have linear relationship. The individuals that have longer path
length may include more building blocks on the contrary. As to TSP problem, an
individual that has a worse edge achieves a longer path length no matter how many
good edges it has.

Six statistic functions are designed to recognize building block from populations,
in addition the recognizing effects are evaluated.
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Let N be the size of population, Y be the fitness of individual (fitness function is
f(7)=76.5x LN / D7 ;where L means the side of the smallest square which can
contain all the cities, N is the number of cities and Dz is the length of the path in the

current permutation.), / be the average of fitness, n be the amount of individuals

whose fitness are better than / s E, be the set of edges in individual
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2.3 Analysis of recognition functions

Probabilities are calculated by recognition functions for all edges in population in the
generations during the evolution. Those edges whose probability exceed threshold
Pinresnola are considered as building block candidates, and let T¢ represents the amount
of them. Compare building block candidates and building blocks (edges in known
optimal solution) to find false building blocks (that are candidates who are not true
building blocks), and let F¢ represents the amount of these false building blocks.
Then, the true recognition rate is: Rate=(T.-F.)/T..

When Piyresnola 18 set to 0.98,the comparison of the recognition results of function F!
to F’ is shown in Fig. 3.
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Fig. 3. The comparison of different functions (Pgeshold =0.98)

By analyzing a great deal of experimental data, we found that the recognition abil-
ity of function F* is the best, while F*is the worst whose false rate is the highest. The
false rate of F° is the sub-highest, while the rest are similar. The comparison of rec-
ognition results with different thresholds of function F*is shown in Fig. 4.
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Fig. 4. Comparison of different thresholds for F* (Phreshola 18 ranged from 0.80 to 0.99)

From Fig. 4 we can see that when the threshold is close to 1, it is hardly to find
building block candidates, and when the threshold is lower than 0.96, the false rate is
rather high.

The recognition results of function F® are shown in Fig. 5. When b, which means
the number of the best individuals in population, is set from 2' to 2, and the thresh-
old is 1. From Fig. 5 we can see that the smaller the number of statistic individuals is,
the higher the false rate is. When b is set to 8 and at the 190™ generation, although the
true rate is 0.95, due to the larger number of building block candidates, the false
building blocks are over 20. From the comparison of all mechanisms, we find that
function F*(Pyresnos =0.98) and FO(Pyyresnoid =1 , b= 27) , the comparison of which is
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shown in Fig. 6, are better than others. As a result, we take F¢ (Pnreshoid =1 , b=2") as
filtering function for that it needs less computational work.
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The comparison of different functions show that statistic based method can recog-
nize building block in a high probability. But false recognition will appear no matter
which function is used. In this case, eliminating the edges of building block candi-
dates from original problem by reduction mechanism to reduce the scale of the prob-
lem will probably cause false reduction, which will result to failure to find the opti-
mal solution.

However, the average probability of finding building blocks by the best functions
is 0.98. These building block candidates can be preserved during the evolution and
make the search of GA more effective.
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3 Building Block Filtering Genetic Algorithm (bbf-GA)

3.1 The bbf-GA

In order to exploit the building blocks filtered, we propose bbf-GA as following:
Initial the parameters of GA;
Create initial population P(t) randomly;
Improve chromosomes by 2-opt algorithm in probability Ph;
Evaluate P(t);
While (not meeting the terminal condition){
Calculate and abstract building block candidates from individuals of P(t);
Implement crossover operation to P(t) in probability of Pc*(1-Pb) to get
CL(v);
Implement bbf-based crossover operation to P(t) in probability of Pc*Pb to
get C2(t);
Reproduce P(t) in probability of (1-Pc) to get C3(t);
C(t) =C1(t)+C2(t)+C3(t);
Implement mutation operation to C(t) in probability of Pm*(1-Pb);
Implement bbf-based mutation operation to C(t) in probability of Pm*Pb;
Implement 2-opt algorithm to C(t) in probability of Ph;
Evaluate C(t);
Generate P(t+1) based on the optimum individuals in P(t) and C(t);
t=t+1;
§

In our algorithm the position representation is adopted, and each individual is rep-
resented as right adjacency (RA) and left adjacency (LA). Crossover operator adopts
Ordered Crossover Operator™ method proposed by Davis in 1985, which constructs
an offspring by choosing a sub tour of one parent and preserving the relative order of
cities of the other parent. Mutation operator adopts random multipoint mutation. The
parameters of GA are: Pc(crossover probability), Pm(mutation probability), Ph(2-opt
optimization probability) , N(the size of population).

In order to filter building block candidates, the recognition function is implemented
to algorithm. Building block candidates are also represented as right adjacency (RA)
and left adjacency (LA), where the position of non-building block is represented as -1.
In addition, bbf-based crossover operator and mutation operator is designed to exploit
building block candidates. The bbf-based genetic operators are used in probability of
Pb, while normal operators are used in 1-Pb. From later experiments we can see that
the search will cause rapid premature convergence when Pb is big enough. Due to the
existence of false genic segment in building block candidates, Pb shouldn’t be too big.
When Pb is set to 0, algorithm is equal to traditional GA actually.
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3.2 Bbf-based genetic operators

In this paper, traditional genetic operators are mended to exploit building block can-
didates in individuals. The bbf-based crossover operator is depicted as following.
Input: parents P1,P2; building block candidates B
output: offspring O1
operation: choosing edges in parent P2 that either are between random position sl
to s2 or belong to building block candidates and the rest edges from parent P1 to
generate offspring O1. The loss edges are generated randomly.

Algorithm description:

(M
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(6)

(7

®)

C))

(10)
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(12)
(13)
(14)
(15)
(16)
a7)
(18)
(19)
(20
2y
(22)
(23)
)]
(25)
(26)
@7n
(28)

iCount=0; // count of passed node
Ol[]=¢ // path of offspring

Set edges in P2 that neither are between position s1 to s2 nor belong to building
block candidates to -1;
iCur=rand(N); // begin with random node
while(iCount <N){ // analyze for each gene
if(P2.RA[iCur]!=-1){ //P2 has right adjacency

iNext= P2.RA[iCur];

P2.RA[iCur]=-1; // segment can be used only once

P2.LA[iNext]=-1;

H
else if(P2.LA [iCur]!=-1){ //P2 has left adjacency

iNext= P2.LA[iCur];
P2.LA[iCur]=-1; //segment can be used only once
P2.RA[iNext]=-1;
H
else{ // edges that not belong to P2 are selected from P1
iNext=P1.RA[iCur]; // select RA first
if(iNexte O1[ ] || (P2.RA [iNext]!=-1 && P2.LA[iNext]!=-1) ){
// next node has been used, or is the vertex of two edges in P2
iNext= P1.LA[iCur]; // select LA then
if(iNexte O1[ ] || (P2.RA[iNext]!=-1 && P2.LA[iNext]!=-1))
// next node has been used, or is the vertex of two edges in P2
iNext=random usable node
}
}
O1][ ]+=iNext;
iCur=iNext;

}

The purpose of step 3 in above algorithm is to eliminate neither selected edges nor
building block candidates in parent P2 to generate offspring Ol cooperated with
parent P1. The starting node is generated randomly, and next node is selected from P1
or P2 each time. To generate next node, the RA and LA (which means two edges
representing different direction from current node) of parent P2 are selected firstly. If
no usable node found, the RA and LA of parent P1 is used instead. If no valid node is
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found in both P1 and P2, next node is generated randomly (in step 23). In this case, it
is necessary to estimate whether next node is used (which may cause cycle), or is the
vertex of two edges in P2 (which may cause the loss of an edge in P2).

The algorithm preserves all edges that either in selected zone or belong to building
block candidates in parent P2, as well as some edges of parent P1. From the process
of algorithm we can see the advantage of position representation, that is, preserving
certain edges (non-continuous edges are possible) effectively without much computa-
tional work.

The way to mend mutation operator is simple. After generating a node that should
be mutated randomly, the RA and LA of this node are checked whether they are be-
longing to building block candidates. If so, generate a new node to avoid losing of
these edges.

The bbf-based operators can preserve edges that belong to building block candi-
dates in parents and avoid damage, reform and comparison to these nodes. Thus, the
search is focus on the rest edges, which reduce unnecessary stochastic search and
improve search efficiency of GA.

4 Experiment and Analysis

In our experiments, we set parameter values as followings: population size N=400,
number of generations=400, crossover probability Pc=0.80, mutation probability
Pm=0.03, local optimization (2-opt algorithm) probability ph=0.3. Traditional GA
and bbf-GA (Pb=0.35, and bbf-based genetic operators are employed after 100™ gen-
eration) are implemented 100 times each and the results are shown in Table 2.

