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  Preface 
 

Neural Networks (NN) and Associative Memories (AM) are tools that 
have been used for many years. Their theoretical foundations are now 
well established. Their applications are numerous. 

This special issue presents original research papers on the internal art and 
craft of Neural Networks and Associative Memories: theoretical 
foundations, specific methodologies and real world applications. This 
special volume is structured into seven thematic fields representative of 
some of the main current areas of interest within the NN and AM 
community:  

• Feature Extraction and Dimensionality Reduction,  
• Image Processing and Applications,  
• Neural Networks and Associative Memories,  
• Real World Applications,  

A total of 35 full papers from 8 different countries were received for 
evaluation. Each submission was reviewed by at least two independent 
members of the Editorial Board of the volume. This volume contains 
revised versions of 20 papers, selected for publication after a thorough 
evaluation. Thus the acceptance rate was of 57%. The volume also 
includes the invited paper: A General Framework for Dynamic Networks 
by Professor Martin Hagan and Orlando de Jesús. 

We cordially thank all people involved in the preparation of this volume. 
In the first place there are the authors of the papers constituting it; it is the 
excellence of their research work that gives sense to the work of all other 
people involved. We thank the members of the Editorial Board of the 
volume and additional referees. The submission, reviewing and selection 
process was supported for free by the EasyChair system, 
www.EasyChair.org.  

Humberto Sossa            November 2007 
Ricardo Barrón  
Edgardo Felipe  
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A General Framework for Dynamic Networks 

Martin Hagan1 and Orlando De Jesús2

1 School of Electrical and Computer Engineering, Oklahoma State University, 
Stillwater, Oklahoma, 74078 

mhagan@ieee.org 
2 Halliburton - Carrollton Technology Center - Research, 

Halliburton Energy Services 
Carollton, Texas, 75006 

Orlando.DeJesus@Halliburton.com 
(Invited Paper) 

Abstract. The field of dynamic neural networks is expansive. It has applications 
in such disparate areas as control systems, prediction in financial markets, 
channel equalization in communication systems, phase detection in power 
systems, sorting, fault detection, speech recognition, and even the prediction of 
protein structure in genetics. Within these various application areas, a great 
number of dynamic neural network architectures have been proposed. These 
dynamic networks are often trained using gradient-based optimization 
algorithms. In this paper we will attempt to present a unified view of the training 
of dynamic networks. We will begin with a very general framework for 
representing dynamic networks and will demonstrate how gradient-based 
algorithms can be efficiently developed using this framework. 

1   Introduction 

Dynamic networks are networks that contain delays (or integrators, for continuous-time 
networks). These dynamic networks can have purely feedforward connections, or they 
can also have some feedback (recurrent) connections. Dynamic networks have 
memory. Their response at any given time will depend not only on the current input, 
but on the history of the input sequence.  

Because dynamic networks have memory, they can be trained to learn sequential or 
time-varying patterns. This has applications in such diverse areas as control of dynamic 
systems [1], prediction in financial markets[2], channel equalization in communication 
systems [3], phase detection in power systems [4], sorting [5], fault detection [6], 
speech recognition [7], learning of grammars in natural languages [8], and even the 
prediction of protein structure in genetics [9]. 

Dynamic networks can be trained using standard gradient-based or Jacobian-based 
optimization methods. However, the gradients and Jacobians that are required for these 
methods cannot be computed using the standard backpropagation algorithm. In this 
paper we will discuss a general dynamic network framework, in which dynamic 
backpropagation algorithms can be efficiently developed. 

© H. Sossa, R. Barrón and E. Felipe  (Eds.) 
Special Issue in Neural Networks and Associative Memories 
Research in Computing Science 28, 2007, pp. 3-12 
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There are two general approaches (with many variations) to gradient and Jacobian 
calculations in dynamic networks: backpropagation-through-time (BPTT) [10] and 
real-time recurrent learning (RTRL) [11]. In the BPTT algorithm, the network response 
is computed for all time points, and then the gradient is computed by starting at the last 
time point and working backwards in time. This algorithm is computationally efficient 
for the gradient calculation, but it is difficult to implement on-line, because the 
algorithm works backward in time from the last time step.  

In the RTRL algorithm, the gradient can be computed at the same time as the 
network response, since it is computed by starting at the first time point, and then 
working forward through time. RTRL requires more calculations than BPTT for 
calculating the gradient, but RTRL allows a convenient framework for on-line 
implementation. For Jacobian calculations, the RTRL algorithm is generally more 
efficient than the BPTT algorithm [12,13]. 

In order to more easily present general BPTT and RTRL algorithms, it will be 
helpful to introduce modified notation for networks that can have recurrent 
connections. In the next section we will introduce this notation and will develop a 
general dynamic network framework. The following section will present procedures for 
computing gradients for the general framework. 

The RTRL and BPTT methods can be thought of as general concepts, rather than as 
specific algorithms that can be implemented as general computer codes applicable to 
arbitrary network architectures. The RTRL gradient algorithm has been discussed in a 
number of previous papers [11, 14], but generally in the context of specific network 
architectures. The BPTT gradient algorithm has been described as a basic concept in 
[10], and a diagrammatic method for deriving the gradient algorithm for a certain class 
of architectures has been provided in [15]. 

As a general rule, there have been two major approaches to using dynamic training. 
The first approach has been to use the general RTRL or BPTT concepts to derive 
algorithms for particular network architectures. The second approach has been to put a 
given network architecture into a particular canonical form (e.g., [16-18]), and then to 
use the dynamic training algorithm which has been previously designed for the 
canonical form. 

In this paper our approach will be to develop a very general framework in which to 
conveniently represent a large class of dynamic networks, and then to derive the RTRL 
and BPTT algorithms for the general framework.  In this way, one computer code can 
be used to train arbitrarily constructed network architectures, without requiring that 
each architecture be first converted to a particular canonical form. 

2   Development of a General Class of Dynamic Network 

We will build up to our general notation by starting with a simple multilayer 
perceptron network, as shown in Fig. 1.  The equations of operation for this network 
are 

1,,1,0for    111 −=+= +++ Mmmmmm KbaWn  (1) 
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( )mmm nfa =  (2) 

where  is the net input at layer m,  is the output of layer m, and  is the 
input to the network. The overall network output is the output of the last layer, . 
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Fig. 1. Multilayer Perceptron 

In the Multilayer Perceptron, each layer connects forward to the following layer, and 
each layer consists of four components: 

1. A weight matrix , mW
2. A bias vector , mb
3. A summing junction, and 

4. A transfer function . ( )mf
We can generalize the Multilayer Perceptron by allowing layers to connect forward 

to an arbitrary number of other layers. In addition, we can have multiple input vectors, 
each one of which can be connected to any layer. We call the resulting class of 
networks Layered Feedforward Neural Networks (LFNN). An example is shown in 
Fig. 2. The equations of operation of an LFFN can be written as 

 

( ) ( ) ( ) m

Ll

llm

Il

llmm

m
fm

ttt baLWpIWn ++= ∑∑
∈∈

,,  (3) 

( )mmm nfa =  (4) 

where  is the set of indices of all inputs that connect to layer m,  is the set of 
indices of all layers that connect forward to layer m.,  is the l

mI m
fL

lp th input to the network, 
 is the input weight between input l and layer m,  is the layer weight 

between layer l and layer m, and  is the bias vector for layer m. 

lm,IW lm,LW
mb

For the LFFN class of networks, we can have multiple weight matrices associated 
with each layer - some coming from external inputs, and others coming from other 
layers. 
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Fig. 2. Example Layered Feedforward Network 

So far, we have considered only static networks. The LFFN class of networks can be 
further generalized to allow delays to be associated with each weight matrix. This leads 
to Layered Digital Dynamic Networks (LDDN) [12]: the fundamental unit of this 
framework is the layer (as with the multilayer perceptron); the networks are digital as 
opposed to analog (or discrete-time as opposed to continuous-time); and we use the 
term “dynamic” rather than “recurrent” because we want to include feedforward 
networks that have memory. 

An example of a dynamic network in the LDDN framework is shown in Fig. 3.  
Note that the key component that has been added to certain layers is the tapped delay 
line (indicated by TDL in the figure). The equations of operation of an LDDN network 
are 

( ) ( ) ( ) ( ) ( ) m

Ll DLd

llm

Il DId

llmm

m
f lmm lm

dtddtdt baLWpIWn +−+−= ∑ ∑∑ ∑
∈ ∈∈ ∈ ,,

,,  (5) 

( ) ( )( )tt mmm nfa =  (6) 

where DLm,l is the set of all delays in the tapped delay line between Layer l and Layer 
m, DIm,l is the set of all delays in the tapped delay line between Input l and Layer m 
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Fig. 3. Example Dynamic Network in the LDDN Framework 

The LDDN framework is quite general. It is equivalent to the class of general 
ordered networks discussed in [10] and [19]. It is also equivalent to the signal flow 
graph class of networks used in [15] and [20].  However, we can increase the generality 
of the LDDN further. In all of the classes of networks that we have presented so far, the 
weight matrix multiplies the corresponding vector coming into the layer (from an 
external input in the case of IW, and from another layer in the case of LW). This 
means that a dot product is formed between each row of the weight matrix and the 
input vector.  

We can consider more general weight functions than simply the dot product. For 
example, radial basis layers compute the distances between the input vector and the 
rows of the weight matrix. We can allow weight functions with arbitrary (but 
differentiable) operations between the weight matrix and the input vector. This enables 
us to include higher-order networks as part of our framework. 

Another generality we can introduce is for the net input function. This is the function 
that combines the results of the weight function operations with the bias vector. In all 
of the networks that we have considered to this point, the net input function has been a 
simple summation. We can allow arbitrary, differentiable net input functions to be 
used. 

The resulting network framework is the Generalized LDDN (GLDDN). A block 
diagram for a simple GLDDN (without delays) is shown in Fig. 4. The equations of 
operation for a GLDDN are 

 
Weight Functions: 

( ) ( ) ( )( )dtddt llmlmlm −= pIWihiz ,, ,,,  (7) 

( ) ( ) ( )( )dtddt llmlmlm −= aLWlhlz ,, ,,,  (8) 
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Fig. 4. Example Network with General Weight Functions and Net Input Functions 

3   Gradient Calculation for the GLDDN 

The next step is to develop an algorithm for computing the gradient for the GLDDN. 
This can be done using the BPTT or the RTRL approaches. Because of limited space, 
we will describe only the RTRL algorithm in this paper. (Both approaches are 
described for the LDDN framework in [12].) 

To explain the gradient calculation for the GLDDN, we must create certain 
definitions. We do that in the following paragraphs. 

3.1  Preliminary Definitions 

First, as we stated earlier, a layer consists of a set of weights, associated weight 
functions, associated tapped delay lines, a net input function, and a transfer function. 
The network has inputs that are connected to special weights, called input weights. The 
weights connecting one layer to another are called layer weights. In order to calculate 
the network response in stages, layer by layer, we need to proceed in the proper layer 
order, so that the necessary inputs at each layer will be available. This ordering of 
layers is called the simulation order. In order to backpropagate the derivatives for the 
gradient calculations, we must proceed in the opposite order, which is called the 
backpropagation order. 
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In order to simplify the description of the gradient calculation, some layers of the 
GLDDN will be assigned as network outputs, and some will be assigned as network 
inputs. A layer is an input layer if it has an input weight, or if it contains any delays 
with any of its weight matrices. A layer is an output layer if its output will be compared 
to a target during training, or if it is connected to an input layer through a matrix that 
has any delays associated with it. 

For example, the LDDN shown in Fig. 3 has two output layers (1 and 3) and two 
input layers (1 and 2). For this network the simulation order is 1-2-3, and the 
backpropagation order is 3-2-1. As an aid in later derivations, we will define U as the 
set of all output layer numbers and X as the set of all input layer numbers. For the 
LDDN in Fig. 3, U={1,3} and X={1,2}. 

3.2  Gradient Calculation 

The objective of training is to optimize the network performance, quantified in the 
performance index F(x), where x is a vector containing all of the weights and biases in 
the network. In this paper we will consider gradient-based algorithms for optimizing 
the performance (e.g., steepest descent, conjugate gradient, quasi-Newton, etc.). For the 
RTRL approach, the gradient is computed using 
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(12) 

The superscript e in these expressions indicates an explicit derivative, not accounting 
for indirect effects through time. 

Many of the terms in Eq. 12 will be zero and need not be included. To take 
advantage of these efficiencies, we introduce the following definitions 

( ) ( ){ }0, ≠∃∋∈= uxU
LW UuxE LW , (13) 

( ) ( ){ }0, ≠∃∋∈= uxX
S XxuE S , (14) 
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( ) ( )
( )Tx
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t
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n
aS

∂
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≡,  
(15) 

is the sensitivity matrix. 
Using these definitions, we can rewrite Eq. 12 as 
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The sensitivity matrix can be computed using static backpropagation, since it 
describes derivatives through a static portion of the network. The static 
backpropagation equation is 

( ) ( ) ( )
( )

( )
( )( )

( )( )t
t

t
t
ttt mm

uELl
Tm

mle

Tml

le
lumu

S
m
b

nF
a
lz

lz
nSS &

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

= ∑
∩∈

,

,
,,

0,
, Uu∈ , 

(17) 

where m is decremented from u through the backpropagation order,  is the set of 

indices of layers that are directly connected backwards to layer m (or to which layer m 
connects forward) and that contain no delays in the connection, and  
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There are four terms in Eqs. 16 and 17 that need to be computed: 
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The first term can be expanded as follows: 

( )
( )

( )
( )

( )
( )Tu

mle

Tml

xe

Tu

xe

dt
dt

dt
t

dt
t

−∂
∂

∂
∂

=
−∂

∂
′′ a

lz
lz

n
a

n ,
,

,

,  
(20) 

The first term on the right of Eq. 20 is the derivative of the net input function, which is 
the identity matrix if the net input is the standard summation. The second term is the 
derivative of the weight function, which is the corresponding weight matrix if the 
weight function is the standard dot product. Therefore, the right side of Eq. 20 becomes 
simply a weight matrix for LDDN networks. 

The second term in Eq. 19 is the same as the first term on the right of Eq. 20. It is 
the derivative of the net input function. The third term in Eq. 19 is the same as the 
second term on the right of Eq. 20. It is the derivative of the weight function. 

The final term that we need to compute is the last term in Eq. 19, which is the 
explicit derivative of the network outputs with respect to the weights and biases in the 
network. One element of that matrix can be written 
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The first term in this summation is an element of the sensitivity matrix, which is 
computed using Eq. 17. The second term is the derivative of the net input, and the third 
term is the derivative of the weight function. (We have made the assumption here that 
the net input function operates on each element individually.) Eq. 21 is the equation for 
an input weight. Layer weights and biases would have similar equations. 

This completes the RTRL algorithm for networks that can be represented in the 
GLDDN framework. The main steps of the algorithm are Eqs. 11 and 16, where the 
components of Eq. 16 are computed using Eqs. 20 and 21. Computer code can be 
written from these equations, with modules for weight functions, net input functions 
and transfer functions added as needed. Each module should define the function 
response, as well as its derivative. The overall framework is independent of the 
particular form of these modules. 

4   Conclusions 

There are generally two different approaches for writing software to train dynamic 
networks. In the first approach, you use the general concepts of BPTT or RTRL to 
derive the dynamic backpropagation equations for a specific network architecture; each 
architecture has its own code. The second standard approach is to use some particular 
canonical form for dynamic networks. Such canonical forms can represent arbitrary 
dynamic networks. You can implement a dynamic backpropagation algorithm for the 
canonical form, and then you can transform the specific architecture in question into 
the canonical form in order to use the software. 

In this paper we have taken a different approach. We have developed a framework 
that encompasses a very general class of network architectures, and then we have 
presented a set of equations that can be used to compute the gradients for any network 
that fits within that framework. This makes it possible to write software that is 
applicable to arbitrarily connected networks, without having to convert complex 
architectures into a standard canonical form. 

Dynamic networks have applications in a wide variety of areas, and such disparate 
applications have lead to diverse network architectures. The ability to test new 
architectures quickly, without having to write problem-specific code or to convert each 
architecture into a canonical form, will enable the more rapid spread of dynamic neural 
networks into new fields. 
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Abstract  

We present a formal theoretical background, including theorems and their proofs, for 
our neural network model with associative memory and continuous topology, i.e. its 
processing units are elements of a continuous metric space and the state space is 
Euclidean and in¯nite dimensional. This approach is intended as a generalization of 
the previous ones due to Little and Hop¯eld. Thus we integrate two levels of 
continuity: continuous response units and continuous topology of the neural system, 
obtaining a more biologically plausible model of associative memory. A theoretical 
framework is provided so as to make this integration consistent. We ¯rst present some 
general results concerning attractors and stationary solutions. Then we focus on the 
case of orthogonal memories, proving theorems on their stability, size of attraction 
basins and spurious states. Finally, we get back to discrete models, i.e. we discuss new 
viewpoints arising from the present continuous approach and examine which of the 
new results are also valid for the discrete models.  

Keywords: associative memory, continuous topology, dynamical systems, Hop¯eld 
model, in¯nite dimensional state space, stability.  

1 Introduction  
In seminal papers, Little [8],[9] and Hop¯eld [6] constructed a content-addressable 
memory as a dense network of arti¯cial neurons that are represented as elementary
bistable processors. Addressability is guaranteed by the dissipative dynamics of the
system. It consists of switching each processor from one of its stable con¯gurations to the 
other as a consequence of the intensity of the local ¯eld acting on it. The memories,
corresponding to ¯xed points of the dynamics, are stored in the system in a distributed
manner through the matrix of two-body interactions (synaptic e±cacies) between the 
neurons. If this matrix is properly de¯ned, the above dynamics is enough so as to ensure a
monotonic decrease of an \energy" function. Thus, starting from an arbitrary con¯guration
the system is led to a local minimum that corresponds to the nearest stored memory.  

 



In a later paper, Hop¯eld [7] aimed at a more realistic model by replacing bistable
neurons by graded response devices. In fact, a classical objection to the former
model [6],[8],[9] was that a two-state representation of the neural output is, from a
biological point of view, an oversimpli¯cation and that it is necessary to describe
relevant neural activity by ¯ring rates, rather than merely by the presence or the
absence of an individual spike1. In either case the retrieval process is again guar-
anteed by the nature of the matrix of synaptic e±cacies. However, in [7] the space
of states describing the patterns of activity remained discrete, in the sense that the
number of units was, at most, countable. This was an open gap in the plausibil-
ity of the model. In fact, since the Little model was formulated to describe the
computational ability of an ensemble of simple processing units, it was necessary
to reconcile the biological evidence of a true continuum of the neural tissue with
the descriptions provided by discrete models inspired in an Ising system. While the
empirical evidence always shows patterns of activity or quiescence involving patches
with ¯nite sizes, the ferromagnetic approach suggests systems with discrete process-
ing units with no ¯nite dimensions. In spite of this simpli¯cation all the discrete
models have been remarkably successful in describing emergent processing abilities
that correspond to stylized facts concerning basic elementary cognitive processes.

In this paper we introduce a solid theoretical background, including theorems
and their proofs, for our neural network model with associative memory and pro-
cessing units de¯ned as elements of a continuous metric space (some subsidiary
results are omitted by length limitations). This model [12],[13] is intended as a gen-
eralization of the previous ones due to Little and Hop¯eld. Our main purpose is to
provide proofs in the sense that it is actually possible to formulate a system of asso-
ciative memory (AM) with continuous response units and a continuous topological
structure on the set of such units. We conceive the network so as to preserve the
salient features that made attractive all the discrete models, especially the levels of
continuity that the Hop¯eld model with graded response [7] added to the discrete
one [6]: continuous-valued units and continuous scale of time, via the transition
from discrete to continuous, di®erential equation dynamics. In spite of the fact
that the corresponding space of con¯gurations is an in¯nite dimensional functional
space, we can de¯ne a basic simple dynamics having asymptotic, stationary solu-
tions which can be associated to minima of an energy functional of Lyapunov type
and can be taken to represent the memories stored in the system.

We have already introduced in a previous paper [12] several of the results in-
cluded here, but without any rigorous proof. The present article is devoted to
provide theoretical foundations for that sketch. We place emphasis on a detailed
analysis of orthogonal memories, a relevant particular case of the general theory
(deep comprehension of orthogonal memories is essential to understand the general
pseudo-orthogonal case). However, we also present some other more general results.

Some approaches related to ours have appeared in recent years [10],[11]. The
concept of ¯eld computation, introduced by MacLennan, has a similar inspiration
since many neural phenomena can be described as a ¯eld, i.e. the distribution of
some physical quantity over a continuous space, with a topology associated to it.
On the other hand, the big number of neurons per sq. milimeter that can be found

1However, there is at present an increasing agreement that spiking neurons have some properties
for describing certain aspects of neural dynamics not completely covered by rate-coding models.
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throughout most of the brain cortex, justi¯es treatment of neural activity as a ¯eld.
All these arguments are related to our approach. However, this is aimed to a

di®erent purpose, which is that of formulating an extended model of AM and the-
oretically founding it, including justi¯cation of its potential as a tool for modelling
cognitive processes of memory and learning.

Moreover, in another previous paper [13], we have already proposed a gener-
alization of the nondeterministic, ¯nite temperature Glauber dynamics [3] to the
case of a ¯nite number of graded response neurons (Hop¯eld'84). We did this by
casting the retrieval process of a Hop¯eld model with continuous-valued units, into
the framework of a di®usive process governed by the Fokker-Plank equation. We
thus provided a description of the transitional regime that rules the retrieval pro-
cess, which is currently disregarded. In other words, we uni¯ed the graded response
units model [7] and the stochastic approach, obtaining a description of the retrieval
process at both the microscopic, individual neuron level and the macroscopic level
of time evolution of the probability density function over the space of activation pat-
terns, i.e. an equation describing, for each possible pattern, how, given an initial
probability for the system being in it, this probability changes upon time.

The paper is organized as follows. In Sect. 2 we give basic concepts and de¯-
nitions. Sect. 3 provides general results on attractors and stationary solutions. In
Sect. 4, we focus on the orthogonal case, proving theorems on stability of the mem-
ories and of the origin. Sect. 5 presents a result on the size of basins of attraction
and Sect. 6 deals with spurious states. Finally, in Sect. 7 we get back to discrete
models, i.e. discuss new viewpoints arising from the present continuous approach
and examine which of the new results are also valid for the discrete models.

2 Basic De¯nitions and First Results

Assume that v(x; t) describes the activity of a point-like neuron located in x at time
t. This pattern of activity evolves according to:

@v(x; t)

@t
= ¡v(x; t) + g¾

0
@
Z

K

T(x; y)v(y; t)dy

1
A (1)

with v(x; t) : K £ R¸0 ! R, K ½ X. X is a metric space, K a compact do-
main, g¾ a sigmoid function, i.e. g¾ 2 C1(R), non decreasing, odd and satisfying
limx!§1 g¾(x) = §VM, lim¾!1 g¾(x) = sgn(x) 8x6= 0, j g¾(x) j< minfVM; ¾xg
and g0¾(0) = ¾.

Let S be the set of all possible states v(x) (patterns of activity) of the system.
Then a solution v(x; t) ful¯lling (1) is a trajectory in S.

We can assume that VM = 1. As for T:K £K ! R, we assume it is continuous
almost everywhere (a.e.) in order to ensure that the integral is well de¯ned. As a
natural extension of the discrete case we introduce the local ¯eld on (or net input
to) the neuron located in x when the state of the system is v(y; t):

hv
t (x) =

Z

K

T(x; y)v(y; t)dy
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For t = 0 we write hv(x) = hv
0 (x): Note that hv is linear in v.

Let v¹0 (x) = v¹(x; 0) be an initial condition (i.c.) and v(x; t) the solution of (1)
associated to it. We say that v¹(x) is a memory or an attractor if and only if:

1) v¹ is an equilibrium point, i.e. v¹(x) = g¾(hv¹

t (x)) a:e:
2) For every t0 ¸ 0 and v0 a di®erent i.c. corresponding to v, there exists

±(t0) > 0 such that if k v¹ ¡ v0 k< ± then k v¹(¢; t)¡ v(¢; t) k! 0 when t!1.
Hence, attractors are stationary solutions of (1). Assume that S=L2(K) and

that j K j<1 (K has ¯nite Lebesgue measure).
We de¯ne the energy of the system at time t0 as the functional:

H [v(¢; t0)] = ¡1

2

Z

K

Z

K

T(x; y)v(x; t0)v(y; t0)dxdy +

Z

K

v(x;t0)Z

0

g¡1
¾ (s)dsdx (2)

where H[v(¢; t0)] means that v is viewed as a function of x. Thus, each v in S
has an energy H(v). This is an extension of the energy as de¯ned in [7] for the
(discrete) model with graded response functions.

2.1 Attractors and Stationary Solutions

From now on we assume that T is symmetric.

Theorem 2.1: H is monotonically decreasing with t and reaches its minima at
vte(x) = v(x; te) such that

·
@v

@t
(x; t)

¸

te

= 0 (3)

a.e. in K (in words, given a solution v(x; t) corresponding to some i.c., the minima
of H are equilibrium points of the system). This theorem generalizes the classical
result for the discrete Hop¯eld model with graded responses [7] (see e.g. [1],[5]).

Proof: omitted by length limitation.

Memories or attractor states, as de¯ned in this section, satisfy the above condi-
tions. However, the reciprocal implication is not necessarily true: from the previous
theorem it does not follow that if a solution v(x; t) of (1) satis¯es condition (3) for
some t¤, then v(x; t¤) is an attractor. For example, the trivial solution v´ 0 satis¯es
it for all t but, as we soon will see, its stability or instability depends on the slope
¾ of g¾ at the origin. In general, the possibility to construct nontrivial memories
strongly depends on such parameter.

The sigmoid function g¾ plays an important role in determining in which cases
the system has nontrivial stationary solutions. A necessary condition is given by:

Theorem 2.2: (existence and uniqueness of the solution) If ¾ < 1
MjKj , being M

such that j T(x; y) j·M, then the unique stationary solution of (1) is v´ 0.

18     E. C. Segura



Proof: by de¯nition of g¾, ¾ is a Lipschitz constant for it. Then, assuming that v1

and v2 are two ¯xed points of the operator A de¯ned as

Av = g¾

2
4
Z

K

T(x; y)v(y)dy

3
5

we get (using the L2 norm):

j Av1(x)¡Av2(x) j=j g¾(

Z

K

T(x; y)v1(y)dy)¡ g¾(

Z

K

T(x; y)v2(y)dy) j

· ¾ j
Z

K

T(x; y)v1(y)dy ¡
Z

K

T(x; y)v2(y)dy j· ¾M j K j 12 k v1 ¡ v2 k

being M an upper bound for j T(x; y) j (which exists since T is continuous and K
is compact). Finally:

k Av1 ¡Av2 k·j K j 12 sup
x2K
j Av1(x)¡Av2(x) j< ¾M j K jk v1 ¡ v2 k

Then A is a contraction and has a unique ¯xed point provided ¾ < 1
M jKj .

Besides the condition ¾M j K j¸ 1, other ones (see next section) have to be
ful¯lled in order to ensure the actual existence of nontrivial solutions.

3 Orthogonal Memories, Hebbian Synapses

The case we are specially interested in is the storage of orthogonal memories when
the matrix of synaptic weights is Hebbian. This can be achieved through a straight-
forward generalization of the Hebb rule [4]. Let fv¹g be an orthogonal set of func-
tions in some space S(K), that is to say (v¹;vº) = 0 if ¹6= º. In principle, S(K)
may be noncountable and hence we can de¯ne in general:

T(x; y) =
1

j K j

Z

P

v½(x)v½(y)d½

for ½ 2 P some index set. In the case fv¹g is an orthogonal set in L2(K), it is
at most countable (provided the separability of L2(K)). Therefore it is natural to
restrict to the case in which P is countable:

T(x; y) =
1

j K j
pX

¹=1

v¹(x)v¹(y) (4)

Then the following theorem holds:

Theorem 3.1: The system (1), with T(x; y) de¯ned as in (4), may have any ¯nite
number p of orthogonal memories taking values in fV¤;¡V¤g, with g¾(§V3

¤) = §V¤.
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Proof: let p be a positive integer and fv¹gp¹=1 ½ L2(K); (v¹;vº) = 0 if ¹ 6=
º; v¹(x) 2 f¡V¤; V¤g ; 1 · ¹ · p; x 2 K, with V¤ such that g¾(§V 3

¤ ) = §V¤
(which exists and depends on ¾): De¯ning T by (4) it holds that, for any ¹:

g¾(h¹(x)) = g¾(

Z

K

T(x; y)v¹(y)dy) = g¾(

Z

K

1

j K j
pX

º=1

vº(x)vº(y)v¹(y)dy)

Since the integrals are ¯nite, we can interchange the sum and the integration:

g¾(
1

j K j
pX

º=1

vº(x)±º¹ k v¹ k2) = g¾(
v¹(x) V 2

¤ j K j
j K j ) = v¹(x)

Then, v¹(x; t) = v¹(x) 8 t > 0 is a ¯xed point of equation (1).

These solutions v¹(x) look like the example depicted in Figure 1. Activation
patterns of this kind agree with the intuitive generalization of the attractors of an
Ising-type, spin glass discrete neural network in which patches of full activation
alternate randomly with those of full quiescence. They can also be viewed as the
vertices of an in¯nite (noncountable) dimensional hypercube.

A question arising is whether the set of orthogonal ¯xed points of (1) can be
in¯nite. Note ¯rst that it is countable: the elements v¹ as they were de¯ned belong
to L2(K), a separable space; hence every orthogonal set in it must be countable.
However even an in¯nite countable number of orthogonal ¯xed points is not possible
while preserving the integrability of T. Observe that if there are k¹ changes of sign
in v¹ then each term of the form v¹(x)v¹(y) divides the domain K£K in (k¹+1)2

square regions. Moreover, each region is separated from the next by discontinuity
lines because such term takes the constant values +V2

¤ or¡V2
¤. If the set of memories

is in¯nite, the number of terms in T that are added is also in¯nite, therefore those
discontinuity lines are dense at least in a neighborhood of some point, and T ceases
to be piecewise continuous.

Note that theorem 3.1 implies a qualitative di®erence between discrete and con-
tinuous models. Since the memory capacity is now unbounded, there is nothing
like a \phase diagram" in which, for a domain K and above some critical number
pc of memories, a transition to a \confusion phase" takes place, implying a rapid
degradation of the retrieval ability. While in discrete models the size of the domain
is determined by the dimension of the state space (pc = ®cN), in the present case
this dimension is in¯nite and hence there is no pc.

Discussions on discrete models are mostly in the thermodynamic limit in which
either the number of neurons and the number of memories tend to in¯nity while
their ratio is kept constant. This is not possible in the continuous limit, but it is
certainly not a problem as far as the biological plausibility of the model is concerned.

We end this section with the following results that are easy to check.

Lemma 3.2: If the memories are orthogonal, the distance between any two of them
is always the same.

Corollary 3.3: Orthogonal memories are never dense in L2(K).
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Figure 1: A memory in the space S=L2[a; b].

4 Stability of the Solutions

We will now derive conditions for the elements v¹, as de¯ned in Section 3, to be
stable equilibria (i.e. memories) for equation (1).

Theorem 4.1: elements v¹ are stable ¯xed points of (1) if and only if g0¾(V3
¤) <

1
V2¤

.

Theorem 4.2: (Stability of the origin) The solution v´ 0 is stable if and only if
g0¾(0) = ¾ < 1

V2¤
.

Proof (both theorems): the computation of the directional derivatives of H(v) at
an arbitrary point yields:

DwH(v) = ¡ 1

j K j

pX

º=1

(vº ;v)(vº; w) + (g¡1
¾ (v); w)

with w 2 L2(K) and k w k= 1. Now, if v = v¹, using the condition of orthogonality
and noting that k v¹ k2= V2

¤ j K j, it follows that DwH(v) = 0. Similarly, it is easy
to check that DwH(v) vanishes for any element in span fv¹gp¹=1, i.e. linear combi-
nations of the memories, when those combinations take values on fV¤;¡V¤; 0g.

D2
w2H(v) = ¡ 1

j K j
pX

º=1

(vº; w)2 + (
@

@v
g¡1
¾ (v)w;w)

But the vº are assumed orthogonal. Therefore, the use of Bessel's inequality yields:

pX

º=1

(vº; w)2

k vº k2 ·k w k
2= 1()

pX

º=1

(vº ; w)2 · V2
¤ j K j

hence

D2
w2H(v) ¸ (

@

@v
g¡1
¾ (v)w;w)¡V2

¤

for any w in S, k w k= 1: Then, a necessary and su±cient condition for an element
v in S to be a minimum of H is:

(g¡10
¾ (v)w;w)¡V2

¤ > 0 8 w 2 S, k w k= 1
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Theorem 4.2 follows directly from the last equation. Applying this equation to the
case in which v = v¹ and keeping in mind that g¡10

¾ (v) = (g0¾(g¡1
¾ (v)))¡1

the above condition reduces to

(
w

g0¾(g¡1
¾ (v¹))

; w)¡V2
¤ = (

w

g0¾(V2¤v¹)
; w)¡V2

¤ =
1

g0¾(§V3¤)
¡V2

¤ > 0

Since g¾ is odd, this can be rewritten as:

g0¾(V3
¤) <

1

V2
¤

or g0¾(V3
¤)V

2
¤ < 1

Let us compare the necessary and su±cient condition given by theorem 4.2 for
the stability of the origin with the uniqueness condition for the general case (theorem
2.2). When T is de¯ned according to (4), the v¹'s being stationary solutions of (1)
and therefore v¹(x) 2 fV¤; 0;¡V¤g; we have:

j T(x; y) j· pV2
¤

j K j = M:

In this case the condition for the origin to be the only solution is that ¾ < 1
MjKj =

1
pV2¤

. This is more restrictive than what follows from theorem 4.2. Therefore, for

the case of orthogonal memories there exists an intermediate range for the values
of ¾ (¾ 2 [ 1

pV2¤
; 1

V2¤
], which degenerates into a point if p = 1) for which the trivial

solution v´ 0 is an attractor, but not necessarily the only solution of (1). Note,
in addition, that the conditions derived in theorems 4.1 y 4.2 are independent of p
(number of memories); this is a consequence of the orthogonality of the memories.

5 Basins of Attraction

Using the preceeding results, we can now estimate the size of the basins of attraction.

Theorem 5.1: for p ¸ 2, the largest sphere contained in the basin of attraction of

an orthogonal memory v¹; 1 · ¹ · p, has a radius k = V¤

q
jKj
2

.

In other words, whenever k v¹ ¡ v0 k< k, the distance k v¹(¢; t)¡ v(¢; t) k! 0
when t!1 (being v0 any i.c. for (1) and v the corresponding solution).

Proof: the radius of the basin will be the largest number k > 0 such that DwH(v¹+
kw) > 0 8w 2 S; k w k= 1: We know that

DwH(v) = ¡ 1

j K j

pX

º=1

(vº ;v)(vº; w) + (g¡1
¾ (v); w)
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Then:

DwH(v¹ + kw) = ¡ 1

j K j
pX

º=1

(vº;v¹ + kw)(vº ; w) + (g¡1
¾ (v¹ + kw); w)

= ¡ 1

j K j

(
V 2
¤ j K j (v¹; w) + k

pX

º=1

(vº ; w)2

)

+(g¡1
¾ (v¹ + kw); w)

which is positive if and only if

(g¡1
¾ (v¹ + kw); w) >

1

j K j

(
V 2
¤ j K j (v¹; w) + k

pX

º=1

(vº ; w)2

)

for every direction w. By virtue of Bessel's inequality:

pX

º=1

(vº ; w)2

k vº k2 ·k w k
2= 1

and, consequently (remembering that k vº k2= V 2
¤ j K j), the condition is satis¯ed

by imposing (g¡1
¾ (v¹ + kw); w) > (g¡1

¾ (v¹); w) + kV 2
¤ or equivalently

Z

K

g¡1
¾ (v¹(x) + kw)¡ (g¡1

¾ (v¹(x))

k
w(x) dx > V 2

¤ (5)

In order to prove that inequality (5) holds no matter the direction w, let us take
the worst case: w pointing to a di®erent memory, say vº , i.e. w = vº¡v¹

kvº¡v¹k . It is

easy to check that vº ¡ v¹ can take only values 0 and §2V¤ and that, by virtue
of the orthogonality, it is 0 exactly on one half of the domain K and §2V¤ on the

other half. Then w is 0 on a subdomain of size jKj2 and
q

2
jKj on the remaining

subdomain of equal size. Thus, condition (5) can be rewritten as

j K j
2

g¡1
¾ (v¹(x) + k

q
2
jKj )¡ (g¡1

¾ (v¹(x))

k
q

2
jKj

2

j K j > V 2
¤

(multiplying numerator and denominator by
q

2
jKj ), which holds if

k

s
2

j K j < V¤ () k < V¤

r
j K j

2

Finally, the largest spherical basin of attraction has a radius equal to V¤

q
jKj
2 ,

since otherwise the basins would not be disjoint, because the distance between any
two v¹ and vº is twice that quantity.