Table 2. Comparison of Traditional GA and bbf- GA

Algorithm Times of finding | Average generations of variance of solu-
£ optimal solution | finding optimal solution tion
Traditional
GA 4 309 69.14505583
bbf-GA 28 213 29.08194754

From Table 2 we can see that the possibility of finding the optimal solution
(2586.7696) by bbf-GA is increased remarkably, and the fluctuating of result is re-
duced. Another important data in our experiment is that a suboptimal solution
(2587.8088) is found 48 times. We consider this as a result of that the false building
block candidates cause convergence to suboptimal in high probability. The results
also show that traditional GA has higher fluctuating and randomicity than bbf-GA.
Fig. 7 is the distribution of building block candidates in one of these results (the red
edges represent building block candidates filtered).
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Fig. 7. Distribution of building block candidates

The bbf-GA cannot be improved by increasing Pb simply. When Pb is up to 0.85,
the result is no better than traditional GA. By analyzing the recognizing process of
building block candidates we can see that when Pb is big enough, building block
candidates (including both true and false candidates) diffuse among population. It is
clear to see from Fig. 8 that the amount of building block candidates and false candi-
dates are increased significantly as well as recognition accuracy is reduced from the
100™ generation when bbf-based genetic operators are employed.
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Fig. 8. Comparison of candidate building block recognition in evaluation process (Pb=0.85)
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Fig. 9. Diversity comparison in evoluation process



206 J. Lu, B. Feng, B. Li

By observing the individuals among population, we find that when Pb is big
enough, the diversity of population will be destroyed, which leads to premature con-
vergence. Fig. 9 shows the comparison of the average information entropy of differ-
ent generations, where when Pb=0 (traditional GA), the diversity is the highest; when
Pb=0.35, the diversity is decreasing slightly; When Pb=0.85, the diversity is de-
creased significantly from the 100™ generation.

5 Conclusion

In order to reduce useless search of GA on parts that are already optimal and make
the search more effective, a mechanism that uses statistic function to filter building
block candidates in the evolution of GA search is proposed. By testing the recogni-
tion effect of 6 statistic functions, a bbf~-GA is proposed, including the filtering of
building blocks and the bbf-based genetic operators. The experimental results show
that the recognition and utilization of building blocks can improve the efficiency of
search significantly. The comparison between traditional GA and bbf-GA makes it
clearly that local searching algorithm(2-opt) can generate a large amount of high
quality partial solutions rapidly, as well as recognizing and preserving these partial
solutions during the evolution of GA can take advantage of the parallel search ability
of GA. In addition, position representation is proposed, which decreases the computa-
tional workload of bbf-GA, such as edge comparison, computation of individual
similarity, abstraction of uniform edge, and operations in bbf-based genetic operators
(especially for the exploitation of non-continuous edges).
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Abstract. In this paper we describe a methodology to train Support Vector Ma-
chines (SVM) where the regularization parameter (C) is determined automati-
cally via an efficient Genetic Algorithm (Vasconcelos’ GA or VGA) in order to
solve classification problems. We call the kind of SVMs where C is determined
automatically from the application of a GA a “Genetic SVM” or GSVM. In or-
der to test the performance of our GSVM, we solved a representative set of
problems. In all of these the algorithm displayed a very good performance. The
relevance of the problem, the algorithm, the experiments and the results ob-
tained are discussed.

1 Introduction

Support Vector Machines have recently received increasing attention from the scien-
tific community due to their underlying mathematical foundation. As opposed to more
informal (and traditional) alternatives to neural network development, SVMs rely on
well understood mathematical properties which, in effect, allow us to theoretically
prove that, for example, perceptron networks (PN) or radial basis function (RBF)
ensembles are all encompassed by them. Architectural issues such as the number of
hidden layers and the number of neurons in such layers are dispensed with. A number
of parameters the user has to heuristically estimate (such as the learning rate in PNs or
the number of centers in RBFs) are not present. One key issue in this kind of net-
works, however, has to do with the so-called “regularization parameter” which, in
effect, determines the accuracy of the SVM in terms of possible misclassification of
sample elements unknown during the training phase. “C”, as of today, has been tradi-
tionally determined on a case basis and, although some prior efforts to automate its
value do exist [1] there has not been a reliable report of it systematic case-independent
automated calculation. In this paper we propose the use of evolutionary computation
techniques which help us solve the problem of C’s determination; particularly, we
focus on classification problems. In Section 2 we discuss some theoretical issues re-
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garding SVMs, specifically emphasizing the importance of regularization parameter
C. In section 3 we discuss how the methodology of VGA can be used to train this kind
of NN and show how to determine automatically the regularization parameter from its
application to the dual problem. We also argue that this methodology is appropriate to
solve constrained optimization problems, such as these. In section 4 we present four
problems we analyzed to show how the GSVM may solve Classification Problems and
the resulting level of accuracy. Three of these data sets were obtained from the Uni-
versity of California at Irvine Machine Learning Repository (UCI-MLR); a fourth was
derived theoretically. In section 5 we discuss the experiments and results. Finally, in
Section 6 we offer our conclusions and point to future lines of research.

2 Support Vector Machines

SVM is a supervised neural network that has been used successfully for classification
and nonlinear regression problems [2][3][4]. In what follows we use the notation “x;”
and “w” to denote the independent variable vectors and the weight vectors respec-
tively. A training sample 1={(x,.d,}}, (where x; is the input pattern for the ith ex-
ample and d, is the target output) represents two classes in the case of pattern classifi-

cation and a set of NV independent variables with N dependent variable (a’l.) in the case
of nonlinear regression.

When attempting pattern classification, the objective is to find a surface that allows
the separation of the objects in the sample in two classes: the first class should be on

one side of the surface (d,, = 1) and the second class on the other side (d = —1). The

distance between the nearest points of both classes is called the margin of separation
and the optimal surface is found when that margin is maximized.

Margin

J/ Support

Vectors

Input space Feature Space

Fig. 1. Transformation from input space to higher-dimensional feature space.

The form of the surface depends of the linear separability characteristics of 1, i. e.,
when 1 is “linearly separable” the optimal surface corresponds to a hyperplane that is
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called “Optimal Hyperplane” (OHP) and when 1 is “nonlinearly separable”, the opti-
mal surface is not a hyperplane in the input space. The introduction of kernel functions
is made in order to deal with non-linear decision surfaces. This implies mapping the
data to a higher dimensional feature space which allows the construction of an OHP in
this space that adequately separates the two classes. In Figure 1, the class 1 (squares)
and the class 2 (stars) are non-linearly separable in the input space. In the feature
space, however, both classes are separated from each other with a hyperplane.

The kernel functions are used to map vectors in the input space into vectors in the
feature space. These functions must satisfy certain known conditions to be admissible
as kernels in a SVM. Specifically they must satisfy Mercer’s condition [5][6]. Many
functions may be used as kernels [7], but the most popular are: a) Polynomial learning
machines (PLM), b) Radial-basis function networks (RBF) and c¢) Two-layer percep-
tron networks (LP) [8]. Since the theory allows for any of the above, we used PLM
and RBF kernels due to their proven simplicity.

2.1 Primal and dual forms

As mentioned above, we want to find the OHP which maximizes the margin of separa-
tion between the two classes that constitute the training set. This gives rise to a con-
strained optimization problem which has to be solved to get the OHP. The form of the
problem depends on linearly separable characteristics of the training set. The Quad-
ratic Programming (QP) problem for linearly separable patterns is formulated as fol-
lows:

Min® =27 (1)
w,b 2
subject to :

di(wai +b)21 fori=1,2,.,N

The solution of this problem requires the search of w and b that minimize an objec-
tive convex function subject to a set of linear constrains. In the case of nonlinear pat-

terns, a set of slack variables is introduced {Ei} N " in order to control the level of mis-

i=1
classification for some elements of 1 [9]. In this case the QP problem is:

, 1 7 u (2
Min®=—w w+C ;
w,b,& 2 ;E

subject to :

d, (wa,. + b)z 1-¢& fori=1,2,..N

Equations (1) and (2) correspond to primal problems for classification of linearly
and nonlinearly separable classes, respectively. However, it is possible to define the
dual problem. The optimal value for both problems is the same [10]. In both prob-
lems, (1) and (2), the solution of the dual form corresponds with the Lagrange Multi-
pliers (LMs) of the QP problem and the LMs different from zero correspond to the
support vectors [11]. The dual form for nonlinearly separable patterns is:
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1L
MaxQ(a)=Za'i—fZZaiajdide(xi,xj)
i=1 243 j=l l 3)

subject to:

N

D ad; =0

i=1

0<a,<C fori=1,2,.,N

The dual form for separable patterns is essentially the same, except for
a;,i=1,..,N which are not bounded; here, C is the upper bound on a ;. It is impor-

tant to note that a kernel is included in the dual form (K(:,-)), a fact which permits us
to construct a decision surface that is nonlinear in the input space but whose image in
the feature space is linear.

Regularization Parameter. The upper bound C for the LMs in a nonlinearly separa-
ble QP problem is known as “Regularization Parameter” [12]. This parameter controls
the trade-off between the complexity of the machine and the level of misclassification
allowed. When C is low, a higher proportion of errors is allowed in the solution, while
few errors are permissible for high C values.