Note that this result does not imply that the basins of attraction are spherical.
It only limits the radius of spherical basins for memories v¹ and, consequently, for
¡v¹ as well. Figure 2 shows a simpli¯ed bidimensional sketch.
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Figure 2: Two orthogonal memories and their inverses, each one with norm V¤
p
j K j

and a spherical basin of attraction of radius V¤
q
jKj
2 .

6 Spurious Memories

As a consequence of the nonlinearity of the dynamics under consideration, undesired
¯xed points appear in addition to those purposely stored in the synaptic operator T
with the Hebb prescription. These are called spurious states or spurious memories.

It is possible to distinguish two types of spurious states: mixture and non-
mixture memories. v is said to be a mixture state if it can be expressed as a linear

combination of the stored memories: v =
qP
i=1

®¹iv
¹i with q · p, v¹i 2 fv¹g and

®¹i real constants. If no such f®¹g exists, the spurious state is said non-mixture.

6.1 Mixture Spurious States

First note that, just like in the known discrete models, for every memory v¹, ¡v¹ is
also a memory. In the simple case when p = 1, there exist only two spurious states:
the origin (v ´ 0) and the inverse of the (unique) stored memory. Thus, there are
no non-mixture states for p = 1. If p ¸ 2, the analysis gets considerably harder.

We have already mentioned the fact that every mixture state is a ¯xed point if
v(x) 2 fV¤;¡V¤; 0g 8x 2 !. This can be easily seen either by using the linearity
of hv or from the proof of theorems 4.1 and 4.2. It is also clear that only a small
subset of span fv¹gp¹=1 contains spurious states. In particular, it follows that if v¹

and vº are memories, then §1
2v¹ § 1

2vº are ¯xed points of the dynamics. This

implies that there exist at least 4

µ
p
2

¶
spurious (mixture) states. These are in

general unstable, as stated by the following

Theorem 6.1: If v is a mixture spurious memory and there exists x 2 K such
that v(x) = 0, then v is a saddle point of the dynamics.
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Proof: let v =
qP

¹=1
®¹v¹, 1 · q · p (renaming memories if necessary). v is

piecewise constant (since so are the v¹¶s, and there is a ¯nite number of them).
Therefore, if v(x) = 0 then it vanishes in a neighborhood U of x and it holds that

0 <
IP
i=1

®¹iv
¹i = ¡

JP
j=1

®¹jv
¹j at every point in U , being fv¹igIi=1 [ fv¹igJj=1 =

fv¹igq¹=1

Let us choose w =
IP
i=1

®¹iv
¹i¡

JP
j=1

®¹jv
¹j (we can neglect the normalizing constant).

Then w = 2
IP
i=1

®¹iv
¹i in U . Now compute

g¾(hv+"w(x)) = g¾(hv(x) + "hw(x))

Keeping in mind that hv(x) = V 2
¤ v(x) (by hypothesis and by virtue of the linearity

of hv) and computing

hw(x) =

qX

¹=1

®¹h
v¹(x) = V 2

¤

qX

¹=1

®¹v
¹(x) = 2V 2

¤

IX

i=1

®¹iv
¹i(x)

(which holds for every x 2 U), we obtain

g¾(hv+"w(x)) = g¾(V 2
¤ v(x) + 2"V 2

¤

IX

i=1

®¹iv
¹i(x))

in U: The dynamics at v + "w is (always in U ½K):

@(v + "w)

@t
= ¡2"

IX

i=1

®¹iv
¹i + g¾(2"V 2

¤

IX

i=1

®¹iv
¹i)

No matter the sign of
IP
i=1

®¹iv
¹i , the stability condition at v+"w is g¾(2"V 2

¤
IP
i=1

®¹iv
¹i) <

2"
IP
i=1

®¹iv
¹i which is equivalent to ¾ = g0¾(0) < 1

V 2¤
which is false since, by hypoth-

esis, g¾(§V 3
¤ ) = g¾V 2¤ (§V¤) = §V¤ (otherwise, g¾ would not have any ¯xed point

apart from the origin). Then v is unstable in the direction w.
Now let us choose w = v. With a similar reasoning, we get g¾(hv+"w(x)) =

g¾(V 2
¤ v(1 + ")) and the stability condition at v + "w is g¾(V 2

¤ v(1 + ")) < v(1 + "):
Remembering that v = g¾(V 2

¤ v), the condition for the system to be stable at v+"w
is g0¾(V 3

¤ ) < 1
V 2¤

, which holds since the memories v¹ are minima of H (cf. Sect. 2).

This leads to the useful

Corollary 6.2: The basins of attraction for mixture states have zero radius, in the
sense of the L2(K) norm.

Example: for q = 2, all combinations of the form v = §1
2v¹ § 1

2vº are spurious
states (see Fig. 3). The direction of maximum unstability is given by v¹ ¡ vº and
that of maximum stability is§v (directly towards or from the origin of coordinates).
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Figure 3: A mixture spurious state. Dotted lines indicate limits for the spherical basins

of the two memories which compose the spurious state.

6.2 Non-mixture Spurious States

Unlike mixture spurious states, which can be calculated analytically, the non-
mixture ones are di±cult to ¯nd. Indeed, in the limit p!1, the following property
holds, no matter how T is de¯ned.

Lemma 6.3: if fv¹g1¹=1 is complete2 and p ! 1, there are no non-mixture
spurious memories.

Remark: since S=L2(K) here, a question about the meaning of lemma 6.3 may arise,
i.e. is there some basis of L2(K) whose elements take on only two values, say §V¤?
The answer is yes. The relevant example forK ½ R (that can be extended toRn) are
the Haar wavelets, which form an orthonormal and complete basis in L2(¡1;+1).
They are bi-valued, but since they are normalized, such values change from one
function to another. If normality is relaxed, it is possible to force them to take
values in fV¤;¡V¤g. If restricted to a bounded interval K ½ R, they form an
orthogonal (but not orthonormal) and complete set in L2(K). However, if we
construct T according to (4), this completeness can be only asymptotical: as we
saw, the number of orthogonal memories can be as large as desired, but not in¯nite.

7 Back to the Discrete Domain

In order for the results of Sect. 2 to be valid, the only condition on X is to be a
metric space (continuous or discrete). Therefore, all theorems of Sect. 2 hold for
the discrete Hop¯eld model with continuous activities [7], if we replace the L2(K)
norm with the usual euclidean norm and j K j with N (number of neurons).

Concerning the results of Section 3, the situation is di®erent. Clearly, theorem
3.1 is no longer true and the same happens for lemmas and corollaries based on

2The set fv¹g is said to be complete in L2(K) if and only if the minimal subspace of L2(K)
which contains it is the entire space L2(K):
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the possibility of memories with an unbounded number of discontinuities, such as
corollary 3.3 (of no meaning for the discrete case). Instead, results concerning
stability (Sect. 4) and size of attraction basins (Sect. 5) remain valid, with slight
changes. The same is true for Section 6 (spurious states), except for theorem 6.3
(non-mixture spurious memories), which has no meaning for the discrete model.

As for the Hop¯eld model with discrete activities [6], ¯rst remark that its metrics
based on the Hamming distance is not euclidean. However, being this metrics the
discrete version of the L1 norm, which is equivalent3 to the quadratic L2 norm, some
results remain qualitatively true, e.g. theorems 2.1 and 2.3; but the mathematical
tools used here are of no help to obtain them. And, on the other hand, the results
of Sections 3 to 6 have no meaning in general (when based on concepts of euclidean
distance and directional derivatives, of no application in the discrete case).

8 Conclusions

We introduced a formal theoretical background, including theorems and their proofs,
for our neural network model with AM in which processing units are elements of
a continuous metric space. This approach is intended as a generalization of the
previous ones due to Little and Hop¯eld. Our main purpose was to provide a
mathematical foundation of the actual possibility to formulate a system that uni-
¯es graded response units and continuous topological structure on the set of such
units, obtaining a more biologically plausible model of AM.

On the other hand, our approach preserves salient features that made attractive
all discrete models, especially the levels of continuity that the second Hop¯eld model
[7] added to the discrete one [6]: graded activation functions and continuous scale of
time, via the transition from discrete to continuous, di®erential equation dynamics.

Firstly (Section 2) general results were proved assuming only a symmetric weight
matrix T with non-negative diagonal elements. These results are generalizations of
well known properties of discrete, Ising-type models.

Then (Sections 3 to 6) we analyzed the case of orthogonal memories and a
synaptic operator constructed through the autocorrelation (Hebb) rule. We proved:
-Hebb rule: it can be naturally extended to the in¯nite dimensional case.
-Capacity : any ¯nite set of orthogonal memories can be stored and retrieved. How-
ever there are some di®erences in capacity with regard to discrete approaches.
-Stability : necessary and su±cient conditions for the memories and the origin to be
stable, in terms of the relation between parameters of the transfer function g¾ .
-Basins of attraction: with the same radius for all memories, positive (L2 norm).
-Spurious memories : they exist. If a spurious state vanishes at some point, then its
basin of attraction has zero radius (k L2 k) and it is a saddle point of the dynamics.

We also discussed the validity of these results when applied to the discrete mod-
els of AM [6],[7]. Such application looks more natural for the model with graded
response [7], as in this case the concepts of euclidean distance and directional deriva-
tives remain valid, while in the discrete case [6] only some general properties (con-
cerning stability and convergence to attractors) are preserved, maintaining anyhow

3Two norms k ¢ k and k ¢ k0 on a vector space V are said to be equivalent norms if there exist
positive real numbers c and d such that c k x k·k x k0· d k x k 8x 2 V:
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qualitative similarity with the in¯nite dimensional system.
This approach can be useful for modelling in biology and neurophysiology. It

retains all the stylized facts that made attractive the Hop¯eld neural network and its
modi¯cations, yet giving the possibility of modelling the brain cortex as a continuous
space. In other words, it integrates two levels of continuity:

-Continuous response units, which was already present in [7] and permits descrip-
tion of relevant neural activity by ¯ring rates, rather than merely by the presence
or the absence of an individual spike.

-Continuous topology of the neural system, obtaining a model of AM that rec-
onciles biological evidence of a continuum of the neural tissue with descriptions
provided by discrete models inspired in Ising systems.

In addition, the results proved here can be useful, with their limitations (Sect.
7), when performing the reverse track of what we have done, i.e. reconsidering the
discrete case through the knowledge of what happens if the state space is continuous.
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Abstract. The GMDH MIA algorithm is modified by the use of the selection 
procedure from genetic algorithms and including cloning of the best neurons 
generated to get even lesser errors.  The selection procedure finds parents for a 
new neuron among already existing neurons according to fitness and with some 
probability also from network inputs. The essence of cloning is a slight 
modification of parameters of copies of the best neuron, i.e. a neuron with the 
largest fitness. The genetically modified GMDH network with cloning (GMC 
GMDH) can outperform other powerful methods. It is demonstrated on some 
tasks from the Machine Learning Repository. 

1   Introduction 

In this paper we solve difficult classification tasks by the use of the GMDH MIA, i.e. 
group method data handling multilayer iterative adaptive method, modified by 
selection algorithm common in genetic algorithms and by cloning the best neurons 
generated up to given a moment of the learning process. Thus we combine genetic 
algorithm from which we use selection operation and immune networks from which 
we use a notion of cloning. 

The basis of our method is the standard GMDH MIA method described in many 
papers since 1971 by [1], [4], [5], [6], [7], [10] and many others.  

The basic approach of the GMDH is that each neuron (node or unit) in the network 
receives input from exactly two other neurons with the exception of neurons 
representing the input layer. The two inputs, x and y are then combined to produce a 
partial descriptor based on the simple quadratic transfer function (The output signal is 
z): 

z = a1 + a2x + a3y + a4x
2 + a5y

2 + a6xy ,                                     (1) 
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where coefficients a, .. f are determined by linear regression and are unique for each 
transfer function, i.e. each neuron. The coefficients can be thought of as analogous to 
weights found in other types of neural networks.  

The network of neurons with transfer functions (1) is constructed as one layer at a 
time. The first network layer consists of functions of each possible pair of n input 
variables (zero-th layer) resulting in n(n-1)/2 neurons. The second layer is created 
using inputs from the first layer and so on. Due to exponential growing of a number of 
neurons in a layer, after finishing the layer, the limited number of the best neurons is 
selected and the others removed from the network. 

In [3], a selection procedure from genetic algorithms is used for finding two parents 
for a new neuron instead of the systematic procedure in the standard GMDH MIA 
algorithm with apparent layered structure. Our approach uses a selection procedure 
from genetic algorithms, but there is no explicit layered structure. The network grows 
during learning one neuron at a time. No neuron is deleted during the learning process 
and in the selection procedure its chance to become a parent for a new neuron is 
proportional to its fitness. If a new neuron appears to be the best, its clones are 
generated.  

Clones are inexact copies of the parent neuron, which was found to be the best 
neuron up to now generated. Inexact copies follow from the fact that having exact copy 
has no sense in GMDH networks, so some mutation process must be applied to get 
clones a little bit different from the parent neuron. 

It is shown here that a new algorithm, especially cloning, allows tuning the GMDH 
neural network more effectively than it is possible in genetically optimized GMDH 
networks.  

2   Genetically modified GMDH 

Here we describe approaches which result from our constructing of genetically 
modified GMDH network with cloning. 

2.1   The learning set 

We assume an n-dimensional real valued input and a one-dimensional real valued 
output. The learning set consists of n+1 dimensional vectors (xi, yi) = (x1i, x2i, ... xni, yi), 
i = 1, 2, ... N where N is the number of learning samples or examples. The learning set 
can be written in the matrix form 

[ ]YX , . 
The matrix X has n columns and N rows; Y is a column vector of N elements. In the 

GMDH the learning set is usually broken to two disjoint subsets, the construction 
(training) set or setup set and the so-called validation set. In the learning process the 
former one is used for setting up parameters of neurons of the newly created layer, the 



           Genetically Modified GMDH Method with Cloning     31

latter for evaluation of an error of newly created neurons. Thus N = Ns + NV, where Ns 
is the number of rows used for setting up the parameters of neurons (the training set), 
and NV is the number of rows used for error evaluation during learning (the validation 
set). 

2.2   Selection process in GMDH MIA 

Hiasaat and Mort have published a very interesting and principally simple approach in 
2004 [8]. Their method does not remove any neuron during learning. Thus it allows 
unfit individuals from early layers to be incorporated at an advanced layer where they 
generate fitter solutions. Secondly, it also allows those unfit individuals to survive the 
selection process if their combinations with one or more of the other individuals 
produce new fit individuals, and thirdly, it allows more implicit non-linearity by 
allowing multi-layer variable interaction. The GMDH algorithm is constructed in 
exactly the same manner as the standard GMDH algorithm except for the selection 
process. In order to select the individuals that are allowed to pass to the next layer, all 
the outputs of the GMDH algorithm at the current layer are entered as inputs in the 
algorithm. It was shown in [8] that this approach can outperform the standard GMDH 
MIA when used in the prediction of two daily currency exchange rates.  

2.3   New genetically modified GMDH network algorithm 

The standard quadratic neuron is an individual of the genetically modified GMDH 
network. Its parents are two neurons (or possibly one or two network inputs) from 
which two input signals are taken. A selection of one neuron or input as one parent and 
another neuron or input as the other parent can be made by the use of different criteria. 
In genetic algorithms in selection step there is a common approach that the probability 
to be a parent is proportional to the value of the fitness function. Just this approach is 
used here. The fitness is simply reciprocal of the mean error on the validation set. 

Note that in the standard GMDH MIA algorithm all possible pairs of neurons from 
the preceding layer (or inputs when the first layer is formed) are taken as pairs of 
parents. The selection consists of taking a limited number of the best descendants, 
“children”, while the others are removed after they have arisen and were evaluated. In 
this way, all variants of the GMDH MIA are rather ineffective as there are a lot of 
neurons generated, evaluated and then simply removed with no other use.  

An operation of a crossover in the genetically modified GMDH is, in fact, no 
crossover in the sense of combining two parts of parents’ genomes. In our approach eq. 
(1) gives an exactly symmetrical procedure of mixing the parents’ influence but not 
their features, parameters. 
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2.4   Selection procedure 

The initial state form n inputs only, there are no neurons.  
If there are k neurons already, the probability of a selection from inputs and from 

neurons is given by 

pi = n/(n + k) , 

pn = k/(n + k) 

for n/(n + k) > p0, where p0 is minimal probability that one of network inputs will be 
selected; we found p0 = 0.1 as optimal. Otherwise 

pi = p0, 

pn = (1 - p0). 

The fitness function is equal to the reciprocal error on the verification set. Let �(j) 
be the mean error of the j-th neuron on the validating set. The probability that neuron j 
will be selected is the following: 

∑
=

−=
TN
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nn

s

jpjp

1
)(/1

)(/1)1()(
ε

ε

 . 

Moreover, it must be assured that the same neuron or the same input is not selected 
as a second parent of the new neuron. 

After the new neuron is formed and evaluated it can become immediately a parent 
for another neuron. Thus the network has no explicit layered structure. Each new 
neuron can be connected to any input or up to now existing neurons.  

The computation of six parameters a, .. f , see (1), of the new neuron is the same as 
in the GMDH MIA algorithm.  

2.5   Best neuron 

A new neuron added need not be better than any other. Therefore, the index and error 
value of the best neuron is stored as long as a better neuron arises. Thus every time 
there is information about the best neuron, which can act as network’s output. After 
learning, this output is used as a network output in the recall phase. 

2.6   Pruning 

After learning, the best neuron and all its ancestors have their roles in the network 
function. All others can be removed.  
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3   Cloning 

There are various mechanisms or processes in the immune system, which are 
investigated in the development of artificial immune systems. A comprehensive 
summary can be found in [11].  

Note first that authors dealing with artificial immune systems, e.g. [12] use rather 
different terminology than that used in neural networks community and genetic 
algorithms community. So some translation or mapping is needed. Here especially, 
antibody – neuron, affinity – fitness.  

3.1   Cloning mechanisms 

There are lots of ideas about approaches to cloning. From these ideas we use cloning in 
form close to the SIMPLE CLONALG algorithm [12] in this way: 

 
BEGIN 

Given the Best GMDH Neuron with parents (i.e. input 
signals from) In1, In2 and with six parameters a, b, 
.. f. 
REPEAT 

Produce a clone of the Best Neuron. A clone 
has the same inputs In1 and In2 but mutated 
parameters a, .. f, i.e. parameters slightly 
changed (details see below). 
Evaluate fitness of this clone neuron.  
If this neuron happens to be better than the 
Best Neuron, break this clone generating cycle 
(and start this cloning algorithm from the 
beginning with new Best Neuron again). 

UNTIL a terminal criterion is satisfied or the 
maximum number of clones is reached. 

END. 

3.2   Mutation 

It has no sense for the clones to be exact copies of the Best Neuron. Therefore, some 
mutation must be in effect. The clone to be a true clone must have the same parents. 
So, basic parameters – the two parents are not changed. A problem is how to change 
parameters a, .. f. These changes should be small enough to keep sufficient similarity 
of clone to original individual (the Best Neuron) and, at the same time, sufficiently 
large to reach necessary changes for searching data space in the neighborhood of 
parameters of the Best Neuron.  
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2.4   Selection procedure 

The initial state form n inputs only, there are no neurons.  
If there are k neurons already, the probability of a selection from inputs and from 

neurons is given by 

pi = n/(n + k) , 

pn = k/(n + k) 

for n/(n + k) > p0, where p0 is minimal probability that one of network inputs will be 
selected; we found p0 = 0.1 as optimal. Otherwise 

pi = p0, 

pn = (1 - p0). 

The fitness function is equal to the reciprocal error on the verification set. Let �(j) 
be the mean error of the j-th neuron on the validating set. The probability that neuron j 
will be selected is the following: 

∑
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Moreover, it must be assured that the same neuron or the same input is not selected 
as a second parent of the new neuron. 

After the new neuron is formed and evaluated it can become immediately a parent 
for another neuron. Thus the network has no explicit layered structure. Each new 
neuron can be connected to any input or up to now existing neurons.  

The computation of six parameters a, .. f , see (1), of the new neuron is the same as 
in the GMDH MIA algorithm.  

2.5   Best neuron 

A new neuron added need not be better than any other. Therefore, the index and error 
value of the best neuron is stored as long as a better neuron arises. Thus every time 
there is information about the best neuron, which can act as network’s output. After 
learning, this output is used as a network output in the recall phase. 

2.6   Pruning 

After learning, the best neuron and all its ancestors have their roles in the network 
function. All others can be removed.  
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neurons generated for stopping computation was 10000. Probability that a new 
neuron’s input is one of input signals was 10 %, probability that a new neuron’s input 
is one of already existing neurons was 90 %. The maximal number of clones generated 
from one parent neuron is limited to int(sqrt(No. of neurons generated up to now)). For 
all methods optimal threshold � for a minimal error was used. 

Classification errors for four different methods including the GMC GMDH are 
summarized in Table 1. In the second column the cross validation factor is given. The 
methods for comparison are 1-NN, the standard nearest neighbor method. Sqrt-NN, the 
k-NN method with k equal to the square root of the number of samples of the learning 
set. Bayes, the naïve Bayes method using ten bins histograms. LWM1, the learning 
weighted metrics method [14] modified with nonsmooth learning process. 

 
Table 1. Classification errors for four methods on some data sets from UCI MLR. 
  

 Algorithm 

Data set 1-NN sqrt-NN Bayes LWM1 
GMC 

GMDH 
Shuttle-small 0.00259 0.00828 0.01294 0.00310 0.00259 
Brest CW 0.04792 0.03255 0.05244 0.04538 0.04188 
Vote 0.10526 0.06015 0.09774 0.07407 0.06667 
Spam 0.09967 0.11270 0.14267 0.10735 0.10085 
Adult 0.20826 0.21242 0.16370 0.17171 0.15923 
Splice 0.40351 0.37206 0.28655 0.25874 0.13087 
German 0.40767 0.20283 0.29768 0.72844 0.29465 

 
In Table 1 and in Fig.1 it can be seen that the GMC GMDH method outperforms 

other methods in tasks Adult, Shuttle small, and Splice or nearly outperforms Brest 
CW, Spam, and Vote being the second best with very small difference with respect to 
the best method considered. It is the second best in task German.  

5   Conclusions 

The Genetically modified GMDH method is an elegant idea how to improve the 
efficiency of the popular GMDH MIA method. It is based on the usage of a selection 
principle of genetic algorithms instead of systematic assignment of all pairs formed by 
neurons of the last layer. Thus all neurons once generated remain at least potential 
parents for new neurons during the whole learning process. Also each input signal may 
be used with some probability as a parent signal for a new neuron. Thus the layered 
structure of the GMDH algorithm disappears because any new neuron can be 
connected to the output of any already existing neuron or even to any input of the 
network.  

The target of this paper is to simplify the idea of a genetically modified GMDH 
neural network and to extend it by cloning. Clones are close but not identical copies of 
original individuals. An individual in our case is the best neuron. Intuition behind says 
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that even when the parameters of the best neuron were set up by linear regression, i.e. 
with a minimal mean squared error, due to nonlinearity of the problem as well as the 
GMDH network, the statistical normality assumptions are not met. Thus true minimum 
may lie somewhere in the neighborhood of parameters of the best neuron. Therefore 
the clones have mutated, i.e. slightly changed parameters of the parent individual, the 
best neuron. We found that the cloning with large parameters changes has small effect, 
but with small changes a new best neuron often arises.  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Shuttle-
small

Brest CW Vote Spam Adult Splice German

1-NN

sqrt-NN

bayes

LWM1

GMC GMDH

 
 

Fig. 2. Classification errors for four methods on some data sets from the UCI MLR. Note that for 
Shuttle small data the errors are ten times enlarged in this graph.  

 
The genetically modified GMDH method with cloning (GMC GMDH) presented 

here appears to be a relatively simple and efficient method giving reliably good results 
better or comparable with the best results obtained by other methods. The new method 
behaves rather well and it has no critical parameters to be tuned. As there is no 
searching or sorting like in the nearest neighbor-based methods, the GMC GMDH is 
much faster than methods mentioned especially for large learning sets.  

Essential advantage of the genetically modified GMDH with cloning is that one 
need not set up the number of the best neurons selected in the newly generated layer 
and thus indirectly control learning time and size of the network as in a standard 
GMDH MIA algorithm. Only the limitations of the genetically modified GMDH 
method with cloning are learning time or memory size.  
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Abstract. In this paper we study the relation between Polynomial Cel-
lular Neural Networks (CNNs) and semitotalistic Cellular Automata
(CA). First, we show that a Polynomial CNN, even in its simplest ver-
sion, is capable of dealing with the Game of Life, a Cellular Automaton
equivalent to a universal Turing machine; second, we prove that when
Polynomial CNNs are employed to implement (semi)totalistic CA, the
resultant network is always stable.

1 Introduction

Cellular Neural Networks (CNNs) [1] are a combination of Neural Networks and
Cellular Automata, since neurons exhibit only local connections. Their impor-
tance resides in the topological simplicity which allows a direct VLSI implemen-
tation [2], unlike other neural networks models. Unfortunately, this benefit is bal-
anced by their restricted computational power, since one-layer space-invariant
CNN cannot solve linearly non-separable problems. In order to overcome this
drawback, some modifications to the standard model have been proposed like
space-variant CNNs [3], multilayer CNNs [4], trapezoidal activation functions [5],
piecewise-linear discriminant functions [6], and the CNN - Universal Machine
(CNN-UM), a supercomputer whose computation core is a CNN [7].
Our research is devoted to find the simplest way to extend the capabilities of
one-layer space-invariant CNNs without losing the advantages offered by the
VLSI implementation. In particular, we put forward a novel CNN model, first
introduced in [8], in which a polynomial term is added to the state equation of
the standard CNN. This polynomial model is able to deal with both elementary
non-linearly separable tasks, like the XOR operation [9], and real-life problems,
like the epilepsy seizures prediction [10], and it still has a VLSI realization [11].
Traditionally, the research in this field has been oriented to the applications, and
only in the very last years a number of theoretically results have been found.
For instance, in [12] some sufficient conditions for the stability of the network
are given, whereas in [13] it is demonstrated that, at least in their discrete-time
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version, polynomial CNNs are equivalent to a universal Turing machine.
In this paper we demonstrate two results about the continuous-time (CT) poly-
nomial CNN: first, we show that the simplest type of CT polynomial CNN is
capable of universal computation; then, we prove that a CT polynomial CNN im-
plementing a particular class (semitotalistic) of Cellular Automata is completely
stable. These aspects are particularly significant because they help to define a
link between CNNs and CA, allowing to unify the theory of both structures.
The paper is structured as follows: first, we introduce the mathematical model for
the standard and the polynomial CNN; then, we introduce a Cellular Automaton
called Game of Life, explaining why it is so important and how it is possible to
obtain the adequate network to perform it; third, we focus on some theoretical
aspects of the stability of polynomial CNNs; finally, we draw conclusions.

2 Mathematical model

2.1 Generalities about the continuous-time CNN

A two-dimensional Cellular Neural Network is composed of a regular grid of
dynamical artificial neurons (cells) with local connections only. Each CNN cell
Cij is coupled locally only to those neighbor cells which lie inside a prescribed
sphere of influence Sij(r) of radius r, where

Sij(r) = {Ckl : max(|k − i| , |l − j|) ≤ r, 1 ≤ k ≤ M, 1 ≤ l ≤ N}.

For our purposes we employ a Cellular Neural Network with r = 1, then Cij is
coupled only to its eight nearest neighbor cells, and with space invariant weights.
The cells of a CNN are dynamical systems, then they have an input, an output
and a state. In particular, in a continuous-time Cellular Neural Network, the
state of the cell in position (i,j) is

˙xij = −xij + A ∗ Y + B ∗ U + z (1)

where the symbol ∗ indicates the convolution operation that is defined, for the
cell in position (i,j), as

A ∗ Y =
∑

|k|≤1,|l|≤1

akl yi+k,j+l

Note that this way of defining the convolution is peculiar to CNNs, and it differs
from the one usually employed in the image processing field. In the Eq. (1), the
terms U and Y are the input and the output of the network, respectively; finally,
A and B are 3-by-3 matrices, and they both (together with the bias z) determine
the behaviour of the network. The output of the cell is computed as

yij = f(xij) =
1
2
(|xij + 1| − |xij − 1|) (2)

It can be proved that, under certain conditions, the output converges always to
+1 o −1. When CNNs are used to process images, the first case is equivalent to
a black cell, and the second case to a white cell.
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2.2 Polynomial CNN model

It is possible to prove that one-layer space-invariant CNNs cannot solve non-
linearly separable problems. However, this drawback can be overcome by adding
a polynomial term g(·) to the CNN model of Eq. (1), obtaining

˙xij = −xij + A ∗ Y + B ∗ U + z + g(U, Y ) (3)

The polynomial CNN was first introduced in [8], and some sufficient conditions
for the stability of the network are given in [12]. In the simplest case, the term
g(U, Y ) is a second degree polynomial with the following form

g(U, Y ) =
2∑

k=0

(Pk ∗ Uk ·Qk ∗ Y 2−k) (4)

= (P0 ∗ 13×3 ·Q0 ∗ Y 2) + (P1 ∗ U ·Q1 ∗ Y ) + (P2 ∗ U2 ·Q2 ∗ 13×3)

where 13×3 is a 3-by-3 matrix in which all the elements are 1’s, and (P0, P1, P2,
Q0, Q1, Q2) are 3-by-3 matrices. To sum up, the state equation for a cell of the
continuous-time polynomial CNN can be written as

˙xij = −xij + A ∗ Y + B ∗ U + z

+ (P0 ∗ 13×3 ·Q0 ∗ Y 2) + (P1 ∗ U ·Q1 ∗ Y ) + (P2 ∗ U2 ·Q2 ∗ 13×3) (5)

3 The Game of Life

3.1 The rules

One of the best known Cellular Automaton (CA) is the ‘Game of Life’ (GoL),
and its importance comes from the fact that the GoL has the same computational
power as a universal Turing machine [14]. It is a no-player game played on an
infinite two-dimensional grid of square cells, and its evolution is determined only
by the initial pattern, which is defined by the programmer. Each cell interacts
with its 8 neighbors, and at any fixed time it can be either black or white. In
each time step, the next state of each cell is defined by the following rules

– Birth: a cell that is white at time t becomes black at time t+1 only if exactly
3 of its eight neighbors were black at time t;

– Survival : a cell that was black at time t will remain black at t+1 if and only
if it had exactly 2 or 3 black neighbors at time t.

3.2 Representation of the rules of semitotalistic CA

In the GoL the next state of a cell depends only on its present state and on the
sum of its eight nearest neighbors. This kind of CA are called semitotalistic and
their rules can be conveniently represented in a Cartesian system, as depicted in
Fig. 1. As usual for CNNs, a black pixel is +1 and a white pixel is -1. Then, the
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Fig. 1. The Game of Life: a red cross corresponds to a 1 (black) for the next state, and
a blue diamond is a -1 (white).

x axis corresponds to the central pixel of the 3×3 Cellular Automaton, whereas
the y axis is equal to the sum of the 8 outer neighbours. The rules of the CA
are represented by associating to each point of the grid - corresponding to a pair
(central pixel, sum of neighbours) - a symbol indicating the following state of
the cell: a red cross is a 1 (black) for the next state, a blue diamond is a −1
(white). Thanks to this description, it is evident that the GoL is not a linearly
separable task. These results can be summarized as in Table 1, showing that the
18 combinations are necessary and sufficient to describe the GoL.

4 A polynomial continuous-time CNN solving the GoL

4.1 Relation between polynomial CNNs and semitotalistic CA

Since in semitotalistic CA the next state of a cell depends only on its present
state and on the sum of its eight nearest neighbors, the polynomial model of
Eq. (5) can be simplified thanks to some considerations on the nature of the
problem. First, all the matrices of the polynomial CNN model must have central
symmetry: we indicate the central and the elements with the subindex c and p,
respectively. Second, in general the output of a CA is a function of the input
pattern only, thus all the matrices of Eq. (5) that are convoluted with Y and
Y 2 - namely A, Q0 and Q1 - must have exclusively the central element. Finally,
we focus on the Eq. (5): the terms Q2 ∗ 13×3 and P0 ∗ 13×3 are constant and
they can be included into the matrices Q0 and P3, respectively; moreover, as the
input of a CA is binary, the last term can be added to the bias because it is

Q2 ∗ U2 = Q2 ∗ 1 = constant

In conclusion, a continuous-time polynomial CNN implementing a semitotalistic
CA has the following form

˙xij = −xij + q0c y2
ij + (ac + P1 ∗ U) yij + B ∗ U + z (6)
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Table 1. List of the 18 possible combinations for the GoL.

Central pixel # black neigh. Output

1. White 0 White

2. White 1 White

3. White 2 White

4. White 3 Black

5. White 4 White

6. White 5 White

7. White 6 White

8. White 7 White

9. White 8 White

10. Black 0 White

11. Black 1 White

12. Black 2 Black

13. Black 3 Black

14. Black 4 White

15. Black 5 White

16. Black 6 White

17. Black 7 White

18. Black 8 White

where

B =

 bp bp bp

bp bc bp

bp bp bp

 , P1 =

p1p p1p p1p

p1p p1c p1p

p1p p1p p1p

 .

This analysis allows to reduce the number of free parameters from 73 (9 param-
eters for each of the eight matrices appearing in the Eq. (5) plus the bias term)
to only 7: ac, bc, bp, q0c, p1c, p1p, z.

4.2 CNN templates for the GoL

Finding the weights of a Cellular Neural Network that performs a given task is
far from being trivial, and only partial solutions exist (e.g. [15, 16]). Neverthe-
less, a method for implementing the GoL on a discrete-time polynomial CNN
is given in [13]. This technique, based on the solution of a system of equations
representing the Game of Life, can be applied to the CNN model in Eq. (5) with
only a few modifications [17]. The resulting parameters are

ac = 40, bc = 1.75, bp = 1.75, i = 8, q0c = −53, p1c = 0, p1p = −6

and the initial state of the network is yij(0) = 0. It is worth to mention that
these value can be successfully found through a genetic approach too [18].
Now, it is necessary to check whether the proposed solution is stable according
to the following definition, applicable to any autonomous dynamical system.
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Definition 1 (System completely stable) An autonomous dynamical system
described by the state equation:

ẋ = F (x), x ∈ <n, F : <n → <n (7)

is said to be completely stable if for each initial condition x0 ∈ <n

lim
t→∞

x(t, x0) = const (8)

The results of the simulations, summarized in Table 2 and 3 for all the 18 possible
configurations of the input (see Table 1), indicate that the network is stable
for the parameters and the initial state given, and that the output, calculated
according to the Eq. (2) converges always to the desired values.

Table 2. Polynomial CNN described by the template of section 4.2. Time waveform
for the state of a generic cell when uc=-1.

uc=-1
∑

up=-8 uc=-1
∑

up=-6 uc=-1
∑

up=-4

uc=-1
∑

up=-2 uc=-1
∑

up=0 uc=-1
∑

up=2

uc=-1
∑

up=4 uc=-1
∑

up=6 uc=-1
∑

up=8
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5 About the stability of polynomial CNNs

In the previous section we saw that the network proposed to solve the GoL
is stable, but this result is not immediately generalizable. Sufficient conditions
for the stability of polynomial CNNs can be found in [12], but none of them is
applicable to our network. Therefore, we need to provide a formal demonstration
to show that the system described by the Eq. (6) is completely stable.

Table 3. Polynomial CNN described by the template of section 4.2. Time waveform
for the state of a generic cell when uc=1.

uc=1
∑

up=-8 uc=1
∑

up=-6 uc=1
∑

up=-4

uc=1
∑

up=-2 uc=1
∑

up=0 uc=1
∑

up=2

uc=1
∑

up=4 uc=1
∑

up=6 uc=1
∑

up=8

First of all, we mention a lemma that is useful in the prosecution of the work.

Lemma 1 (Gronwall’s Lemma) Let u(t) a continuously differentiable func-
tion in [0,T] such that

u̇ ≤ f(t)u(t) + g(t) (9)
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where f(t) and g(t) are integrable functions in [0,T], then

u(t) ≤ u(0)e
∫ t
0 f(τ)dτ +

∫ t

0

g(τ)e
∫ t

τ
f(s)dsdτ (10)

Proof. See [19]. �

The Gronwall’s Lemma is necessary to proof the following theorem.

Theorem 1 (State-Boundedness Criterion) If the function f(·) in the out-
put equation (2) is continuous and bounded, then the state xij(t) of each cell of
a continuous-time polynomial CNN is bounded for all bounded threshold z and
bounded inputs U .