Automatic determination of C via GA. “C” is traditionally selected by the user. It
may be estimated experimentally or analytically [13]. The analytical option relies on
the calculation of Vapnik-Chervonenkis (VC) dimension for the problem at hand. VC
dimension is, however, extremely difficult to calculate in practice and, in effect, disal-
lows the analytical approach. Therefore, the main goal of this paper is to propose a
method to estimate automatically the optimal value of this parameter using a GA with-
out the practical limitations mentioned above. In our approach C’s value is in the
genome and induces a new constraint. This possibility is exclusive of the evolutionary
approach (and perhaps a few other meta-heuristics) and explains our choice.

3 Genetic Algorithms

GAs are nowadays commonly used to solve complex optimization problems [14]. It is
natural to tackle the problem of finding a good value of “C” with one. In what follows
we briefly discuss the methodology.

3.1 Traininga SVM using GAs

Several commercial optimization libraries can be used to solve the quadratic pro-
gramming problem. However, these libraries are of limited used. The memory re-
quirements of the QP problem grow with the square of the size of the training sample
[15]. For that reason, in real-life applications, the QP problem cannot be solved by
straight forward use of a commercial optimization library. Some optimization tech-
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niques can be directly applied to QP problems. However, many of them require that
the kernel matrix is stored in memory, implying that the space complexity is quadratic
in the sample size. For large size problems, these approaches can be inefficient, and
should therefore be used in conjunction with other techniques [16]. In this paper, we
use GAs to tackle the QP problem.

GAs as optimization tool. The application of GAs to SVMs differs substantially from
previous approaches to train NNs because the dual QP problem presented above is
used to find the support vectors directly. In previous experiences the support vectors
have been determined from the application of Lagrange Multipliers which neatly ad-
just to this problem (which satisfies Karush-Kuhn-Tucker conditions) but which are
not applicable to search for “C” [13]. In fact, GAs are used here to solve the con-
strained QP. One advantage of using GAs for this kind of problems is that restrictions
are not imposed in the form of the objective function: neither the objective function
nor the constrains of the problem must be derivable in order to solve de problem prop-
erly.

3.2 Réative optimality of VGA

Although GAs were originally designed to solve unconstrained optimization problems,
they can be adapted to tackle the constrained cases [17] as will be shown.

The first step is the selection of the population’s size. In this work we considered a
population of size P = 100 for all of the problems; the initial population was randomly
generated; weighted binary fixed point representation was used. Each individual
represents a LM (o, i=1,...,N), where N is the number of points in the training set for
the dual SVM problem. Every variable is to be expressed in fixed point format with
one sign bit (0—+; 1—-), 8 integer bit and 20 decimal bits as shown in figure 2.

i
Sign Int Dec
1 bit 8 bits 20 bit

Fig. 2. Fixed point representation

With this representation: —2%+27%° < ; <+2%-2%. The genome’s size is (N+1)x29,
where N is the number of training data (N) and the (N+1)th point corresponds to the
value of C. Once the initial population is generated, VGA [18] is used with P,,=0.05
(probability of mutation) and P.=0.9 (probability of crossover). The evaluation func-
tion is constructed following the methodology of SVMs but we modify it by trans-
forming the constrained original problem to a non-constrained one. To do this, we
have chosen the penalty function (F(x)) [19]:

S Z
F(x)= {Z—i§17:|—f(x) sEt
0 otherwi se 4
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where Z is a large constant [O(10°)],  is the number of constraints, s is the number of
these which have been satisfied and f{x) corresponds to the fitness at point x. The GA
operation was terminated after 250 generations.

4 Training SVMsfor classification problems

We have applied the methodology to the problem of determining whether an object
from a sample belongs to one of two groups. This may be easily extended to N groups
[20]. SVMs have traditionally been designed to deal with binary classification, but a
lot of real world problems have more than two classes. In this paper we deal with
both, binary and multi-class problems. In the case of multiple class problems, one-
versus-one classifier and one-versus-all classifier [21] were used. In one-versus-one
classifier, a SVM model is built for each pair of classes. This results in p(p-1)/2 (p is
the number of classes in a specific problem) SVM classifiers. In one-versus-all classi-
fier, p classifiers are used. The ratio between the number of classifiers in one-versus-
one classifier and one-versus-all classifier is (p-1)/2, which is significant when p is
large. On the other hand, all N observations are used in each classifier in one-versus-
all classifier.

4.1 Problems

A set of classification problems is presented here in order to illustrate the classifica-
tion efficiency of the method. The set of problems are:

Lung Cancer Database. The data for this problem describes 3 types of lung cancers.
The Authors give no information on the individual variables nor on where the data
was originally used'. A total of 32 instances are considered in the original data. Since
it has 5 missing attributes only 27 were considered. The data have 56 predictive nomi-
nal (values 0-3) attributes. Three classes are considered in this problem with: 9 obser-
vations for class 1, 13 for class 2 and 10 for class 3. It is important to mention that the
problem has few instances (27) and a lot of attributes (55). For this reason we decided
to use natural splines [22] to interpolate and enrich the data. The new (interpolated)
data set consisted of 100 objects: 85 were used for training and 15 for testing.

Wine Recognition Database. These data are the result of a chemical analysis of
wines grown in the same region in Italy but derived from three different cultures?. It
corresponds to three types of wines with a total of 178 instances: 59 for wine class 1,
71 for class 2 and 48 for class 3. A total of 13 continuous attributes for each object
was considered.

' UCI-MLR [http://www.ics.uci.edu/~mlearn/MLRepository.html]
2 Idem
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Iris Plant Database. This is perhaps the best known database to be found in the pat-
tern recognition literature. The data set contains 3 classes of 50 instances each, where
each class refers to a type of iris plant®. One class is linearly separable from the other
two, the latter are not linearly separable from each other. Four attributes are in this
database: sepal length, sepal width, petal length and petal width (all of these measured
in cm).

Functions. Two classes are defined in this problem with the help of algebraic and
trigonometric functions. A total of 88 points with 5 attributes was defined for each
class, where these values were randomly generated. The range for each point was
[0,7] . The functions sin(.), cos(.), tan(.), In(.) and sqrt(.) were applied to attributes 1,
2, 3, 4 and 5, respectively, for each instance in the case of class 1. Likewise, the func-
tions senh(.), cosh(.), tanh(.), exp(.) and sqr(.) were applied to each object of class 2.
Classes 1 and 2 were defined as the sum of their respective functions and the outputs
for class 1 and 2 were set to 1 and —1, respectively. The number of objects in the sam-
ple was 176: 150 for training and 26 for testing. We believe the contribution of these
functions is to prove the accuracy of this method in functions that have not any par-
ticular pattern, since the values for the selected attributes were randomly generated.

5 Experimentsand Results

In the column “problem” of Tables 1, 2, 3 and 4 the codes i_j correspond to the results
of one-versus-one classifier for i=1,2 and j=2, 3 (i=1 and j=2 in the case of Table 4).
In the case of one-versus-all classifier, i=1,2,3 and j=A (“All”). For instance, 1 2
means “class 1 vs. class 2”; 3_A means “class 3 vs. all”, etc.

5.1 Lung Cancer

Because 3 classes are considered in this problem, one-versus-one classifier is used in
order to test the methodology proposed here. The result of the application of this clas-
sifier is shown in Table 1. Results were: 91.2% of average accuracy for training data
and 88.9% for test data where splines were applied and 92.3% of average accuracy
when the natural spline interpolation was not applied.

5.2 Wine Recognition

One-versus-one and one-versus-all classifiers were used in this problem. As men-
tioned above, 3 classes are considered in this problem. Hence, this results in 3 SVM
classifiers for each alternative. The comparison between them is shown in Table 2.
The accuracy of both classifiers is good, but the one-versus-one classifier has a better
accuracy with an average of 93.6% for training data and 94.3% for test data. For one-

3 Idem



214 Kuri A., Mejia 1.

versus-all classifier the average accuracy for training data is 80.2% and 84.6% for test
data.

Table 1. Results for Lung Cancer Classification Problem

LY ] le Training Tes
Problem| Total] Train| Test| C Hest O | Accuracy | Accuracy | Kemd
E 12 7 16.005] 0181 92, 0% REF 2
23 15 12 4 .06 ?| 0. 460 B, %% REF Z
E 1.3 7 17 16,0000 -0. 1600 100, 0%% REF 2
- 1_is 0| &3] 15[12E.000] 0010 84T 93 1%) REF Z
5 2 3s T0 fill 1nj144 ooof o0 004 a0, nee B0 &) EBF 2
;3' 1_3= 100 85 151192.000L) -0.004 ug, 8% 93 3% EBF £

Table 2. Results for Wine Recognition Problem

Sample Training Test
Problem| Total| Train | Test C Rest 0] Accuracy | Accuracy | Kernd
12 1300 111 15f1a0.01a) -0.007 95.5%% 94 7| RBF 2
1.3 107 91| 1a|152.500Q -0.004] 100.0%% 10o.0%:| EEF 2
23 119 102 17{192.000) -0.009 85.3%% §8.2%] EBF 2
I 176 150( Za|la0.000f -0.001 89.3%4% 88.5%]| RBEF2
2_n 176 150( 2&(l23.000) -0.010 58.0%% 69.2%]| EBEF 2
i_A 178 150( Za|224.000f0 0.005 93.3%% 98.2%| EBF 2

5.3 IrisPlant

One-versus-one and one-versus-all classifiers were used for this recognition problem.
The results for this classification problem are shown in Table 3. Because one of the
classes is linearly separable, one-versus-one classifier offers a better accuracy than
one-versus-all classifier. The reason is that the linearly separable class (iris setosa)
shows a 100% accuracy when compared with each of the other classes. The average
accuracy for training set was 96.1% and for testing set was 93.3% in the case of one-
versus-one. In the case of one-versus-all, 90.9% for both training sample and testing
sample.