Proof. The proof can be derived from the one of a similar theorem for the Chua-
Yang model presented in [20]. The Eq. (6) can be recast into the form

ẋij = −xij + h(t) (11)

where
h(t) ≡ q0c f(xij)2 + (ac + P1 ∗ U) f(xij) + B ∗ U + z (12)

Since both z and U are bounded by hypothesis, there exists finite constant K
such that

max
0≤t≤∞

|h(t)| ≤ K (13)

It follows from Eqs. 11 and 13 (via Gronwall’s Lemma) that

|xij(t)| ≤
∣∣xij(0)e−t

∣∣ +
∣∣∣∣∫ t

0

e−(t−τ)h(τ)dτ

∣∣∣∣
≤ |xij(0)| e−t + max

0≤t≤∞
|h(τ)|

∫ t

0

e−(t−τ)dτ

< |xij(0)|+ K, for all t > 0 �

Thanks to this theorem, we can assert that the state of each cell of the
network is bounded, but the convergence to a certain value is still not assured.
Now, we need to make use of another theorem.

Theorem 2 Let f : < → < be a bounded continuously differentiable function,
then every solution of ẋ = f(x) is monotone.

Proof. Suppose that x(t) is a solution defined on an interval I; then, x is con-
tinuously differentiable on I. Suppose that x(t) is not monotone too; then, there
exist t1 < t2 < t3 with x(t1) = x(t3) ≷ x(t2). Without loss of generality, assume
x(t2) > x(t1). We may also assume t2 = min {t : t > t1 and x(t) = x(t2)},
and t1 = max {t : t < t2 and x(t) = x(t1)}; therefore, x(t1) < x(t) < x(t2) for
t1 < t < t2. By the Mean Value Theorem, there is t4 with t1 < t4 < t2 and
ẋ(t4) > 0. If z = x(t4), we have x(t1) < z < x(t2), and f(z) > 0. Now, there
must be t5 with t2 > t5 > t3 and x(t5) = z, and we may take t5 = min {t : t > t2
and x(t) <= z}. But since x(t5− δ) > x(t5) for δ > 0 sufficiently small, we must
have ẋ(t5) ≤ 0, contradicting ẋ(t5) = f(x(t5)) = f(z) > 0. �
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Note that the Theorem 2 can be applied to the Eq. (6), where

f(xij) = −xij + q0c y2
ij + (ac + P1 ∗ U) yij + K,

and K is a constant. Strictly speaking, this function is not continuously
differentiable because of the form of the output function in the Eq. (2), but it
can be approximated arbitrarily closely by a continuously differentiable function.
To sum up, in our case for bounded threshold z and bounded input U , the state of
each cell is bounded (Theorem 1) and monotone (Theorem 2). The convergence
of the state for each cell of the network is assured by the existence of limits for
monotone bounded functions (the well-known Monotone Convergence Theorem).
Therefore, we can state that whatever the values for ac, bc, bp, q0c, p1c, p1p, z, the
polynomial CNN representing a semitotalistic CA will be stable.

6 Conclusions

The fact that a continuous-time polynomial CNN can deal with the Game of Life
allows us to state that it has, at least theoretically, the same computational power
as a universal Turing machine. This is the first step towards the definition of
a polynomial CNN universal machine capable of executing complex algorithms,
similarly as the CNN-UM.
The second conclusion we can draw is that when polynomial CNNs are used
to implement semitotalistic CA, the resultant network is always stable. This
aspect is particularly important because it means that any possible choice of the
CNN weights gives place to a valid semitotalistic Cellular Automaton. However,
we cannot assert anything about the inverse implication, or rather, we have not
proved yet that any semitotalistic CA can be implemented by using a polynomial
CNN. This property is also useful when we determine the CNN weights necessary
to perform a given task. Often such a problem, commonly called CNN learning,
is solved by means of a genetic approach: in this case, the completely stability
of the network assures that no unstable individual will be produced.
One of our long-term objectives is to discover an exact relation between the rules
of a semitotalistic CA and the weights of a polynomial CNN. This would allow
to transfer the knowledge about one structure to the other one, permitting to
expand the field of application for both. A further aim is to test the polynomial
model on complex algorithms, analysing whether it outperforms standard CNNs
in terms of computational complexity.
Last but not least, we intend to implement soon the polynomial CNN model on
a Field Programmable Gate Array (FPGA) in order to make possible a number
of practical applications, especially in the image processing field.
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Abstract. A simple artificial neuron can represent a very complex behavior, in-
clusive chaotic one. Apparently, it is possible to control this behavior by means 
of the parameters that constitute this artificial neuron. This paper presents a sin-
gle recurrent neuron which can generate different periodic pattern of activation. 
The results indicate a variety of the behavior since a constant behavior, a cyclic 
one and a chaotic behavior. 

1   Introduction 

The brain is a complex structure and a complex behavior can be generated from 
this structure including recognition, short temporal and long temporal memory, com-
plex coordination and learning [1, 2, 3, 4, 5]. It is desirable to generate a similar struc-
ture to emulate this complex behavior and control them to generate entities with supe-
rior abilities. Nowadays it is very difficult to build entities which can emulate the com-
plex activities of the brain; how-ever, recurrent artificial neural network is an approach 
to this objective. Usually there are several studies about the behavior of complex recur-
rent neural networks; however, our study is focused to handle single neurons. It has 
been proposed structures with few neurons, commonly no more than four neurons. It is 
applied a recurrence to generate different periodic patterns of activation, inclusive 
chaos [6, 7, 8, 9, 10, 11].  

A single neuron can be defined as a single processing element which it emulate the 
behavior of a natural neuron in a simplified form. It is presented a single recurrent 
neuron where the activation function is a Gaussian function. The recurrence is applied 
when the output of this neuron is used as an input. This simple feedback makes a neu-
ron to exhibit some times a set of well-defined periodic patters including chaos. The 
two parameters of the activation function change the periodic patters of activation. 
This paper shows the behavior of this neuron when there is a change of these two pa-
rameters. 
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2   Neuron with a Gaussian activation function 

The architecture of a single neuron is shown in several books where neural net-
works are introduced. It is make an analogy between a natural neuron and an artificial 
neuron to get a simplistic model (figure 1). The artificial neuron is called a processing 
element because makes simple operations to integrate the input signals and it is gener-
ated an output using an activation function. Usually no linear activation functions are 
used, like sigmoid and hyperbolic tangential activation function. In this work a Gaus-
sian activation function is used instead. The Gaussian activation function has a bell-
like form. This function has two parameters, the width of the bell where it is called 
lambda and the center of mass called cm (equation1). Both parameters control the 
behavior of the activation function and consequently the behavior of the neuron is 
altered.  

 

 
Fig. 1. There are some analogies between a natural neuron and an artificial neuron. 
Synapse is equivalent to a weight (W) and the activation output of the neuron through 
the Axon is determined by the activation function (AF). 

2)(
),.( λλ

cmx

ecmxGauss
−

−
=      (1) 

 
The behavior of this single neuron can be modified including a feed-back of the 

output to the input. Figure 2 shows the recurrent neuron. The use of a Gaussian activa-
tion function is the difference with the artificial neuron shown in figure 1. The imple-
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mentation of the model is shown where it is generated every pattern through a time 
unit t. 
 
Step 1: Initialization: oa=0; epoch = 50; 
Step 2: Define parameters Lambda  and cm 
Step 3: Calculate on = gauss (oa, lambda, cm); 
Step 4:  oa = on; 
Step 5: if epoch <= 0 then end; else epoch <- epoch – 1; go to step (3) 
 

 
 

Fig. 2. Single recurrent neuron. 
 

Specific parameters makes that the recurrent neuron exhibit a well defined periodic 
pattern (figure 3). Other parameters makes that the recurrent neuron exhibits a chaotic 
pattern (figure 4) and finally there are parameters that make a stable exhibition of the 
recurrent neuron (figure 5). Chaos is a complex behavior so it is necessary to elaborate 
a bifurcation diagram to show the possible fixed points of this recurrent neuron as a 
function of parameters of its activation function [12]. 

 
Fig. 3. Periodic pattern of a single neuron with Gaussian activation function (lambda = 
0.5, cm =0.5). 
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Fig. 4. A periodic pattern of a single neuron with Gaussian activation function (lambda 
= 0.43. 

 
Fig. 5. One A periodic pattern of a single neuron with Gaussian activation function 
(lambda = 0.85, cm =0.5). 

3   Description results 

To illustrate a complete behavior of the neuron it is necessary to generate a bifurcation 
diagram common used when there is a chaotic behavior.  In this diagram it is plotted a 
change of one parameter (i. e. lambda) and the other parameter is set fixed. All the 
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possible values of the neuron activation are plotter in y axis versus the changing pa-
rameter. It is used a normalized information, this means between 0 and 1.  

 
Fig. 6. One Bifurcation diagram of a single recurrent neuron using parameter cm from 
0.05 to 0.2. 

 
Fig. 7. Bifurcation diagram of a single recurrent neuron using parameter cm from 0.25 
to 0.4. 
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Fig. 8. Bifurcation diagram of a single recurrent neuron using parameter cm from 0.45 
to 0.6. 

 

 
Fig. 9. Bifurcation diagram of a single recurrent neuron using parameter cm from 0.65 
to 0.8 
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Fig. 10. Bifurcation diagram of a single recurrent neuron using parameter cm from 
0.85 to 1.0. 

4   Discussion and Conclusion 

The interaction of several neurons of this kind could express a diversity of periodic 
patterns activities with a set of controllable parameters. It is possible to generate a 
variety of periodic patterns activities when it is used a rich interconnection of these 
neurons; however, it is necessary to realize new investigations to control all the pa-
rameters involved.  

There is an implicit property of self organization where it is possible to store a 
complex sequence of actions and its response is not altered by the input sequence; that 
means, there is an attractor presence. This property is desirable because it is possible to 
store several action sequences in the same structure. The future work includes the use 
of a genetic algorithm to control this parameter an exhibit several desirable patters 
activities. 
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Abstract.  An important problem in image management is image retrieval. When im-
ages in a database are not well organized, their efficient retrieval is a problem. In this 
paper we describe an image retrieval system able to recover a set of images that sat-
isfy some searching criteria. The proposal works well even if the objects appearing in 
the images are occluded or suffer affine transformations as rotations and translations. 
The proposed system is composed of three modules. The first module performs object 
training and object recognition using associative memories as classification tool. The 
second module performs image analysis and image organization in a database. The 
third module allows for image retrieval. Through several experiments we show the ef-
ficiency of the system. 

1 Introduction 

Image retrieval is an important problem nowadays. In the WWW more that 73% of 
the information is images [8]. Images in this space are, in general, not well or not or-
ganized at all. The explosion of image databases and the inefficiency of text-based im-
age retrieval have created an urgent need for effective approaches in image database re-
trieval. Their search is normally high time-consuming. Many techniques and 
commercial systems have been proposed in the literature to succeed this task. For sev-
eral examples, refer to [1-5, 8-11]. Most of these systems use combinations of image-
features such as colour or texture to organize the images as a database of images and 
then to recover them from it. To the final user of the system, normally these image fea-
tures do not have any meaning or are difficult to interpret and use. To avoid this prob-
lem, some systems use images as examples to recover other similar images. For a sys-
tem to be useful, it is necessary to be designed in accordance to the user’s intuition. A 
person normally knows nothing about describing features, image processing or image 
analysis. A user of and image retrieval system would like to input directly to the system 
queries such as: 
 

1. “System, display the set of images with rivers and threes”, or 
2. “System, show me the images with lions and zebras”. 

 
The key problem to most computer vision applications comprising image organiza-

tion and retrieval is object recognition. Object recognition, in the general case, is still 
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an open problem and it strongly determines the functionality of many systems such as 
image retrieval systems. In [14] was described an image retrieval system called 
(SISREC). Given a set of images the system automatically organizes a database. This 
system was able to recover images from a database in terms of their objects. One of the 
main restrictions of SISREC was that the objects in the image were not in contact with 
any other object.  

In this paper we describe an improved version of SISREC that is able to recover im-
ages now in the presence of object occlusions. The system is composed of three mod-
ules that are next described. Is important to mention that modules about to object rec-
ognition and image organization are the main contributions of this paper. 

2 Description of the system 

The system here proposed is composed of three main modules: 
 

1. One of Object Recognition Module (ORM). 
2. One of Image Analysis and Structuring Module (IASM), and  
3. One of Image Retrieval Module (IRM). 

2.1 Object recognition module (ORM) 

This module is the most important of the three. Its performance determines the com-
plete efficiency of the other two, and as a result that of the system. This demands using 
powerful object recognition techniques to get good results. Because of objects can ap-
pear occluded we decided to adopt some ideas described in [16] for object recognition 
under occlusions.  
 
2.1.1. Describing essential parts of an object. For an object to be recognized in an 
image in the presence of occlusions we first detect its so-called essential parts (EP). An 
EP part is a part that allows finding out the presence of an object in an image. To detect 
an EP of an object, we get an image of the object with a background as homogeneous 
as possible. For an example refer to Figure 1. Then we continue as follows: 
 
1. Manually, with a circular window we first select a region of the image 

enclosing a candidate EP the object. 
2. Inside this window, we apply a standard threshold [12] to get a binary 

sub-image. 
3. We apply to this binary circular image a connected component-labeling 

algorithm [6] to get all possible connected binary components. 
4. We remove small spurious regions with a standard size filter [7]. 
5. We then calculate well-known first four Hu descriptors, invariant to 

translations and rotations, to describe locally the selected part. For 
the details refer to [13]. 

6. We apply steps 1 to 5 to other parts of the object. 
7. We repeat this procedure (steps 1 to 6) to remaining objects. 

 
Special attention has to be put in selecting the set of describing parts. For example, 

from Figure 1, we might think the head of the bolt and the hole of the washer could be 



          Image Retrieval under Image Transformations and Occlusions     61

two EPs that will allow differentiation between these two objects. However by compar-
ing the describing features from both parts we have noticed that they could be similar. 
To select EP or EPs by which we are going to perform object detection under occlu-
sions, we have just taken from the list of pre-selected parts as that EP that allows more 
discrimination with other objects. For this we have used their corresponding describing 
features. 

  
2.1.2. The classification tool. An associative memory is a mathematical device spe-
cially designed to recall complete patterns from inputs patterns that might be altered 
with noise. An associative memory M can be viewed as an output-input system as fol-
lows: → →x M y , with  and x y , respectively the input and output patterns vec-

tors. The structure of an associative memory for pattern classification is simply another 
way to see a neural network. In this work we use an extended associative memory use-
ful to classify real-valued patterns, by assigning them to the class by their index. 

 

 
(a) 

 
(b) 

Fig. 1. (a) Head of bolt selected as its essential part. (b) Hole of washer selected as it essential 
part. 

Let  a set of p fundamental couples (SFC), composed 

by a pattern and its corresponding class-index. The problem is to build an operator M, 
using these SFC, that allows classifying the patterns into their classes. This mean, 

 for ξ=1,…, p and that even in the presence of distortions it classifies them 

adequately, that is 
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ξ
ξ
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ix =⊗ ξ~M , where ξx~ is an altered version of . A first approach 

in this direction was presented in [15]. Operator 

ξx
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vector  with matrix , produces as result the corresponding index class of pattern 

. 
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Function φ  is computing using so-called “sep” operator, which allows us transform 

a set of relatively close iφ ’s, into another set of more separated iφ ′ ’s. This transforma-

tion, as we will next see, allows improving the associative memory’s performance. 
Function φ  is defined as follows: 
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Pattern classification is performed as follows. Given a pattern , not neces-
sarily one of the already used to build matrix 

nx ℜ∈ξ

sepM , class to which x is assigned is 
given by: 
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where lj j ljr x γ= + . 

 
2.1.3. Building the associative memory for object recognition under occlusions. 
Once selected the essential feature of each object we would like to recognize, associa-
tive memory  is built as follows: M
 
1. Obtain 20 images of each object in different positions and rotations  
2. To each sub-image containing the selected EP, calculate the corre-

sponding Hu’s invariants as explained in section 2.1.1.  
3. With these values, build corresponding associative memory as explained 

is Section 2.1.2. 
 

Once trained the classification tool, the output of the ORM is the identity of a given 
object (from image-features to objects).  

2.2 Image analysis and structuring model (IASM) 

This module receives as input a set of n images containing one or more instances of the 
objects already learned by the system even under occlusions. To determine if an in-
stance of an object is in an image we use so-called blocking swapping algorithm 
(BSA). This algorithm allows extracting information from an image to be used to oper-
ate the associative memory already trained. Information is extracted by means of a 
mask MA of size equal to the original image. This mask is filled with circular windows 
of ratio of 15 pixels, see Figure 2 (a). To avoid analysing several times the same region 
of the image, the BSA uses a blocking table. Blocking table is used to decide if a win-
dow is used or no, for an example refer to Figure 2 (b).  Blocking table allows blocking 
those regions in the image that have been selected as regions containing the distinctive 
part of an object. Detection of the essential part of an object is performed in six steps as 
follows: 

 
For each of the n images to be structured: 
 

1. Clear blocking table. 
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2. Refresh mask MA.  
3. Apply logical and operation between mask MA and image to be analysed. 
4. Compute first four Hu invariants to each region enclosed by circular 

window in the new image.  
5. Apply associative memory to each obtained describing vector and if 

vector corresponds to essential part of one of the objects we are 
looking for, then a vote is given for this object and block associated 
region in blocking table.  

6. If whole image has been analysed then finish stop algorithm, else go 
back to step 2. 

 

 
(a) 

 
(b) 

Fig. 2. (a) Mask used to subtract form image the information to train associative memory. (b) 
Mask with blocked regions. 

The output of this module is a list of pointers from each object to the images that 
contain this object, organizing automatically the set of images in a table or in a data-
base. In table form each locality of this table contains the evidence that a given object 

 is contained in a given image qiOi ,,1, L= njI j ,,1, L= , see figure 3(a). 
 

qO1O

1I

nI
                

qO1O

1I

nI

Query Input Module

Query

 
(a)                                                            (b) 

Fig. 3. (a)The output of the IASM Module is a table of pointers from objects to images. (b) The 
IRM module receives queries as inputs and outputs list of images satisfying these queries.

2.3 Image retrieval module 

The input to this module is a query in terms of the type of objects an image may con-
tain, see Figure 3(b). Its output is a list of the images satisfying the input query. Exam-
ples of queries this module accepts follow: 
 

1. A=1 & C=1, means the system will display all images (if any) containing in-
stances of object A and object C. 



 64     R. A. Vázquez and H. Sossa  

2. B=0 & D=1& E=0, means the system will display all images (if any) not con-
taining instances of object B and E, and containing instances of object. 

 
 

3 Experimental results 

Performance of the system was tested with a set of five real objects: a bolt, a washer, an 
eyebolt, a hook and a dovetail. Images of them are shown in Figure 5. Twenty different 
images of each of these five objects were used to train the associative memory.  

 

     
             (a)   (b)              (c)                      (d)                      (e) 

Fig. 4.  The five objects used in the experiments. (a) A bolt. (b) A washer (c) An eyebolt (d) A 
hook, and (e) A dovetail. 

One hundred images containing one or more instances of the objects shown in Fig-
ure 4 were used to train the classifiers and to organize these images in terms of theirs 
objects. Figure 5 shows nine of these images. 
 

   

   Image No. 21        Image No. 40        Image No. 56 

   

 Image No. 71        Image No. 75         Image No. 90 

   

    Image No. 95        Image No. 98        Image No. 100 

Fig. 5.  Nine of the images structured by the system. 
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With 5 objects and the operators “AND” and “OR”, and the restriction that an object 
is asked to appear or not asked to appear in and image, the number of possible queries 
that can be input to the system is 1,652: ( )1&1 == BA  is one combination; 

( 1|0&1 = )== ECB  is another combination. 
Once this set of images were organized automatically for the system we test the ac-

curacy of the system to recover images in terms of their objects using only 800 hundred 
queries (almost the 50% of whole possible queries). 

The overall percentage of the system is of 83.0%. This percentage of performance 
was obtained as follows: Given a query,  images are output by the system. In only 

 of images the desired objects appear and in 
nt

nc ncnt −  at least one object does not 
appear (does not satisfy the query). The partial performance percentage for this query is 
obtained as: . By computing this partial percentage for each query and by 
summing-up the total of partial percentages and by dividing this total by the number of 
queries we get the total average performance percentage.  

ntnc /

 

 

Fig. 6.  Image 86 recovered by the system when query A=1 and C=1 is introduced to the system. 
43 images were recovered by the system. 

 
 

Fig. 7. With the set of 43 image recovered when query A=1 and C=1 is fed to the sys-
tem, image 69 was recovered. Note there is no an instance of object C, however in-
stances of object A do appear. 
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Figures 6 and 8 show two of output results. In the first case a set of 43 images were 
recovered by the system. As you can appreciate in Figure 6, image 86 is output by the 
system and satisfies the search criterion; only 23 % of recover images do not satisfied 
the search criterion, one example is given in Figure 7.  

In the second case a set of 24 images were recovered by the system. As you can ap-
preciate in Figure 8, image 96 is output by the system and satisfies the search criterion; 
only 12 % of recover images do not satisfied the search criterion, see for example Fig-
ure 9.  

The worst results were obtained when the query involves object D. Next we will ex-
plain why the low accuracy is obtained when a query involves object D. The total per-
formance of the system depends strongly on the functioning of the ORM. If the system 
is able to recognize accurately instances of the objects in an image, it can thus be in-
serted in the right position in the database. Otherwise an erroneous pointer to it will be 
created producing, of course, at the moment a query is input to the system an erroneous 
result. The ORM was tested isolated apart from the image retrieval system using the 
same set of images. The obtained classification results were acceptable. Table 1 sum-
marizes these results.  

 

 

Fig. 8. Image 97 is recovered by the system when query A=1 and B=1 and E=1 is introduced to 
the system. 24 images were recovered by the system. 

 
 

Fig. 9. With the set of 24 image recovered when query A=1 and B=1 and C=1 is injected to the 
system, image 63 was recover. Note there is not an instance of object B, however instances of 
object A and E exist. 
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As you can appreciate in Table 1, the worst classification result was obtained with 

the hook (Object D). This is because of the essential part selected for the object. This 
bad classification causes that retrieval system performs a low accuracy when the query 
involves object D. 

4 Conclusion and directions for further research 

In this paper we have described a system that is able to first organize a set of input 
images, and second to allow for recover examples of them given an image query. Three 
modules integrate the system. The first module performs object training and object rec-
ognition. The second module performs image analysis and image organization. The 
third one allows for image retrieval. 

Table 1. Classification results obtained with the object recognition module. 
 

Object % of classification 
Bolt 93% 

Washer 92% 
Eyebolt 80% 
Hook 51% 

Dovetail 96% 
% total of Classification 83% 

 
     Through some experiments we have shown the efficiency of the system. The overall 
performance of the system strongly depends on the correct functioning of the object 
recognition module. For the set of objects used and the restrictions imposed the system 
provides good results. 

One important feature is that it is close to the end-user that usually ignores every-
thing about image processing and image analysis. It is a first step to design a more gen-
eral system. 
     A system with these limitations could be used, for example, to recover photographs 
of objects circulating through a conveyor belt. 
     Nowadays, we are working on: 1) a method to obtain automatically the EPS for 
each object, 2) how to recognize object also in the presence of scale changes, and 3) 
how to solve the most difficult problem of image retrieval under clutter images. At the 
end of our research, we hope to count with a system able to structure a set of images 
(landscapes, portraits, and so on), allowing to recovering them in terms of their objects 
and their relations. 
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Abstract. In many applications, characters are written directly by a person. In 
these cases, the main problem is the wide variability of these characters. In a 
strict way we should consider them as random signals. To handle this variability 
many Artificial Intelligence based tools have been proposed, among them neural 
networks, support vector machines. Following a different strategy, in this paper, 
Splines are used to adjust to a finite set of samples obtaining as a result a 
representative pattern of the trace as an optimal set of the nodes of the Spline. We 
then use wavelets to decompose the initial samples of the trace into its 
components: approximation and detail. In this paper we consider only the 
approximation part due to for recognition purposes it is relevant. As we will see 
an enhancement is obtained by normalizing the optimal nodes. In the experiment 
section we show the entire enhancement obtained. 

1   Introduction 

The handwriting character movement is caused by an act of intentional muscular 
force and joints elasticity. In order to recognize handwritten characters, it is necessary 
to extract the features related to this movement. Conventional manuscript character 
recognition is based on the feature extraction from the character shape under analysis. 
These features can be the lines inclination, the relative position of each line, the length 
of the different parts of the line, and so on [1]. For example this approach can be used 
to recognize efficiently non-cursive characters. However, for cursive characters, this 
approach is not well suited. 
      One reason why we humans are able to read and understand cursive characters 
(very aerodynamic or deformed) is because somehow we have the ability to mentally 
trace several times the letter in the order it was written. When a person writes a 
character, generally realizes 4 steps, which are:  
 

(a) In the mind, the person imagines the character symbol that he wants to write,  
(b) His brain transmits the movement order to his muscle and joints,  
(c) He realizes a series of movements according to character writing order,  
(d) The image character is made in consequence of three steps (a) to (c).  
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The character generation process is made from the step (a) to (d), while the 
recognition process can be performed in inverse order, its means from step (d) to (a). 
However, the inverse process for character recognition is quite difficult. 

As it is known, character recognition can be done off-line and on-line [1]. On-line 
character recognition requires the physical presence of the person that writes the 
character. Features used in this case are the pen pressure, the trace speed, the trace 
directions sequence and others [1]. On-line character recognition demands the 
realization of steps (c) to (a), while off-line character recognition is equivalent to the 
inverse realization of all steps from (d) to (a). Thus off-line character recognition is a 
part of the complete inverse on-line manuscript character recognition process. In the 
past time several manuscript character on-line recognition systems have been proposed. 
For example, in [2] the authors used a neural network to recognize cursive isolated 
characters. In [3] a study where the Laplace transform and a second order lineal model 
that takes the writing velocity as a variable control was used to synthesize the inverse 
process. 

In [4], the authors combined well-known HHMs and dynamic programming for the 
cursive characters recognition. Character segmentation and its recognition are 
performed by this combination, 91% efficiency recognition for the English characters 
was obtain. 

In this paper, the main proposal is focused on the inverse writing realization steps 
from (c) to (a). Steps (c) and (b) are based on the approximation given by a Spline 
function which it is possible to obtain the movement order, required to perform the 
character trace using a digitizing tablet. The process from step (b) to (a) is carried out 
likening the generated models for each character; finally a tree layer neural network is 
used to train the feature vectors from the optimal knots. 

2   Proposed System 

The proposed system consists in a feature extraction and recognition stages 
respectively. In the feature extraction stage, the optimal knots sequence for each 
character are obtained, which are significant points of the handwritten character.  Then 
using these points, the handwritten character shape can be reconstructed [4]. In this 
stage, a natural Spline function (SLALOM method) and Steepest Descent method are 
applied repeatedly until with 20 knots be sufficient to reconstruct the character with 
minimum error.  These 20 optimal knots are used as a feature vector in the recognition 
stage, using a three-layer Backpropagation neural network. Figure 1 shows the 
proposed system structure. 

2.1  Data acquisition 

Data from each character is obtained by means of a digitizing tablet. For writing an 
ergonomic pencil Intous 2 of Wacom was used. With this pencil people was asked to 
write the characters on the tablet. This allows knowing the order of articulation of each 
character. From the tablet we can get an image of the written character and the data as 
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how the character was written. Figure 2 shows, for example, the data acquired for 
character “h” and its signal in the x and y axes. 

 
Online handwritten character acquisition from the digitizer tablet 

 
 
 

Signal Approximation 
 
 
 

Size, Position and Time Normalization 
 
 
 

Optimal knots Detection (Slalom, Steepest Descent) 
 
 
 

Character Recognition using ANN (Backpropagation) 
 

Fig. 1. Proposed system structure 

2.2  Database Construction 

To build the database of characters to be recognized, the 26 letters of the English 
alphabet were used. For each character 50 samples were obtained. In the case of this 
research, all samples were obtained from one writer. The database contains thus 1,300 
samples. From the total of samples, 910 were used to obtain the describing models and 
390 were used for testing. In other words, from the 50 samples of each character, 35 
were used for model construction and 15 for testing. Figure 3 shows one sample of 
characters: “a”, “n”, “m” and “o”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Captured data from the trace of character “h”. (a) Trace. (b) Obtained signals in the x and 
y axes. 
 
 



2.3   Signal Approximation 
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When the signal of the character is acquired, it is accompanied with some high 

frequency noise produced by the small vibrations introduced by the movement of the 
hand. To reduce this kind of noise a Daubechies 1 wavelet was applied. Only the 
approximation part was taken. Figure 4 (a) shows the original trace of a sample of 
character “e” and the one obtained (Figure 4 (b)) by wavelet processing the character as 
explained. 

 
 

 
Fig. 3. A sample of the trace of characters: “a”, “n”, “m” and “o”. 
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Fig. 4. (a) Original trace of character “e” and (b) its corresponding trace after wavelet 
approximation. 
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Fig. 5. Traces of letters “e” and “m” after filtering and normalization. 
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2.4  Post-Filtering and Normalization 

To yet reduce high frequency components introduced by the vibration of the hand, 
a low pass Butterworth filter of order 5 was applied to the character traces in both the x 
and the y axes. After low pass filtering the character, it is normalized in position, size 
and time. Normalization in position and size is performed by an affine transformation 
of the character. Normalization in time is done by interpolation and decimation. Figure 
5 shows the traces of the characters “e” and “m” after filtering normalization. 

2.5  Feature Extraction 

Feature extraction, in the content of this work consists on obtaining the optimal 
nodes from the signals in the x and y axes of the traced characters. To accomplish this, 
the SLALOM method well described in [5] was used. The general schema of the 
application of the SLALOM method to obtain the optimal points of the characters trace 
is shown in Fig. 6.  
 
SLALOM METHOD 
 
The Slalom method is one type of natural Spline function which must satisfy the 
following two conditions: 
 

1. The difference between the Spline function g(x) and a given fi (i=1…M) must 
be smaller than a previously determined value, δ.  

 

( )       i= 1 ,2 ,....,Mig x f δ− ≤                        (1) 
 

2. The Spline function g(x) must be a smooth function, that does not need to 
cross over for every given points fi (i=1…M). 

 
Figure 5 shows the smooth Spline function g(x) generated by Slalom method and 

sampling points fi (i=1…M). 

 
Fig. 6. Smooth function. 

 
To satisfy the two conditions given above, an error function J[g] must be minimized.  
We can define the first derivative J’[g] of the  error function J[g] as Eq. (2). 
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and the first and second derivative of  g(x)  correspondent to i+1th knot in discrete 
way, which is written as:  
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where Δ is the interval between the i-th and the  i+1-th knots. Supposing that intervals 
between two consecutive knots is equal to 1, we have 
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Next, Eq. (2) can be rewrite using as, 
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where N is the samples number and M is the number of knots, gi is the i-th value from 
Spline function g(.) and gji is the equivalent value of g(.) of the  i-th knot. 
  

The minimization problem of J’[g] can be solve as follows.  
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to get the gk, for k = 1, 2, …, N, the following lineal equations must be resolved 
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where δ is the sampling space and δj,Ω satisfies, 
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δj,Ω = 0, when j is different from any knot position and δj,Ω = 1, when j corresponds with 
the some knot position. 

After the Slalom method is applied and optimal knots are obtained, the error E, can 
be obtained by Eq. (11). 
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To minimize the error E, the steepest descent method is applied.  The steepest 

descent method is the simplest gradient methods used to minimize a given error 
function.  Then the optimal knot’s position update is given by Eq. (12). 

 

)()(1 kkkkkkk xgxxfxx λλ −=∇−=+                          (12) 
 

After the adjustment of all knots position is performed, we analyze the distance of 
all consecutive knots. 
 
Optimal node initialization. To the signals, both in the x and y axes, of the trace of a 
character a second derivative is applied. The use of the second derivative allows 
determining the change of velocity at the moment the trace is done. However at it is 
known the application of the second derivative amplifies the small changes in the 
signal, giving as a result a noisy signal. To reduce the influence of this introduced 
noise, the derived signals (in both axes) are smoothed again by means of a low pass 
filter. Figure 7 shows the processed signals of letter “m” and the second derivative of 
these signals, respectively. The derived signals are divided into segments according to 
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the number of zero crossings. In this case, the value of “0” in the second derivative 
means that the change of velocity is zero. For each segment, the data with maximal 
absolute value are considered as the initial nodes. Figure 8 shows the initial nodes of 
letters “m” and “e”. These nodes are not optimal due to errors between signals are too 
big. To reduce the magnitude of this error we take the initial nodes if  and we get a 

smooth and continuous function ( )g t  by means of SLALOM method [5]. 
 

 
Fig. 7. (a) Signals corresponding to letter “m” after preprocessing and (b) low pass 
filtered of the second derivative of the same letter. 

 

Fig. 8. (a) Initial nodes of letter “m” and (b) initial nodes of letter “e”. 
 
Obtaining the optimal nodes. By applying again SLALOM method we obtain the 
intermediate nodes generated by a smooth and continuous function. Figure 9 shows the 
nodes obtained by taking the first term of the SLALOM method along with the 
reconstructed signal. As we can observe from Fig. 9, the obtained points are redundant 
due to each node represent the same position. By eliminating these redundant nodes 
and by applying the step and decent method to include the second term of equation (9) 
we can thus obtain the optimal set of nodes. 
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Fig. 9. Original signals (line “-”) and reconstructed signals (line “-.”) from the obtained 
nodes (“*”) by means of the SLALOM method [5]. (a) letter “m” and (b) letter “e”. 
 

 

Fig. 10. Original signals (line “-”) and reconstructed signals (line “-.”) from the 
obtained nodes (“*”), (a) letter “m” and (b) letter “e”. 
 
Optimal node adjustment. The adjustment of the number and positioning of the 
optimal nodes is performed by using again the step and descent method. Fig. 10 shows 
the results of the elimination of the redundant nodes, while Fig. 11 shows the results of 
the adjustment. These operations are applied iteratively while arrives to desired number 
of nodes (20). Figure 12 shows the optimal nodes (both in the x and y axes), the 
original trace and the reconstructed trace from this set of nodes.  

 

Fig. 11. Adjusted nodes by step and descent method. Original signals (line “-”) and 
reconstructed signals (line “-.”) from the obtained nodes (“*”), (a) letter “m” and (b) 
letter “e”. 
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Fig. 12. Original traces and reconstructed traces from the optimal nodes. “*”means 
optimal node in the x axe, and “°” means optimal node in the y axe. 

2.6  Character Recognition 

As mentioned before, the proposed system uses one three-layer Backpropagation type 
neuronal networks (Fig 13) for processing the optimal nodes. For this features 
processing the networks have 40 input data (20 nodes for x axe and 20 nodes for y 
axe), with 40 neurons in the hidden layer. This number was determined after several 
test. 
 
Learning Algorithm 
 
The learning algorithm used for updating the system coefficient matrix is the very well 
known backpropagation algorithm. 

 
 

Fig. 13. The structure of the neural network used to recognize the characters. 
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3  Experimental Results 

In this section the experimental results are shown. To evaluate the proposed system, a 
data base composed of 3,900 cursive characters was generated consist of 50 cursive 
characters of 26 letters from 3 users. The 2730 characters (35 characters of 26 letters) 
were used to train Backpropagation Neural Network 1170 characters (15 characters of 
26 letters) were used for evaluation. Table 1 shows the proposed system recognition 
rate using the training data set. The global recognition rate of the proposed system is 
99.81%. 
 

Table 1. Recognition rate with characters used during training. 
 

a b c d e f g h i j k l m 
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.04% 100% 99.04% 

n o p q r s t u v w x y z 
100% 99.04% 98.09% 100% 99.04% 100% 100% 100% 100% 100% 100% 100% 100% 

 
Table 2 shows the recognition rate was carried out with characters not used during 
training. The overall recognition rate of the proposed system is 97.8%. 

 
Table 2. Recognition rate with characters not used during training. 

 
a b c d e f g h i j k l m 

95.5% 95.5% 100% 97.7% 100% 100% 100% 93.3% 100% 100% 93.3% 100% 95.5% 
n o p q r s t u v w x y z 

97.7% 95.5% 95.5% 100% 93.3% 100% 95.5% 100% 100% 100% 97.7% 100% 97.7% 

 
Classification percentages for a similar methodologies described in the literature are 
from 85% and 98% [1]-[4]. Comparing the proposed system with others similar 
systems has a similar recognition rate for training and testing data set.. 

4   Conclusions 

In this paper a new methodology for the recognition of cursive manuscript 
characters has been presented. The SLALOM method was used to obtain the optimal 
knots of each character. These optimal knots are considered as the describing features 
of each character, which were used like an input vector in a Backpropagation Neural 
Network. Computer evaluation results show that the proposed system provides a good 
recognition rate when the same database is used for training and testing, as well as 
when both databases are different, obtaining a 99.34 % recognition rate for training 
data set and 97.43 % testing data set. These results can be considered quite good 
thinking that the characters recognized are cursive and have a certain shape 
deformation degree. The recognition percentage using the proposed system is good 
enough against the percentages obtained with similar proposals systems described in 
the literature where the results are around 85% to 98% recognition rate. 
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Abstract.  In this paper, a novel structure of hierarchical self organizing map 
called Cluster Tree Self Organizing Map (CT-SOM) is proposed. This structure 
is a hierarchical representation of the cluster of a data set that will be used for 
image retrieval. Neural units of CT-SOM are given multi labels and each label 
hints at one image in database. For each different image's feature, a CT-SOM is 
formed. These representations include color, texture and shape. Using evidence 
accumulation we have facilitated automatic combination of responses from 
multiple CT-SOMs and their hierarchical levels. A new relevance feedback 
technique is also used based on user's preferences for finding image resemblance 
in each category. We have performed experiments and tested the proposed 
approach on an image database constructed from Corel photo gallery.  