5.4 Functions

This is a binary classification problem. The results are shown in Table 4. The accu-
racy for training set was 97.7% and 100% for testing set.
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Table 3. Results of GSVM for Iris Plant Classification Problem.

Sample Training Test
Problan| Total| Train| Test C Rest 0 Acouracy | Accuracy | Kernd

23 100 251 15)17a.000f -0.001 B8.2% 20.0%| Poly 2

1.3 100 g5 15)1%z.000) o.000f 100.0%% 10o.0%:] EBF 2
2 100 g5 15) 64.000] -0.006)  100.0%% 10o.0%:] EBEF 2
& 1501 12&] 23|12E.000) 0.000) 100.0% 100.0%)] EBF 2
b 1500 128] 22|172.125] 0.005 Ba. T 36 4% Poly 2
A 1500 12&] 22]125.000] 0.000 85 9% 26.4%| Poly 2

Table 4. Results for the Functions problem.

Sample Training Test
Problem|Total| Train| Test] C Rest 0] Accuracy| Accuracy |Kernel
12 150 128 22]224.000] 0.001 97.7% 100.0%] RBF 2

6 Conclusions

A GSVM classifier is presented in this paper. The application of this algorithm to a set
of test problems resulted in a very good performance. The application of a VGA al-
lows us to tackle an extremely complex constrained optimization problem (if judged
from the traditional point of view) in a very simple and straightforward way. Consider
that every one of the data vectors determines a constraint. For example, in a typical
problem the number of constraints is larger than 150. VGA has to determine the band
of feasible values out of a potentially infinite set. However, the most important issue is
that the value of the regularization parameter was quasi-optimally found trough the
algorithm rather than by hand. The reported work seems to indicate that VGA (along
with proper constraint handling) is an efficient way to optimize C by including it in the
genome. In the past, the difficulty of properly determining the value of C was usually
interpreted, simply put, as changing one typical problem in NNs (the determination of
the most adequate architecture) into another, perhaps more difficult, one (the best
determination of the regularization parameter). If C’s determination may be automated
as we have shown, then the theoretical advantages of SVMs may be fully exploited
and the negative criticism mentioned above may be eliminated.
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Abstract. We propose a language portable Named Entity detection
module developed and tested over Spanish and Portuguese. The influ-
ence of different feature sets over the classification task was studied and
demonstrated. The differences in language models learned by three data-
driven systems performing the same NLP tasks were examined. They
were combined in order to yield a higher accuracy than the best indi-
vidual system. Three NE classifiers (Hidden Markov Models, Maximum
Entropy and Memory-based learner) are trained on the same corpus data
and after comparison their outputs are combined using voting strategy.
Results are encouraging since 92.96% f-score for Spanish and 78.86%
f-score for Portuguese language portable detection were achieved. For
Spanish the classification which is based on the language portable detec-
tion reached 78.59% f-score. Compared with the systems competing in
CoNLL-2002 our system reaches third place.

1 Introduction

The increasing flow of digital information requires the extraction, filtering and
classification of pertinent information from large volumes of texts. Information
Extraction, Information Retrieval and Question Answering systems need Named
Entity (NE) recognition and classification modules. For English the available
resources and the developed systems outnumber, but in the case of languages as
Spanish, Portuguese or eastern European ones where the resources as gazetteers!,
annotated corpora etc. are not sufficient but the need is still the same, the
situation looks different. This fact motivated us to start the development of a
language resource independent system during its NE detection and using less
resources while classifying into LOC, PER or ORG classes.

In this paper we present a NE system developed for Spanish. Three machine
learning algorithms were used in concrete: Hidden Markov Model, Maximum
Entropy and the Memory-based learner. They were applied to the CoNLL-2002
shared task for Spanish. The language portable detection was also tested with
Portuguese language. Both languages come from the Romance language group
and have similar behavior so features valid for Spanish were directly adopted by
Portuguese.

! catalogues of names of people, locations, organizations etc.
© A. Gelbukh, R. Monroy. (Eds.)

Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 219-228
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In order to improve overall performance feature selection and systems’ com-
bination were done. Aiming at minimal feature space, less processing time and
gaining results while restraining from gazetteers, the obtained results are quite
encouraging. For Spanish we reached 92.96% f-score for language portable de-
tection and 78.59% f-score for classification. Portuguese was used to support our
hypothesis for language portable detection and we gained 78.86%. A study of
the occurred errors and proposals for resolving them was made, comparison with
existing systems and future work are discussed. The paper is organized as follow-
ing: in Section 2 we expose the features on which the classification methods are
based and a brief description of the classifiers, the voting strategy and the data
with which we worked is in Section 3, discussion of the obtained results and error
correction during NE detection is demonstrated in Section 4, classification into
classes is represented in Section 5, a comparison with CoNLL-2002 systems is
exposed in Section 6, we conclude and mention about the future work in Section
7.

2 Feature description and Classification methods

For NE detection and classification task, the Memory-based learning and Max-
imum Entropy classifiers utilize the features described below, HMM takes only
the three most informative attributes.

2.1 Features for NE detection

We use the well-known BIO model for NE detection, where a tag shows that a
word is at the beginning of a NE (B), inside a NE (I) or outside a NE (O). For the
sentence: Paulo Suarez es mi amigo. , the following tags have been associated,
“BTIO O O O7”, where Paulo starts a named entity; Suarez continues this entity;
while the words es, mi, amigo and the full stop are not part of a NE.

The original set for BIO is composed of 29 features as described in Figure
1 and we denote this set by A. For improving classifier’s performance different
feature combinations of the original set were constructed. The features represent
words, position in a sentence, capitalization, suffixes, context information, lists
of entity triggers for NE. The features c[1-6], C[1-7], d[1-3] refer to the words in
a {—3,+3}, window of the anchor word a.

We extracted two, three and half substrings of the anchor word, knowing that
some prefixes and suffixes are good indicators for certain classes of entities, taking
into account the morphological structure of a word and its paradigm. In general
suffixes are more informative, for Spanish endings as -er,-or,-ista imply person’s
occupation pianista, futbolista, profesor, director and can help during detection
and classification phase. It is surprising the number of Spanish surnames that
end in -ez, meaning “son of”, like the suffix -son and -sen in many German
and Scandinavian languages, -ov,-ova,-ev,-eva in Russian and Bulgarian, and-
es in Portuguese. (e.g. Fernandez is the son of Fernando [Ferdinan]). Of course
these examples have many exceptions, but the information they contribute is
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a: anchor word (e.g. the word to be classified)

¢[1-6]: word context at position +1, £2, +3

C'[1-7]: word capitalization at position 0, +1, +2, +3
d[1-3/: word +1,4+2,43 in dictionary of entities

p: position of anchor word

aC': capitalization of the whole anchor word

aD: anchor word in any dictionary

aT': anchor word in dictionary of trigger words

wT: word at position +1, £2, +3 in a dictionary of trigger words
aL: lema of the anchor word

aS: stem of the anchor word

aSubStr[1-5]: £2, +3 and half substring of the anchor word

Fig. 1. Features for NE detection
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significant when combined with other features. The lemma expands the search
in the gazetteers’ list we maintain, we can have the word ”profesor” but not
”profesora” and by the lemma which returns the base of the word, we are going
to have a positive vote.

2.2 Features for NE classification

The tags used for NE classification are PER, LOC, ORG and MISC as defined
by CoNLL-2002 shared task. For classification, the first seven features used by
the BIO model (e.g. a, c[1-6], p) were used as well as the additional set described
in Figure 2. The gazetteers for the attributes gP, gl. and gO have been collected
randomly from cites as yellow pages.

eP: entity is trigger PER

eL: entity is trigger LOC

eO: entity is trigger ORG

eM: entity is trigger MISC

tP: word *1 is trigger PER

tL: word 41 is trigger LOC

t0: word +1 is trigger ORG

gP: part of NE in gazetteer for PER

gL: part of NE in gazetteer for LOC

g0: part of NE in gazetteer for ORG

wP: whole entity is PER

wL: whole entity is LOC

wO: whole entity is ORG

NokE: whole entity not in one of the defined three classes
f: first word of the entity

s: second word of the entity

clx: capitalization, lowercase, other symbol

Fig. 2. Features for NE classification
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2.3 Classification methods

For NE detection we worked with Memory-based learning and Hidden Markov
Model, while for NE classification we had also Maximum Entropy.