1     Introduction 

In recent years Content-Based Image Retrieval (CBIR) has been a subject of very 
extensive research field and many projects have been started to research and develop 
efficient CBIR systems. Despite some breakthroughs made in the field, it is generally 
understood that the problem is still far from being solved. Some of the popular CBIR 
systems include QBIC project [1], MIT's Photobook [2], VisualSeek [3], PicSOM [4] 
and lot more.  

Heretofore, variant structure of hierarchical self-organizing map is used to 
develop indexing structure. For instance tree structured SOM which are introduced in 
PicSOM, and four-level R-tree SOM [5] which are used for image retrieval. The 
mentioned indexing structures have a problem of having a large overlapping area 
among nodes, causing the retrieval process to inspect a large number of image items. 
Also until relevance feedback modifies the structures remarkably, the approach for 
combination of the structures' results is weak. 

A cluster tree [6] is a hierarchical representation of the cluster of a data set. This 
index structure organizes the data based on their different level of clustering 
information from coarse to fine. Here, we develop structures of SOM which represent 
a cluster tree of data and decrease overlapping area among nodes. These structures are 
called Cluster Tree Self Organizing Map (CT-SOM). For each visual feature, one CT-
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SOM is developed. Partition of clusters is organized from precise bottom level to 
coarse top level of CT-SOMs. Following production of partitions in CT-SOMs' levels, 
evidence accumulation [7] is used to facilitate automatic combination of responses 
from multiple hierarchical structures. A new relevance feedback technique is 
also used based on user's preferences for finding image resemblance in each 
category.  

The remainder of this paper is organized as follows. Section 2 describes cluster tree 
self organizing map. Relevance feedback to refine query is proposed in section 3. 
Visual content features, is given in section 4 and section 5 gives the performance and 
experimental results. 

2     Cluster Tree Self Organizing Map 

The SOM [8] carries out vector quantization and multi-dimensional scaling at the same 

time. In step index 1,...1,0 max −= tt , an input vector  is 

presented to the network and unit  with synaptic weight vector 

 is selected as the Best Match Unit (BMU), based on the best 

matching criterion (1). 

T
m tXtXtX )](),...([)( 1=

)(Xi
T

jmjj tWtWtW )](),...([)( 1=

ljtWtXXi jj
,...,2,1,||)()(||minarg)( =−=  (1) 

Where  is the number of units and represents Euclidian distance. 

Consequently, the weight vectors are updated according to (2). 
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Where  is topological neighborhood function which the typical choice of it 

is Gaussian function (3). 
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Where  and  defines the position of excited neuron22
, |||| ijij rrd −= jr j , and  

defines the discrete position of winning neuron i . In order to construct the CT-SOM, 
below steps are done: 

ir

Step1) The size of first level is  1 and initial standard deviation of neighborhood 

function is
1 *cr

0σ . This level, after training is fixed and each neural unit on it is given 

labels from the database image nearest to it. In other words CT-SOM's neural units are 
given multi labels and each label hints at one image in database. We called the neural 
unit and its labels as Unit Cluster (UC). 
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Step2) The map is divided into squares with size Λ×Λ  ( Λ  is odd) and the k-mean 

algorithm is performed on map as follow: 

• Begin with )(/)( 11 Λ×Λ×= crK clusters which their centroids are initialized 

with the centers of mentioned squares. The cluster prototype matrix is shown 
with .  ],...,[ 1 KwwW =

• Assign each unit of map to the nearest cluster .i.e. lC

.,...,1,)(,...,1

,

11 liandKicrjfor

wUwUifCU ijljlj

≠=×=

−<−∈  
(4) 

• Recalculate the cluster prototype matrix based on the current partition.  
•  Repeat steps 2 and 3 until there is no change for each cluster. 
We called these clusters as Map Cluster (MC) which consists of some UCs. Fig.1 

shows two MCs for  . 3=Λ

 

Fig. 1. Two Map Clusters (MCs) are shown. Each MC contains some Unit Clusters (UCs) 

Step3) Every later level is developed on previous level which its map's size is 
number of MCs on previous level. This means that every unit on later level represents 
one MC on previous level. 

Each later level, after construction is trained and its UCs and MCs are determined. In 
training of later  level, the BMU is determined in this way that, the input object is 

presented to the first level and the BMU and therefore the MC that this unit belongs to 
it is determined. Then the BMU of the next level is unit that represents the determined 
MC on previous level. This iteration goes on until reach  level.  

jth

jth
Step3 is iterated until efficient partitions with desirable number of clusters (size of 

last level) are gained. In the end of this step, cluster tree is produced which is a 
hierarchical representations of the cluster of a data set. This hierarchical structure 
organizes the data based on their different level of clustering information from coarse 
to fine, providing an index structure of data. For each visual feature we construct a CT-
SOM separately. Since various feature classes are not necessarily linearly-related so 
we consider each map as a partition of UCs and use evidence accumulation to combine 
them. Evidence accumulation gives us desired co-association matrix that indicates the 
degree of resemblance between images.  
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Assume that  is the number of database images, B is the number of partitions and 
the final partitions of UCs which acquired from CT-SOMs' hierarchical levels 

are . Since processing of

N

},...,{ 21 BPPP=Ρ NN*  proximity matrix has 

computational complexity for large value of , so we pre-compute a  matrix 

which stores the indices of the  nearest neighbors for each of the  images. In our 

experiment, we set equal to 15. The nearest-neighbor matrix can be computed as a 

preprocessing step by using branch and bound algorithm [9]. 

N qN*
q N

q

Co-association matrix is calculated as follow: 
1. C = co-association matrix with dimension  is     initialized to a null matrix. qN*
2. For each data partition , do: Ρ∈lp
      2.1. Update the co-association matrix as:  
      For each image pair    in the   neighbor list which belongs to the  UC  ),( ji qth kth
      in l , set: p

     
B

jiCjiC kl ,),(),(
γ

+=  
(5) 

Where ]1,0[, ∈klγ  and its value is minimum for coarse clusters (top levels) and 

maximum for precise one (low levels). It means that two images in precise clusters are 

more similar than two images in coarse one. Each UC has its kl ,γ  value and gives 

special amount of similarity between its members. We use relevance feedback 

mechanism to modify the value of kl ,γ and improve queries result. kl ,γ may be 

dependent to type of visual features.  
In actual implementation to retrieve image, CT-SOMs are browsed from top to 

bottom and in each level, the BMU and consequently the UC which is bound to it, are 
determined. The labels of this UC together with 10 labels from co-association matrix 
with highest resemblance value to prior selected labels are selected. In browsing to 
lower levels, the search space for BMU is restricted to the MC which BMU on top 
previous level represents it. 

Finally for each CT-SOM, one set of labels is acquired which is shown 

with . Where },...,,{ 21 Δ= SSSS Δ  is the number of CT-SOMs. Images that are 

presented to user, to get his/her preferences, are intersection between these sets: 

     ii
CR

Δ

=
∩=

1

(6) 
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3     Refining Queries Using Relevance Feedback 

The System tries to learn the user's preferences from the interaction with him/her and 
then satisfies own responses accordingly. We use a relevance feedback approach in 
which the results of multiple CT-SOMs are combined automatically by using the 
implicit information from the user's responses during the query session. This can be 
implemented simply by marking each  UC on lth  map withkth ]1,0[, ∈klγ as 

similarity weight. Initial values of kl ,γ  is minimum for coarse clusters (top levels) and 

maximum for precise (low levels). 
The user's preferences for each images is either relevant or irrelevant. For each 

image pair  in the images which are shown to user, if they are relevant then 

the

),( ji

kl ,γ of UCs which this pair are belong to it, is increased and vice versa. As seen in 

(5), the modification of  kl ,γ  affects the value of co-association matrix which will be 

recomputed after some interactions. 

4     Visual Content Features 

Feature selection is not restricted and every feature or description of it can be added. In 
our experiment fuzzy color histogram, entropy and shape histogram are selected which 
are described in later subsection. 

4.1 Fuzzy Color Histogram 

The Fuzzy Color Histogram (FCH) [10] of image I can be expressed 

as , where ],...,[)( 21 nfffIF =

∑ ∑
= =

==
N

j

N

j
ijjiji N

Pf
1 1

1 μμ  
(7) 

ijμ is the membership value of the  pixel in the  color bin and   is 

the probability of  pixel selected from image

jth ith jp
jth I . Let M  (8) is the 

membership matrix and  is the membership value of the fine color bin 

distributing to the ith  coarse color bin:  
ijm jth

'*
][

nnijmM =  (8) 

The FCH of an image can be directly computed as follows: 
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1**1* '' nnnn HMF =  (9) 

Where membership matrix M is pre-computed only once and can be used to 
generate FCH for each database image. M is computed as follow: 

• Fine uniform quantization in RGB color space is performed by mapping 

all pixel colors to histogram bins. Then, the colors are transformed from 
RGB to CIELAB color space. 

'n 'n

• Using FCM clustering technique [11], these colors in CIELAB color space 
is classified to clusters, which each cluster representing an FCH bin. 

The FCM minimizes an objective function , which is the weighted sum of 

squared errors within each group, and is defined as follows: 
mJ
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Where,  is a vector of unknown cluster prototypes. The value of 

represents the membership of the data Point  from the set

T
cvvvV ],...,[ 21=

iku kx },...,{ 21 nxxxX =   

with respect to the ith  cluster. The inner product defined by a norm matrix  defines 
a measurement of similarity between a data point and the cluster prototypes, 
respectively. The fuzzy clustering result of FCM algorithm is represented by 

matrix .  is referred to as the grade of membership of color  with 

respect to cluster center . Thus, the obtained matrix   

A

'*
][

nnikuU = iku kx

iv '*nn
U can be viewed as the 

desired membership matrix for computing FCH, i.e. . Moreover, 

the weighting exponent in FCM algorithm controls the extent of membership 
shared among the fuzzy clusters. 

'*nn
M '' ** nnnn

UM =

m

4.2     Entropy Histogram 

The co-occurrence matrix [12] is a two-dimensional histogram which estimates the 
pair-wise statistics of gray level. The  element of the co-occurrence matrix 

represents the estimated probability that gray level i co-occurs with gray level j at a 
specified displacement d and angle

thji ),(

θ .  Entropy histogram is acquired as follow: 
• Conversion of color image to gray image. 
• Dividing image into 2*2, 4*4, 8*8, and 16*16   rectangular regions as in color 

case. 
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• Obtaining co-occurrence matrix of four (horizontal , vertical  and two 

diagonal , ) orientation in region and normalize entries of four matrixes 
to [0, 1], by dividing each entry by total number of pixels. 

o0 o90
o45 o135

• Extracting average entropy value from four matrixes. 

4,3,2,1,
4

)),(log(),(
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=
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(11) 

• Constructing entropy histogram of regions' entropy. 

4.3 Shape Histogram 

This feature describes the distribution of edge directions in various parts of the image 
and thus reveals the shape in a low-level statistical manner [13]. It is calculated in five 
separate zones of the image. The first zone is formed by extracting from the center of 
the image, a circular zone whose size is approximately one-fifth of the area of the 
image. Then the remaining area is divided into four zones with two diagonal lines. 
Shape histogram feature is based on the histogram of the eight quantized directions of 
edges in the image. When the histograms are separately formed in the same five zones, 
as before, an 8* 5 = 40 dimensional feature vector is obtained. 

5      Performance and Experimental Result 

Corel gallery product [14] contains 59995 photographs and artificial images with a 
very wide variety of subjects. Image collection which we used in our experiment is a 
set from the Corel Gallery. First, we consider 48 semantic concepts (Classes) and then 
select 12000 images from Corel gallery and give 48 membership values to each of 
them. Each membership value determines the belonging degree of image to one 
concept. The evaluation of performance for retrieval system can be mathematically 
formulated as follow: Suppose that the size of database is N and the number of 
semantic concept is C. Membership value of   images to semantic concept can be 

expressed by , and for all images in database it is expressed 

by

ith
},...,,{ 21 iciii hhhH =

},...,,{ 21 NHHHM = . Let in time t, Queries on image with membership 

is given to system and images are retrieved as a query 

result. Recall is defined as: 

},...,,{ 21 tcttt qqqQ = )(tK

databasetheinimagesrelevantofnumberTotal
relevantandretrievedimagesofNumbercall =Re  

(12) 

    Recall is expressed with for time t, and Precision is defined as: )(tR
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imagesretrievedofnumberTotal
relevantandretrievedimagesofNumberecision =Pr  

(13) 

)(tP is used to determine Precision for time t. We have chosen to show the 

evolution of precision as a function of Recall. Using above assumption,  

and is defined as follow: 
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The intermediate values of  )(tP , first, display the initial accuracy of the system 

and then, show how RF mechanism is able to adapt the class. For our experiment, 
average precision, as a function of average recall is changed as indicate in Fig 2. 

 

   
 

Fig. 2. The evolution of precision as a function of recall. (a) Building query. (b) Tiger query. 
 

Some of Exemplar Queries that is given to the system are shown in Fig. 3 and 4. 
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    Query image 

a 

 

b 

 

c 

 
d 

 

e 

 

f 

 

Fig. 3. Retrieval result for query of image with Building semantic. 

 
   Query image 

a 

 

b 

 

c 

 
d 

 

e 

 

f 

 

Fig. 4.  Retrieval result for query of image with Tigers semantic. 

6   Conclusion 

The CT-SOM that is presented in this paper is very useful for large image data sets. 
This system has three advantages: First, it used the SOM with multi labeled neural 
units and thus organizes images into a hierarchical structure without overlapping area 
between nodes. Second, hierarchical maps are from coarse top level to precise bottom 
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level so the query time is largely reduced. Third the mechanism of relevance feedback 
used in the proposed system improves the performance of image retrieval drastically.  

References 

1.  Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., 
Gorkani, M., Hafner, J., Lee, D., Pettovic, D., Steele, D., and Anker, P. "Querying 
by image and   video content: The QBIC system," IEEE Trans. Computers 25, 
1995, pp.23–32. 

2.  Pentland, A., Picard, R.W., and Sclaroff, S. "Photobook: tools for content-based 
manipulation of image databases. In: Storage and Retrieval for Image and Video 
Databases," II. In: SPIE Proceedings Series, Vol. 2185. San Jose, CA, USA, 
1994.  

3.  Smith, J. R., and Chang, S. F. "VisualSeek: a fully automated content-based 
image query system," Proc. ACM Multimedia, 1996, pp. 87–98.  

4.  Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. "PicSOM: content-based 
image retrieval with self-organizing maps," Elsevier, Pattern Recog. Lett.21, 
2000, pp. 1199–1207. 

5.  Subramanyam Rallabandi, V. P., Sett, S.K. "Image retrieval system using R-tree 
self-organizing map," Elsevier, Data & Knowledge Engineering, 2006.     

6.  Dantong, Y., and Zang, A. "Cluster Tree: Integration of cluster representation and 
nearest neighbor search for large data base in high dimensions," IEEE 
Transaction on knowledge and Data Eng, Vol.15, No.5, 2003,  pp.1316-1337. 

7.  Fred, Ana L.N., Jain, and Anil K. "Combining Multiple Clusterings Using 
Evidence Accumulation," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 27, No.6, 2005. 

8.  Kohonen, T. "Self-Organizing Maps," third ed., Springer, New York, 2001.  
9.  Kamgar-Parsi, B., and Kanal, L.N. "An Improved Branch and Bound Algorithm 

for Computing k-Nearest Neighbors. Pattern Recognition ," Letters, vol. 1, 1985, 
pp.195-205.  

10.  Ju, Han., and Kai-Kuang, Ma. "Fuzzy Color Histogram and Its Use in Color 
Image Retrieval," IEEE Trans. Image Processing, Vol. 11, No. 8, 2002. 

11.  Rezaee, M. R., LeLieveldt, B. P. F., and Reiber, J. H. C. "new cluster validity 
index for the fuzzy c-means," Pattern Recognition, vol. 19, 1998, pp.237–246. 

12.  Haralick, R. M., Shanmugam, K., and Dinstein, I. "Texture features for image 
classification," IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 
1973, pp.610–621.  

13.  Brandt, S., and Laaksonen, J. E. Oja. "Statistical shape features in content-based 
image retrieval," In: Proceedings of 15th International Conference on Pattern 
Recognition, Barcelona, Spain, Vol. 2, 2000, pp.1066±1069.  

14.  Gunther, N.J., Beretta, and G. "A benchmark for image retrieval using distributed 
system over the internet," BIRDS-I HP Labs, 2000 Available from: 
<www.hpl.hp.com/techreports/2000/HPL-2000-162.html>. 



 
 
 
 
 
 
 
 
 
 
 
 
 

Feature Extraction and 
Dimensionality Reduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



Using Testor Theory to Reduce the Dimension of Neural 
Network Models 

Roberto A. Vázquez 1 and  Salvador Godoy-Calderón 2

Computing Research Center CIC-IPN, 
Av. Juan de Dios Bátíz, esquina con Miguel Othón de Mendizábal, 

Mexico City, 07738,  MEXICO. 
Contact:  1ravem@ipn.mx ,  2sgodoyc@cic.ipn.mx

 

Abstract.  Most of the Neural Network models proposed during the last few 
years are capable of solving several complex problems such as recognition, fore-
cast or reconstruction of different phenomena. A crucial feature of these models 
is that they tackle a wide variety of classification problems, and although these 
models work accurately within a limited particular context, they require numer-
ous resources; this makes its efficient hardware implementation nearly impossi-
ble. In this paper we propose a novel alternative which uses Testor Theory, 
which is a useful tool in pattern recognition within the logical-combinatorial ap-
proach, to reduce the dimension of neural network models. We test the accuracy 
of the proposed method by recognizing real-world objects in images.  We show 
that, under some circumstances, it is possible to reduce the dimension of a neural 
network without affecting its capability to solve classification problems or modi-
fying its effectiveness.  

1   Introduction 

Humans have several complex cognitive capabilities such as memorizing, recalling, 
learning and recognizing. In the last 50 years, scientists and researchers of different 
communities have strived to implement these capabilities into a computer. Along  these 
years, several approaches for achieving that goal have emerged, for example neural 
networks. Since the rebirth of neural networks, several models inspired in neurobio-
logical processes have been proposed. Such models are often dedicated and incorporate 
some existing clustering or classification algorithm. Among these models, perhaps the 
most popular one is the feed-forward multi-layer perceptron trained with the back-
propagation algorithm [10]. 