The memory-based software package we used is called TiMBL [3]. Tts de-
fault learning algorithm, instance-based learning with information gain weight-
ing (IB1I1G) was applied. The Hidden Markov Models toolkit ICOPOST? devel-
oped by [8] has been functioning for POS tagging, but we adapted it for NER.
The maximum entropy classifier we worked with was a very basic one with no
smoothing or feature selection, implemented in C++ by [9].

3 Classifier combination and Data

3.1 Classifier combination

It is a well-known fact that if several classifiers are available, they can be com-
bined in various ways to create a system that outperforms the best individual
classifier. Since we had several classifiers available, it was reasonable to inves-
tigate combining them in different ways. The simplest approach to combining
classifiers is through voting, which examines the outputs of the various models
and selects the classifications which have a weight exceeding some threshold,
where the weight is dependent upon the models that proposed this particular
classification. It is possible to assign varying weights to the models, in effect
giving one model more importance than the others. In our system, we assigned
to each model the weight corresponding to the correct class it determines.

3.2 Data and its evaluation

The Spanish train and test data we used are part of the CoNLL-2002 [7] corpus.
For training we had corpus containing 264715 tokens and 18794 entities and for
testing we used Test-B corpus with 51533 tokens and 3558 entities.

The Portuguese corpus we used is part of HAREM? competition with 68597
tokens and 3094 entities for training, and 22624 tokens and 1013 entities for
testing.

Scores were computed per NE class and the measures used were Precision
(of the tags allocated by the system, how many were right), Recall (of the tags
the system should have found, how many did it spot) and Fg—;(a combination
of recall and precision). Conlleval evaluation script was used in order to have
comparable results with the CoNLL-2002 systems.

2 http://acopost.sourceforge.net/
3 http://poloxldb.linguateca.pt /harem.php
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4 NE recognition by BIO model

Our NER system is composed of two passages

1. detection: identification of sequence of words that makes up the name of
an entity.

2. classification: deciding to which category our previously recognized entity
should belong.

For NE detection we follow the BIO model described briefly in subsection
2.1. Our experiments with TiMBL started using set €24 = A/ {aSubStr[l — 5]},
which contained all attributes as lemma, dictionaries, trigger words etc. The ob-
tained results have been satisfactory as can be seen in Table 1, but since we
have been searching for an appropriate feature set F' that maximizes the per-
formance, minimizes the computational cost and being language portable, we
made a study of the features and selected the most informative ones according
to the information gain measure. Four candidate sets were formed and we de-
note them by C24r = {a,c[l —6],C[1 — 7],p,aC,wD,wT,aL,aS} and C17 =
C24r/ {c[5 — 6], C[6 — 7]}; considered as language dependent (they use dictionar-
ies, tools as lemmatizers, stemmers etc.) and E12 = {a,c[1 — 4], C[1 — 5], p,aC}
and F17 = E12U{aSubStr[1 — 5]}, considered as language portable. The results
of each individual set can be seen in Table 1.

Tags B(%) I(%) BIO(%)
Classifier |Prec.| Rec. |F3=1|Prec.| Rec. | Fg=1 |Prec.| Rec. | F=1
TMB-C24 [94.42|95.19|94.81(87.25|85.67|86.45(92.51|92.61|92.56
TMB-C17 94.47|95.11|94.79|87.28|85.37|86.31|92.56(92.47|92.51
TMB-C24r|94.63|94.01|94.32|87.99|85.07|86.50|92.86(91.58|92.22
HMM-CD [92.18|93.82|92.99(83.94(81.98|82.95(90.01(90.60|90.31
HMM-CW [92.40|93.99(93.19(83.71(81.00{82.33|90.13|90.46|90.29

[ Vote 1 1d [95.31]95.36]95.34]88.02[87.56]87.79]93.34]93.24]93.29)

TMB-E12 |94.33]|94.91]94.62|87.00|85.29(86.14(92.38(92.30(92.34
TMB-E17 (94.17]|95.28(94.72|87.62|85.37|86.48(92.44|92.59(92.51
HMM-CW [92.40|93.99(93.19(83.71(81.00{82.33|90.13|90.46|90.29

[ Vote 2 1i [94.43]95.73]95.07]88.31[86.05[87.17[92.81[93.10[92.96]
Table 1. BIO for Spanish

Initially to HMM we passed the NE and the tag associated with it. The
obtained performance of 88.63% is less than each one of TiMBL’s individual
sets, however this difference is compensated with the number of features TiIMBL
uses. For the word Don Simon, which in one text can mean a name of a person or
organization (e.g. company name), in order to determine its correct significance
more information is needed. One advantage of HMM is its time performance
of several minutes in comparison with the other methods, but fails in adding
lots of features. As studied by Réssler [6] to HMM features can be passed by
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Tags B(%) 1I(%) BIO(%)
Classifier |Prec.| Rec. |Fg—1|Prec.| Rec. | Fg—1|Prec.| Rec. | F3—1
TMB-E12 [82.50(83.32|82.91|72.77|64.77|68.53|79.59|77.26|78.41
TMB-E17 (80.13|83.22|81.65(69.64|58.86|63.80|77.16|75.27|76.20
HMM-CW|77.83(68.61|72.93|61.02|58.66/59.81|72.01|65.36|68.53

| Vote 3 1i [82.35[84.30[83.32]72.75]65.78]69.09]79.47]78.26]78.86]

Table 2. Language portable BIO for Portuguese

corpus or tag transformation. We studied both possibilities and saw that tag
transformation gave better results. We took the two most informative attributes
- word capitalization and whole word in capitals, plus the gazetteer list and
passed them as features to the B and I tags. For La Coruna we have B-XX and
I-XX tags, where the XX take binary features. With HMM-CD we denote the
results after passing the attributes word capitalization and word in dictionary
and with HMM-CW the results from word capitalization and whole word in
capitals. Adding these attributes, HMM’s performance increases with around
1.68%.

The obtained results from all BIO sets for Spanish can be observed in Table
1, there we mention the language dependent sets for comparison, but for further
experiments (classification) we consider the results from the language portable
sets. In Table 2 we demonstrate Portuguese language portable BIO detection
using the same sets as for Spanish.

The coverage of tag O is high due to its frequent appearance, however its
importance is not so significant as the one of B and I tags, who actually detect
the entities. For this reason we demonstrate separately system’s precision, recall
and f-score for B and I tags. The best score for Spanish BIO was obtained by
TiMBL considering the complete C24 set with f-score of 92.56%. Comparing this
score with set C'17 where he number of features is reduced, the word window
diminished from +3 to +2, the difference of 0.05% is insignificant. Set C24r was
studied for reducing some noisy attributes from set C'24 but still keeping the +3
window. Its total BIO performance decreased but gained 86.50% - the highest
f-score per I tag.

The language portable sets perform quite similar to the dependent ones. For
tag B, set E12 with its 12 attributes performs better than C24r. The complete
BIO for E12 is better than those of C24r. TMB-E17 improves slightly the overall
results of E12 and has similar results to C17. For tag I it performs better than
C24, C17 and has 0.02% less performance than C24r.

The classifiers used different feature sets and we noticed that one classifier
detects an entity while the other doesn’t. The classifiers used different feature
sets and we noticed that one classifier detects an entity while the other doesn’t.
After obtaining the different results we applied voting techniques grouping the
language dependent sets in vote one and the language portable sets in vote
two. The difference of 0.33% between Vote I language dependent with 93.29%
performance and Vote 2 language portable with 92.96% f-score shows how small
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Tags LOC(%) MISC(%) ORG(%) PER(%)

Classifier  |Prec.| Rec. |Fg—1|Prec.| Rec. | F3—1|Prec.| Rec. | Fs—1 |Prec.| Rec. | Fg—1
ME-F24 81.16(74.72|77.81|69.29|49.12|57.49|74.21|84.07|78.83|82.95|88.03|85.41
TMB-F24 |75.70(75.28|75.49|55.03|51.47|53.19|75.22(79.79|77.44|84.53|83.27|83.89
ME-F24clx |81.94|74.91|78.27|69.67|50.00|58.22|73.92|84.00|78.64|83.18(88.16|85.60
TMB-F24clx |74.84(75.46|75.15(55.88|50.29|52.94|75.88|79.79|77.79(85.42(85.31|85.36
TMB-R24 |80.08|75.65|77.80(57.95(48.24|52.65|77.01|81.36|79.12|79.24|88.30|83.53
TMB-R24clx |79.20(75.18|77.14|63.20{50.00|55.83|76.14|81.36|78.66(80.15|88.44(84.09

HMM 74.85|67.80|71.15|44.66|46.76|45.69|72.06|73.86(72.95(66.11|74.83|70.20

VM24T24fclxH[81.16[75.92]78.46]66.80[49.71]57.00[75.06]83.21]78.93[83.72]89.52[86.52]

Table 3. NFE classification

feature set containing attributes independent from any tools, dictionaries or
gazetteers can give good and similar results to the dependent sets.

Taking in mind that Spanish and Portuguese are languages having similar
behavior, we studied and saw how attributes valid for Spanish were directly
adopted by Portuguese. In Table 2 we to show the results for Portuguese after
applying the same set of portable features as for Spanish. With voting 83.32%
f-score for B tag and 78.86% for complete BIO were achieved. These results are
acceptable since we didn’t have sufficient training data and the annotated corpus
we used had significant number of errors.

4.1 BIO error Analysis

After analyzing the obtained results, we saw that some of the occurred errors can
be avoided by applying simple post-processing: when an I tag has been preceded
by O tag we substituted it by B if the analyzed word starts with a capital letter
and in the other case we simply put O; sequences such as OBIBI, have been
transformed into OBIII. (see the example in subsection 2.1).

For Spanish around 2% of the errors came from the annotated corpus, some-
times quotation mark symbol was annotated as B and sometimes as O. Por-
tuguese corpus was quite noisy having entity as v+,n 12 annotated as organiza-
tion or some names of people were even not annotated.

One of our attributes concerns word capitalization and had great impact
over the detection task. We noticed how sometimes words starting a sentence
but not belonging to any of the named entity classes were classified as B tags.
A statistical study of word frequency, determines if a word at the beginning
of a sentence should have a B tag or not. The word variants (e.g. writing of a
word), their individual frequency and neighbors with which these words appear
are studied. Thus we have been able to correct and avoid this kind of error.
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Tags LOC(%) MISC(%) ORG(%) PER(%)
Classifier|Prec.| Rec. | Fjsg—1 |Prec.| Rec. | Fs—1 |Prec.| Rec. | Fg—1 |Prec.| Rec. | Fg=1
ourNE [81.16|75.92(78.46|66.80|49.71|57.00|75.06(83.21|78.93|83.72|89.52|86.52
WNC [79.15|77.40|78.26(55.76|44.12]49.26|74.73|79.21|76.91|80.20(89.25|84.48
CY |79.66|73.34|76.37|64.22|38.53|48.16|76.79|81.07|78.87|82.57|88.30(85.34
Flo [82.06(79.34|80.68|59.71|61.47|60.58|78.51|78.29|78.40|82.94|89.93|86.29
CMP |85.76|79.43|82.43|60.19|57.35|58.73|81.21|82.43|81.81|84.71|93.47|88.87

Table 4. CoNLL-2002 NE classification

Classifier|Prec. %|Rec. %|Fg=1 %
CMP 81.36 | 81.40 | 81.39
Flo 78.70 | 79.40 | 79.05
ourNE | 78.09 | 79.10 | 78.59
CY 78.19 | 76.14 | 77.15

Table 5. Complete system performance

5 NE classification

After detection follows NE classification into LOC, MISC, ORG or PER class
as defined by CoNLL-2002. For this task, we used the results obtained from the
language portable detection.

For ME and TiMBL, we started the classification with a set composed of
24 features as described in subsection 2.2. Let us denote by F'24 the set having
features: a, c[1-6], p, €P, eL, eO, eM, tP, tL, tO, gP, gL, gO, wP, wL, wO, NoE, f
and s. In Table 3 comparing the performance of ME and TiMBL with the same
set can be seen how ME classifies better for each one of the classes.

Choosing the most informative attributes,{a, c[1], eP, gP, gL, gO, wP,
wL, wO, NoE, f}, we create a set R24, where R24 C F24. In Table 3 we displayed
only the results obtained by TiMBL, because ME needs a lot of time for training
and testing. When both classifiers were compared on small random samples from
the original set, we saw that TiMBL performs better with the reduced set. When
R24 was tested with the complete data TiMBL achieved the highest result for
ORG class of 79.12%. Two additional sets R24cle = R24U {clz} and F24clx =
F24 U {clz}, where clx is the attribute described in Figure 2, were constructed.
R24clz lowered the performance for LOC and ORG class compared to the R24
set but performed better dealing with MISC and PER class. By adding clz
attribute to £'24, ME improved its performance with 0.46% for LOC and 0.19%
for PER class and gained the maximum score of 58.22% for MISC class. Using
the same set TIMBL decreased its score for LOC and MISC class and slightly
improved ORG and PER classes. Among all classifiers, HMM has the lowest
score per class. The voting we applied considers ME-F24, Timbl-F24clx and
HMM results.

We have seen how the elimination or addition of features gave impact over
given types of classes during classification. As a whole our systems perform well
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when classifying into PER,ORG and LOC class, but not when dealing with
MISC class which is difficult to be detected due to its heterogeneity.

6 Comparison with CoNLL-2002 systems

We demonstrated the performance of NER considering different machine learning
methods, where the advantages and disadvantages of each one of them being
in time performance or feature maintenance was shown. Apart from this it is
very interesting to make a comparative study with the systems participating in
CoNLIL-2002 shared task, since our system has been developed using the same
data; we should take in mind that our classification has been based on language
portable detection.

Table 4 represents the results per class for our system and the first four
best performing systems in CoNLL-2002; WNC[4], CY|[2], Flo[5], CMP[1]. When
classifying into LOC class our system performed with 0.2% and 2.09% better
than the one of Wu and Cucerzan and less with 2.22% and 3.97% from the
systems of Florian and Carreras. Our classification into MISC class was better
with 7.74% and 8.84% compared to the one of Wu and Cucerzan and less with
3.58% and 1.73% from Florian and Carreras. For ORG and PER classes we
outperformed all systems except the one of Carreras. With Wu’s system we have
2.02% and 2.04% better score per ORG and PER class, from Cucerzan’s 0.06%
and 1.18% and from the system of Florian 0.53% and 0.23%.

We separated the overall performance of the first three best performing sys-
tems in Table 5. Comparing the f-score our system performs with 1.44% better
than the third one, with 0.46% less than the second and with 2.8% less than the
first system.

7 Conclusions and future work

We presented a combination of machine learning methods (Memory-based learn-
ing, Maximum Entropy and HMM) for performing NE detection and classifica-
tion task for Spanish. Aiming at minimal feature space and restraining from
dictionaries or other language dependent tools, we demonstrated one language
portable detection for Spanish and Portuguese. The Portuguese system served
as proof for our experiments and hypothesis. At present we didn’t study the
achievement of language portable classification over Spanish and we depend on
gazetteers but in future we intend to work on this task. Comparing our results
with CoNLL-2002 participants the f-score results of 78.46% for LOC, 57.00%
for MISC, 78.93% for ORG and 86.52% for PER are quite encouraging and are
among the second and third system.

As future work we intend to develop and use specific dictionaries for NEs,
to apply the same method for languages as Catalan, Italian and French. We are
interested in dividing the original three base tags into more detailed ones, for
example: ORG class into administration, institution, company etc. A Word Sense
Disambiguation module is going to be included and the rule based system that
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was separately developed and deals with weak entities such as El presidente del
Gobierno de La Rioja is going to be merged with the machine learning module
we have developed.
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Boosting Applied to Spanish Word Sense
Disambiguation

Rocio Guillén

California State University San Marcos, San Marcos CA 92096, USA

Abstract. Recent trends in word sense disambiguation (WSD) show
that the most effective approach is that of machine learning (ML). En-
semble learning methods such as boosting select a collection of hypothe-
ses from the hypothesis space and combine their prediction. Boosting
algorithms combine many weak hypotheses to find a highly accurate
classification rule. In this paper we describe a system that applies a
boosting algorithm to the WSD problem and present results from the
SENSEVAL-3 exercise for the Spanish lexical-sample task. Our system
SenseFinder utilizes Schapire and Singer’s Boostexter [3] implementation
of the AdaBoost.MH algorithm as the learning paradigm. We work on
a set of 46 polysemous words and use tagged and lemmatized files from
which we extract a window of 5 lemmas. This information is used to
describe the examples and to train our system.

1 Introduction

Word sense disambiguation (WSD) involves the mapping of a given word in a
text or discourse to a definition or meaning, i.e., sense, which is distinguishable
from other meanings potentially assignable to that word. The task is twofold:
determining all the different senses for every word, and finding a method to as-
sign each word to the appropriate sense [2]. Sense disambiguation is essential
for natural language processing tasks such as text processing, speech processing,
human-computer interaction, message understanding, information retrieval and
machine translation.

A wide range of symbolic and statistical or machine learning methods have
been explored to solve the problem of WSD. Despite the research efforts devoted
to tackle the problem there is no large-scale, broad coverage and highly accurate
word sense disambiguation system available at present.

In this paper, we present the use of a machine learning approach, called boost-
ing, to the problem of WSD. Boosting is a general method for improving the
accuracy of learning algorithms. It is based on the observation that finding and
combining many simple and moderately accurate “rules of thumb” is easier than
finding a single, highly accurate prediction rule. [5] To find these rules, a weak
or base learning method or algorithm is applied. The boosting algorithm calls
the weak learner repeatedly, each time with a different distribution or weighting
over the training examples. At each iteration, the weak learner generates a new
weak prediction rule, and after many iterations the boosting algorithm combines
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the weak rules into a single prediction rule. The distribution at each iteration
is chosen by placing the most weight on the examples most often misclassified
by the preceding weak rules. The combination of weak rules is done by taking a
weighted majority vote.

AdaBoost, a boosting algorithm introduced by Freund and Schapire [4], has
been studied extensively and has been shown to perform well [7],[4],[8],[6],[5]
on standard machine-learning tasks using standard machine-learning algorithms
as weak learners. The first versions of the algorithm, AdaBoost.M1 and Ad-
aboost.M2, only supported output data belonging to one class at most. Ex-
tensions to the algorithm, AdaBoost.MH and AdaBoost.MR, were designed to
solve the problem of an example belonging to various classes. The goal of Ad-
aBoost.MH is to predict all and only the correct labels, senses in our work. The
goal of AdaBoost.MR is to find a hypothesis which ranks labels so that it hope-
fully places the correct labels (senses) at the top of the ranking. BoosTexter is
a system which implements four versions of boosting based on these extensions
that we have used to test our system.

AdaBoost.MH has been successfully applied to natural language process-
ing problems such as word sense disambiguation [10], human-computer spoken-
dialogue systems [11],[12] and part-of-speech tagging and prepositional phrase
attachment disambiguation [13] as well as information retrieval tasks like text
categorization [3] and document routing [14]. Additionally, AdaBoost has been
proven to be theoretically well founded.

The paper is organized as follows. We first present in Section 2 research
done in WSD using Boosting algorithms. In Section 3 we briefly describe the
AdaBoost.MH algorithm and the BoosTexter system. In Section 4 we describe
SenseFinder, the domain of application and evaluation metric. Experiments us-
ing the BoosTexter system are described, and results and evaluation of results
are presented in Section 5. Lastly, Section 6 presents conclusions and future
work.

2 Boosting algorithms for WSD

Supervised learning has become the most successful approach to tackle the prob-
lem of WSD. These algorithms follow a two-step process. The first step is to
choose the representation of the context of the target word senses as a set of
features. Then apply a ML algorithm to train on the chosen features and assign
a sense to the target word in the test examples. Among the supervised learning
algorithms that have been applied to WSD are Naive Bayes [10], Exemplar-based
[15], Decision Lists [16], and Neural Networks [17].

Supervised learning algorithms suffer from high overhead for supervision
and additional overhead for learning/testing when scaling to real size WSD
problems. Due to this fact, research on reducing the need for supervision of
corpus-based methods for WSD is currently under way. Escudero et al. [10]
have worked on reducing the feature space for English. They have developed
a variant of AdaBoost.MH, called LazyBoosting, which has been tested on a
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medium/large sense-tagged corpus containing about 193K examples of the 191
most frequent and ambiguous English words. Results showed that boosting com-
pares favourably to the Naive Bayes and the Exemplar-based approach.

LazyBoosting is a simple modification of the AdaBoost.MH algorithm, which
consists of reducing the feature space that is explored when learning each weak
classifier. More specifically, a small subset S of features/attributes are randomly
selected and the best weak rule is chosen among them. The idea is that if the
subset S is not too small, it is more likely that a sufficiently good rule can be
found at each iteration. Additionally, no feature/attribute has to be discarded
thus avoiding the risk of eliminating relevant attributes.

The TALP system is based on the LazyBoosting algorithm [10]. The fea-
tures represent local and topical contents and domain labels. Let w; be the word
to be disambiguated, . .. w;_sw;_sW;—1 W Wip1 WipaWits - . . the context of words
around w;, and p;4 I =123 be the part-of-speech tag of Wit ;- Local context
feature patterns are represented as follows.

Pi—3;Pi—2;Pi—1; Pit1; Pit2; Pit3; Wi—2; Wi—2, Wi—1; Wit1;

Wita, (Wipa, Wi 1), (Wi 1, Wep1, and (Wep1, Wiga)

The last three patterns represent collocations of two consecutive words.

We apply BoosTexter, an implementation of the AdaBoost.MH algorithm. to
train and test the system. We use a subset of features to describe the examples
and train the classifiers similar to the one described for the TALP system.

3 AdaBoost.MH

In this section we present AdaBoost.MH (see Figure 1) designed by Schapire
and Singer’s [1],[3],[5],[11], which is an extension to the AdaBoost algorithm. It
has been designed to work for multiclass multi-label classification problems.

Input: (x1,Y1),...,(€m,Y:) where 2, € X, ), C Y

Output: Final hypothesis

T
f@) =) hi(z,l)
t=1
Initialize D (i, 1) = 1/(mk)
Fort=1,...,7 do
1. Train weak learner using distribution D, .
2. Weak learner returns weak hypothesis by : ¥ x Y - R
3. Update distribution

D, (¢, Dexp(=Yi[lJhi (2, 1))
Zy
where Z, is a normalization factor (chosen so that D4 will be a distribution)

Figure 1 AdaBoost.MH Algorithm

Dyy1(3,0) =

AdaBoost for single-label classification maintains a set of weights over train-
ing examples to force the weak learner to concentrate on examples which are
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hardest to classify; whereas for multiclass multi-label classification, the boost-
ing algorithm maintains a set of weights and labels. Training examples and their
corresponding labels that are harder to classify get incrementally higher weights.
The intention is to force the weak learner to focus on examples and labels that
will contribute more to the overall goal of finding a highly accurate classification
rule.

Let S be a sequence of training examples < (x1,Y1), ..., (@m,Ym) > where
each x; belongs to some domain or instance space X and each label Y; is in some
label set Y. Assume that Y= { -1, +1 }. As described above, AdaBoost.MH main-
tains a set of weights as a distribution D; over examples and labels. Initially,
this distribution is uniform. On each iteration ¢, the distribution is inputted
to the weak learner to compute a weak hypothesis h;. The output of the weak
learner is a hypothesis b : X x Y — R. Let [ be a label, then the sign of h(x,])
is interpreted as a prediction of the value of Y[l], i.e., whether [ is or is not
assigned to x. The magnitude of the prediction denoted | h(z,1) | is interpreted
as a measure of confidence in the prediction. The distribution D; is updated
in a manner that increases the weight of example-label pairs (x,!) which are
misclassified by h,. Testing the value of a Boolean predicate and making a
prediction based on that value is carried out using very weak hypotheses for
WSD following [13] and [10]. The predicates in our system are of the form f v
where f is a feature (word) and v is its corresponding part-of-speech and lexical
features, e.g., arte NCCS000. The predicates used are f; o v;—9, fi1 Vi1, fi Vi,
Ji+1 Vig1, Vige vigo. Formally, based on a given predicate P, we are interested
in weak hypotheses h which make predictions as follows.

coe if P holds in x, ¢j: € R
c1¢ otherwise, cir €R

h(z,1) = {

3.1 BoosTexter

In practice, the AdaBoost.MH algorithm has been implemented as the BoosTex-
ter system for text categorization tasks. BoosTexter works with data which may
be of various forms. In general, each instance or example is split up into multiple
fields. These fields may be one of the following four types: continuous-value at-
tribute (e.g., word-position), discrete-valued attribute (e.g., part-of-speech, text
string (e.g., actuar en Cannes), or scored-text string (e.g., word-frequency).

BoosTexter combines many simple hypotheses (rules) iteratively. Each hy-
pothesis (rule) consists of a simple binary test and predictions for each outcome
of the test. Depending on the type of input field the binary test has one of the
following forms.

Type Test

Discrete  Does the attribute have a particular value?

Continuous Is the value of the attribute > threshold or attribute < threshold?
Text Is the string (ngram) in given text?

Scored Is the score of the word > threshold or is the score < threshold?
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The predictions associated with each outcome of a given hypothesis (rule)
are described by a set of weights over the possible labels. The weights should
not be interpreted as probabilities.

4 SenseFinder System

The SenseFinder system was developed for the SENSEVAL-3 Spanish Lexical
Sample Task [18]. The purpose of this task is to evaluate supervised and semi-
supervised learning algorithms for WSD. Experiments are carried out on a set
of 46 words. The examples for all 46 words in both the training and test set have
been extracted from the year-2000 corpus of the Spanish EFE News Agency.
Each example has been tagged with a unique sense. Additionally, POS tagged
and lemmatized files have been provided, in which the contexts of the examples
are tokenized, lemmatized and POS tagged.

The system utilizes BoosTexter for describing the examples, training and
testing since the WSD problem can be considered as a categorization task in
which a word is assigned to a pre-existing set of senses. Our goal is to generate
a classifier for each word; each word represents a categorization problem.

The first step before applying the boosting algorithm is to extract the in-
formation to describe the examples used for training. Extraction is done by
tokenizing the tagged and lemmatized file looking for the word tagged as the
head. The next step consists of creating a window that includes the following:
withe previous two lemmas and their corresponding part-of-speech; the head’s
lemma and corresponding part-of-speech; and the following two lemmas and
their corresponding part-of-speech. Punctuation marks are ignored and diacritic
(accent) marks are removed. A sample input sentence, part of its corresponding
tagged sentence, and generated output is shown in Figure 2. Output thus gen-
erated become the training examples. The same step is applied to the test set
to generate the examples for testing.

Input Sentence:
Photopainters.com, segin los jovenes empresarios, "no es estrictamente comercial
o de arte, sino una web que une cultura popular, <head> arte</head> y tradicién”.

Input Tagged sentence:

<w frm="cultura” lem="cultura” pos="NCFS5000” />

<w frm="popular” lem="popular” pos="AQOCS0” />

<w fm:”’ » lem:”’ » pos:JJFCJJ/>

<w frm="arte” lem="arte” pos="NCCS000” head="yes” />
<wf7m:”y” lem:”y” pos:”oo))/>

<w frm="tradicion” lermn="tradicién” pos="NCFS000” />

Output:
cultura NCFS000, popular AQOCS0, arte NCCS000, y CC, tradicion NCFS000

Figure 2 Sample Sentence
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Next, a file with training examples for each word is fed to the BoosTexter
system. Once training is completed, a file with the examples from the test set
for each word is fed to the BoosTexter system. Lastly, the individual test set
files are concatenated to be evaluated.

4.1 Scoring Scheme

Evaluation of the results has been carried out by SENSEVAL-3 using an official
scorer proposed by Resnik and Yarowsky [19] and two other evaluations for the
particular task. The official scorer is derived by assigning probabilities over sense
labels generated by WSD algorithms. Given a probability distribution over sense
labels and a single known-correct sense label, the algorithm’s score should be
the probability that the algorithm assigns to the correct sense label. One of the
other scoring schemes does a more complete evaluation, including word-by-word
results and results by groups of words. Words are grouped by part-of-speech,
i.e., noun (n), verb (v), adjective (a), and by the accuracy of the Most-Frequent-
Sense baseline classifier. The third scoring scheme takes the results of a baseline
system that always assigns to each word the most frequent sense according to
the training set.

5 Experiments

In our experiments we work with 46 datasets, one per word to be trained. The
number of classes, i.e., senses ranges from 2 to 8, the number of training examples
ranges from 69 to 268; the number of examples in the test set is over half the
number of training examples (see Table 1).

Word POS Sen Train Test|Word POS Sen Train Test|Word POS Sen Train Test
ses Ex. Ex. ses Ex. Ex. ses Ex. Ex.

actuar v 3 133 67|corona n 3 124  64|partido n 2 133 66
apoyar v 3 259 128|duplicar v 2 254 126|pasaje n 4 220 111
apuntar v 4 213 106|explotar v b 212 103|perder v 4 218 106
arte n 3 251 121|ganar v 3 237 118|popular a 3 133 67
autoridad n 2 268 132|gracia n 3 72 38|programa n 3 267 133
bajar v 3 235 1ll5|grano n 3 117 6l|saltar v & 200 101
banda n 4 230 114|hermano n 2 128 66|subir v 3 231 114
brillante a 2 126 63|jugar v 3 236 117|simple a 3 117 61
canal n 4 262 131|letra n 5 226 114|tabla n 3 130 64
canalizar v 2 253 126|masa n 3 172 85|tocar v 6 158 78
ciego a 3 102 52/mina n 2 134 66|tratar v 3 143 72
circuito n 4 261 132|unatural a A 215 107|usar v 2 263 130
columna =n 7 129 64|naturaleza n 3 258 128|vencer v 3 134 65
conducir v 4 134 G66|operacion n 3 134 66|verde a 2 69 33
corazén n 3 123 62|6rgano n 2 263 131|vital a 2 131 65
volar v 3 122 60

Table 1 Set of 46 words
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The total number of training examples used was 8430, and the total number of
test examples was 4195.

The binary-valued attributes for describing the examples correspond to five
features which constitute a very narrow linguistic context. The five features
which are a modification of those used in [10] are I; 5 pos; 2, l; 1 pos;_1, I;
pos;, Liy1 posiy1, Lipa posiya, 1 is alemma and pos is its corresponding part-of-
speech.

We trained the system using BoosTexter for each word a different number of
iterations depending on the number of examples for a word in the training set
and the different senses attributable to the word. The assumptions made are:
the more examples to be trained, the more attributes need to be examined to
determine a weak rule and the more senses for a word the higher the probability
of a word to be misclassified. The total number of iterations and the number of
hypotheses are generated per word during the learning process. Once the train-
ing was completed we ran Boostexter on the test set. The results generated were
submitted to SENSEVAL-3 for evaluation.

Overall results of the official evaluation, the POS-based evaluation, and the
Most Frequent Sense (MFS) evaluation for the test set are shown respectively
in Table 2, Table 3, and Table 4.

precision 74.09% 3108 correct of 4195 predictions

recall 74.09% 3108 correct of 4195 in total

F1score  74.09 F1 = (2*precision*recall) /(precision+recall)
coverage 100.00% 4195 examples predicted of 4195 in total

Table 2 Overall Results

POS total predicted hit coverage precision recall F1
a 448 448 347 100.00 77.46% 77.46% 77.46
n 1949 1949 1440 100.00 73.88% 73.88% 73.88
v 1798 1798 1321 100.00 73.47% 73.47% 73.47

Table 3 POS-based Average Evaluation

word-group total predicted hit coverage precision recall F1
1.MFS>95 635 635608 100.00 95.75% 95.75% 95.75
2.MFS90-95 429 429 394  100.00 91.84% 91.84% 91.84
3.MFS80-90 374 374325 100.00 86.90% 86.90% 86.90
4.MFS70-80 618 618 394 100.00 63.75% 63.75% 63.75

5.MFS60-70 523 523 361 100.00 69.02% 69.02% 69.02
6.MFS50-60 586 586 390 100.00 66.55% 66.55% 66.55
7.MFS40-50 673 673456 100.00 67.76% 67.76% 67.76
8.MFS<40 357 357180 100.00 50.42% 50.42% 50.42

Table 4 Most Frequent Sense
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Analysis of individual results for each word show that the number of features
chosen for training needs to be increased to include more features. Additional
syntactic features and/or prior knowledge are necessary to improve recall and
precision of some words such as the nouns letra, columna, gracia and verbs such
as perder, conducir, tocar, saltar. In the case of the nouns letra and columna,
the number of senses is 5 and 7 respectively, which makes the disambiguation
task more difficult; but it also may be the case that the training examples given
do not contribute to generate a highly accurate hypothesis. A similar situation
occurs with the verbs saltar with 8 senses, tocar with 6 senses and perder and
conducir with 4 senses each. Results including the top five and the bottom five
are presented in Table 5.

word total predicted hit coverage precision recall F1
usar.v 130 130 127 100.00 97.69% 97.69% 97.69
canalizarv 126 126 122 100.00 96.83% 96.83% 96.83
autoridad.n 132 132 127 100.00 96.21% 96.21% 96.21
duplicar.v 126 126 121 100.00 96.03% 96.03% 96.03
hermanon 66 66 62 100.00 93.94% 93.94% 93.94
conducirv 66 66 36 100.00 54.55% 54.55% 54.55
gracia.n 38 38 19 100.00  50.00% 50.00% 50.00
columna.n 64 64 31 100.00 48.44% 48.44% 48.44
perder.v 106 106 50 100.00  47.17% 47.17% 47.17
letra.n 114 114 50 100.00 43.86% 43.86% 43.86

Table 5 Results for 10 words

6 Related Work

Some of the supervised learning approaches applied in the Spanish Lexical Sam-
ple task were an exemplar based classifier [20], support vector machines [21],
decision trees [24], pattern abstraction, and kernel methods [22] and a combina-
tion of three classifiers [23]. The use of these approaches in the Spanish Lexical
Sample Task is briefly described next.

The exemplar-based classifier measures the similarity between a new instance
and the representation of some labelled examples. The terms are represented as
bags of contexts. Words, lemmas and senses are represented in the same space,
called Context Space, where similarity measures can be defined. In the SVM
approach each training and test item is represented as a feature with weights; its
dimensions correspond to properties of the context. A family of SVM classifiers
was constructed for the senses of each word. All positive training examples for a
word sense were treated as negative examples for all the other senses. The deci-
sion trees approach uses an ensemble of three bagged decision trees. It is based
on the idea that different views of the training examples for a given target word
will result in classifiers that make complementary errors. Thus their combined
performance will be better than individual performances. Pattern abstraction is
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a methodology which uses different knowledge sources to extract information.
This represents a limitation that has been solved with kernel methods. Kernels
are similarity functions between instances that allow the integration of different
knowledge sources and the modelling of linguistic features in SVM. The com-
bination of classifiers included a nearest-neighbor clustering classifier, a naive
Bayes classifier, and a decision list classifier; each one was trained on several
permutations of the extracted feature set, then the answers were cormbined us-
ing voting.

7 Conclusion and Future Work

Our precision, recall and F; measure were very close to the Most Frequent sense
Classifier (MFC) scores reported by the task organizer. Compared with the su-
pervised learning techniques presented, the boosting algorithm applied to WSD
of Spanish did not perform well. We found some inconsistencies in the results
for some words and are repeating experiments for those words. We have no con-
clusive results to report in this paper due to time constraints. Compared with
unsupervised learning techniques, the boosting algorithm performed better. A
detailed description of the results and system comparisons appears in [25]. Fur-
ther research includes the following tasks: testing the algorithms in other Span-
ish tagged corpora; implementing, comparing and evaluating other supervised
learning approaches; and adding syntactic features.
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