Other very popular neural models are associative memories. Several of these asso-
ciative models have been proposed, for example: Anderson [6] presents a simple neural 
network generating an interactive memory; Kohonen [7] presents an unsupervised 
learning network as an explanation of the existence of ordered maps in the brain. Other 
associative models can be found in [3], [9], [26], [27], [28], [29], [32] and [33]. Advan-
tages of neural networks are: adaptability, robustness, and ease of implementation in 
software.

Most of the neural network models are capable of solving several kinds of complex 
problems such as face recognition, object recognition, plate recognition, hand-writing 
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recognition and some other classification problems. Despite the fact that these models 
work accurately, they require too many resources, thus making their efficient imple-
mentation on hardware nearly impossible.  

In this paper we propose a novel alternative to reduce the dimension of neural net-
work models by using Testor Theory, which is a useful tool in pattern recognition un-
der the logical-combinatorial approach. We test the accuracy of the proposal by solving 
an object recognition problem using several images of realistic objects. In the experi-
ments, we expect to reduce the dimension of the neural network models used for solv-
ing the problem by reducing the dimensionality of the features they take as input. 

2   A Survey of Dimensional Reduction Techniques 

When working with high-dimensional datasets it is often the case that not all the meas-
ured variables have the same “relevance” for understanding the underlying phenomena 
of interest. Certain computationally-expensive methods can construct predictive models 
with high accuracy from high-dimensional data. Still reducing the dimension of the 
original data prior to any modeling is of the outmost interest. This reduction process di-
rectly modifies the dimension of any neural network or associative memory. 

In mathematical terms, the problem under study can be stated as follows: given a p-
dimensional random variable ( )1, ,

T

px x=x K , find a lower dimensional representation 

of it, ( )1, , T
ks s=s K  with , that captures the content in the original data, accord-

ing to some criteria, usually stated within a supervision/learning/training  set. 
k p<

Several statistical techniques, such as principal component analysis [11], [13] and 
factor analysis have been proposed for achieving this dimensional reduction. Although 
these techniques based on second-order statistics are computationally expensive they 
are widely used. In other cases, when dealing with statistically normal variables (those 
with mean ) the covariance matrix already contains all the necessary information 
about the data. Second-order methods for dimensional reduction are relatively easy to 
code, as they require only simple matrix operations. However, many datasets of interest 
are not suitable for studying within  a Gaussian distribution. For those cases, higher-
order dimensional reduction methods, using information not contained in the covari-
ance matrix, are more appropriate. Examples of these methods are independent compo-
nent analysis and projection pursuit [20]. Another interesting method is random projec-
tions, which is a simple, yet powerful dimensional reduction technique that uses 
random matrices to project data into lower dimensional spaces [12], [15], [17], [21]. 

0=

Some very useful non-statistical methods for dimensional reduction were proposed 
in the mid-fifties in the former Soviet Union and were later developed in other Eastern 
European countries and in Cuba. These logical-combinatorial methods are based on 
Testor Theory (formerly referred to as “Test Theory”) and use the concepts of Testor 
and Non-reducible Testor [24] which were introduced for the first time by Yablonskii 
and Cheguis [1], [2] and later applied to classification problems by Dimitriev et al [5]. 
Testor Theory methods are used in this research to reduce the dimensionality of the 
data taken as input to different neural network models. 
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3   Dimensional Reduction Using Testor Theory 

In this section, some aspects of Testor Theory applied to feature selection and dimen-
sional reduction problems are applied. We also describe a technique, devised by 
Godoy-Calderón et al [25], used to compute a set of special kind of Testors called Su-
per-Testors used to reduce the dimension of a neural network model. 

3.1  Basics of Testor Theory 

This section is based on [30]. In the framework of the logical-combinatorial pattern 
recognition [16], [19], [22], feature selection or dimensional reduction could be made 
by using Non-reducible Testors [23]. If  ℜ  is the whole set of attributes of the objects 
under study and thus the corresponding patterns are ℜ -dimensional, a Testor is de-
fined as follows:  
 
Definition 1. A feature subset τ ⊆ ℜ is a Testor if and only if when all features, ex-
cept those from τ , are eliminated from the descriptions, no pair of similar sub-
descriptions remain in different classes. This definition indicates that a Testor is a fea-
ture subset, which allows complete differentiation of objects from different classes. 
Within the set of all Testors, there are some which are Non-reducible. These kind of 
Testors are called Typical Testors and are defined as follows:  

 
Definition 2. A feature subset τ ⊆ ℜ  is a Typical Testor if and only if τ  is a Testor 

and there is no other Testor τ ′  such that τ τ′ ⊂ . This definition indicates that a Typi-
cal Testor is a Testor where every feature is essential, this is, if any of them are elimi-
nated the resultant set is not a Testor.  

 
The dimensional reduction approach based on Testor Theory was first proposed by 

Dimitriev [5] and the basic idea is the following: A Testor is a feature subset, which 
does not induce confusion between any pair of sub-descriptions of objects from differ-
ent classes. Moving, from a Testor to a Typical Testor (eliminating features, when it is 
possible) we get an irreducible combination of features, where each feature is essential 
in order to keep differences between classes.  

3.2  Testors and fuzzy classification of objects. 

Let  be a set of objects denoted by , each object is described in terms of  a set of 

 features denoted by 

O io
n ( )i

ioδ=x  and these objects are grouped into c  classes. Let 

[ ]ik p c
M m

×
= be the membership matrix where p is the number of descriptions,  

the number of classes and 

c

( )( )ik k im μ δ= o  the membership of object  to class  
given by: 

io k
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( ) ( ) (( )
1
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(1) 

where  is any similarity function between  and which yields a 

result in the range  [0,1].  Confusion between objects in different classes depends on 

their membership to each class. An object  is confused between two classes  and 

 if and only if . 

( ( ), ( )i jo oβ δ δ io jo

io a
b ( )( )io a bδ ∈ ∩

 
Definition 3. The Discrimination Error ε  of an object  is given by: io

( )( ) ( )
, [1, ]

( )
i ji a b

i j c
o oε δ μ δ∩

∈
= ∑ i  (2) 

this is the sum of its membership to any intersection between classes. The Cumulative 
Discrimination Error ε̂  is given by:  

( )
0

ˆ ( )
p

i
i

oε ε δ
=

= ∑  
(3) 

 
Definition 4. A feature subset τ ⊆ ℜ  is a Testor with Level  if and only if n

( )( )
0

ˆ
p

i
i

o
τ

ε ε δ
=

= =∑ n .  When 0n =  this definition is equivalent to Definition 1. 

 
Definition 4 allows any subset of ℜ to be a Testor but with a different level.  Of 
course, the most interesting Testors are those which have level zero. 

4   Dimensional Reduction of a Neural Network Model 

Now we will show how a neural model, which solves a supervised classification prob-
lem, can be optimized by using Super-Testors. In this paper several neural network 
models used for solving object recognition problems, as in [31], were optimized. 

4.1  Associative Memories 

Let ( )
1

, , , 1, ,
p nx i x iξ ξ

ξ =
∈ℜ = K c be a set of  p-fundamental couples (SFC) formed 

by a pattern xξ  and its corresponding class-index i . We want to build an associative 
memory M, using this SFC, that allows us to classify the patterns into their  corre-
sponding classes, i.e.  for ξ=1,…, p and which, even in the presence of ix =⊗ ξM
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distortions, classifies them adequately, i.e. ix =⊗ ξ~M , where ξx~ is an altered ver-
sion of . Operator  is chosen such that, when pattern  is operated with matrix 
M, it produces the corresponding index class of pattern . 

ξx ⊗ ξx
ξx

The associative memory M is built in terms of a φ function as follows: 

1

M

c

φ

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  

  

(4) 

where each iφ  represents the i-th row of a matrix M and this function is a codification 

of all patterns belonging to class i. In this case iφ  is defined as: 

2

j j
j i i

i
γ λφ +

=                                                    (5) 

 
where 
 

( )j
i

p
j

i x ,

1

ξ

ξ
γ

=
∨=                                                    (6) 

 
and 

( )j
i

p
j
i x ,

1

ξ

ξ
λ

=
∧=  

(7) 

i  stands for the object’s class and j  goes from 0 to , the size of the pattern. It can 
be seen that the idea is to build a hyper-box enclosing patterns that belong to class i, by 
means of max “ ” and min “

n

∨ ∧ ” set operators. 
Once the associative memory is trained, pattern classification is done as follows: 

Given a new pattern  the index class i  is given as nx ℜ∈ξ

⎥⎦
⎤

⎢⎣
⎡ −∨∧=⊗=

== jlj

n

j

m

ll
xmxi

11
argM ξ  

(8) 

Operators  and max≡∨ min≡∧  execute morphological operations on the dif-
ference of the absolute values of element of  and the components  of pattern 

 to be classified. 

ljm M jx
ξx jlj

n

j
xm −∨

=1
 is a metric formed with the maximum between row l 

of  and pattern , thus it can be written as M ξx jlj

n

jl xmmxd −∨≡
=1

),( ,  row of lm
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M . With this metric, pattern classification is the process of assigning pattern  to 
the class whose row index is the nearest. 

ξx

4.2  Optimizing  the Associative Memory 

The SFC can be seen as the set of objects denoted by  with cardinalityio p ; each ob-

ject is described in terms of  a set of n  features denoted by ( )i
ioδ=x  and grouped 

into  classes. Optimization of the associative model is done by computing the cumu-
lative error of each testor 

c
τ , as shown in the next algorithm: 

 
1. Select a feature subset τ . 
2. Compute membership matrix as in section 3.2, using equation 1 with 

Testor τ .  
3. Compute accumulative error using equation 3. 
4. Go to step 1 until the cumulative error of the whole feature subset 

τ has been computed. 
5. Select feature subset τ , where level n  of the Testor is the 

minimum. 
6. Finally with this feature subset τ , train the associative memory. 

5   Experimental Results 

In this section, the proposal is tested with the set of realistic objects shown in Figure 1. 
Objects were not directly recognized by their images but instead from their invariant 
descriptions. The associative memory M  is built with these invariant descriptions. 
Twenty images of each object in different positions, translations and scaled changes 
were used to get the invariant descriptions. 
 

     
             (a)                       (b)                     (c)                      (d)                      (e) 
 
Fig. 1. The five objects used for training the associative memory. (a) A bolt, (b) A washer, (c) 
An eyebolt, (d) A hook, (e) A dovetail 
 
A standard threshold [8] was applied to each of the 20 images in order to get their bi-
nary version. Small spurious regions from each image were eliminated by means of a 
standard-size filter [14]. Next, for each of the 20 images of each object (class) seven 
well-known Hu geometric moments invariant to translations, rotations and scale 
changes, were computed [4]. After applying the methodology described in Section 4.1, 
the associative memory  is: M
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0.4394 0.1598 0.0071 0.0028 1.96 5 0.0011 8.47 6
0.1900 8.72 5 7.47 6 1.28 14 7.23 14 2.93 10 1.6 14

M 0.7092 0.2895 0.1847 0.0730 0.0088 0.0394 0.0015
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A new set of images was used to test the efficiency of the proposal. This set consisted 
of 100 images shown in Figure 2 (20 for each of the five objects), different from those 
used to get the associative memory M . Using this memory all objects of the set of im-
ages were put in their corresponding class. Thus, the performance of the proposal was 
100%. 
 
 

     
             (a)                       (b)                     (c)                      (d)                      (e) 
 
Fig. 2. The five objects used in the experiments: (a) A bolt. (b) A washer. (c) An eyebolt. (d) A 
hook. (e) A dovetail 
 
In order to optimize the associative memory and reduce its dimensionality we applied 
the algorithm described in section 4.2.  By applying this algorithm, we found that the 
feature subset τ , where level  of the testor is the minimum, was n { }64 1xτ = , 

{ }32 2xτ =  and { }96 1 2,x xτ = . After applying methodology described in Section 
4.1, the corresponding associative memories are defined as: 
 
 

64 32 94

0.4394 0.1598 0.4394 0.1598
0.1900 8.72 5 0.1900 8.72 5

M      M      M      0.7092 0.2896 0.7092 0.2896
1.4309 1.6009 1.4309 1.6009
0.2475 0.0190 0.2475 0.0190

E E
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢

⎤
⎥− −⎢ ⎥ ⎢ ⎥ ⎢
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⎥
⎥
⎥
⎥
⎥⎦

 

 

Using associative memories  and M  all objects of the set of images were put in 
their corresponding class. Thus, performance of the two optimized associative memo-
ries was of 100%. For the case of the associative memory  the performance was 
reduced to 84 %,.This result indicated that second moment of Hu is less representative 
than first moment . Table 1 summarizes the classification results for all associative 
memories tested. 

64M 94

32M
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Table 1. Comparative classification percentages of the associative memory with respect to the 
optimized associative memories 

 M  32M  64M  96M  

Bolt 100% 90% 100% 100% 
Washer 100% 100% 100% 100% 
Eyebolt 100% 65% 100% 100% 
Hook 100% 100% 100% 100% 

Dovetail 100% 85% 100% 100% 
 
In order to demonstrate that this technique is independent of the network architecture 
used, we performed several experiments using other neural networks. The same ex-
periments were performed using the associative memories described in [32] and [27]. 
These associative memories use three different operators: prom operator, med operator 
and median operator. On the other hand we used the well-known multilayer neural 
network trained with the back-propagation algorithm as described in [10]. 

By applying the algorithm described in section 4.2, we found that the feature subset 
τ , where level  of the Testor is the least, was n { }64 1xτ = , { }32 2xτ =  and 

{ }96 1 2,x xτ =  for the different neural models. 

For the case of prom operator, by using associative memories  and  all 
objects of the set of images were put in their corresponding class. Thus, the perform-
ance of the two optimized associative memories was of 100%. For the case of the asso-
ciative memory  the performance was reduced to 88 %. Table 2 summarizes the 
classification results for all associative memories tested trained with prom operator. 

64M 94M

32M

 
 
Table 2. Comparative classification percentages of the associative memory using prom operator 
with respect to the optimized associative memories 
 

 M  32M  64M  96M  
Bolt 100% 90% 100% 100% 

Washer 100% 100% 100% 100% 
Eyebolt 100% 65% 100% 100% 
Hook 100% 100% 100% 100% 

Dovetail 100% 85% 100% 100% 
 

For the med operator case, by using associative memories ,  and  
the performance was 82 %, which is the same result obtained with the complete de-
scription (e.g. with M ). Table 3 summarizes the classification results for all associa-
tive memories tested and trained with med operator. 

32M 64M 94M

 
Table 3. Comparative classification percentages of the associative memory using med operator 
with respect to the optimized associative memories 
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 M  32M  64M  96M  
Bolt 100% 100% 100% 100% 

Washer 100% 100% 100% 100% 
Eyebolt 70% 70% 70% 70% 
Hook 50% 50% 50% 50% 

Dovetail 90% 90% 90% 90% 
 
 
For the case of the median operator, by using associative memories ,  and 

 the performance was 95 %, again the same result obtained without reducing the 
network. Table 4 summarizes the classification results for all associative memories 
tested trained with median operator. 

32M 64M

94M

 
 
Table 4. Comparative classification percentages of the associative memory using median opera-
tor with respect to the optimized associative memories 
 
 

 M  32M  64M  96M  
Bolt 100% 100% 100% 100% 

Washer 100% 100% 100% 100% 
Eyebolt 90% 90% 90% 90% 
Hook 50% 50% 50% 50% 

Dovetail 85% 85% 85% 85% 
 

For the case of the multilayer neural network trained with the back-propagation al-
gorithm, the performance for ,  and  was 89 %, 100% and 100%, while 

for M it was 98%. Table 5 summarizes the classification results for all neural networks 
trained with the back-propagation algorithm. 

32M 64M 94M

 
 
Table 5. Comparative classification percentages of the neural network with respect to the opti-
mized neural network. 
 
 

 M (7-4-1) 32M (1-4-1) 64M (1-4-1) 
96M (2-4-1) 

Bolt 100% 95% 100% 100% 
Washer 95% 100% 100% 100% 
Eyebolt 95% 70% 100% 100% 
Hook 100% 95% 100% 100% 

Dovetail 100% 85% 100% 100% 
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6   Conclusions 

In this paper we have described a new technique to optimize the size of an associative 
memory in a object recognition problem. This technique uses Testor theory, widely 
used in the logical-combinatorial approach to pattern recognition.  

We describe an algorithm which allows us to calculate the most relevant features in 
the patterns used to train neural network models as associative memories and multi-
layer neural networks. 

Throughout several experiments we test the accuracy of the proposal by using im-
ages of real objects. In those experiments first we train the neural models and then we 
show that by applying the procedure described in section 4.2 we can reduce the size of 
the neural models. We also show that in some cases the accuracy of the models is in-
creased; like in the multilayer neural network, and in other cases the accuracy is the 
same. We are presently working in a comparison between classical dimensional reduc-
tion techniques and Testor Theory techniques applied to the neural network optimiza-
tion task and also testing this approach with more complex objects.  
 

Acknowledgments. Authors are grateful for the economic support provided by SIP-
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Abstract. This paper presents two feature extraction methods for developing face 
verification algorithms based on the Gaussian Mixtures Model (GMM).  The first 
one using the discrete wavelet transform, (DWT) while the second is based on 
the discrete Gabor transform (DGT).  In both cases, firstly the feature extraction 
is carried out using either the DGF or the DWT.  Next the Gaussian Mixture 
Model (GMM) is used to perform the face verification task.  Evaluation results 
using the standard data bases with different parameters, such as the mixtures 
number, the number of faces used for training as well as the transform used for 
feature extraction  show that  proposed system provides better results that other 
previously proposed systems with a correctly detections larger than 95%, using 
any of these transforms,. Although, as happens in must face recognition systems, 
the verification rate decreases when the target faces present some rotation 
degrees.  

1 Introduction 

The development of security systems based on biometric features is currently a topic 
of active research, because it has a great importance in the development of the identity 
verification systems for access control, to enforce the security in restricted areas, and 
several other security applications.  The terrorist attacks that have happened during the 
last decade have done evident the necessity of developing more reliable security 
systems, in offices, banks, companies, trades, etc.  Among them the identity 
verification based on biometric methods appear to be a good alternative for the 
development of such security systems.  

The biometrics systems consist of a group of automated methods for recognition or 
verification of people identity using physical characteristics or personal behavior of the 
person under analysis [1]. This technology is based on the fact that each person is 
unique and possesses distinctive features that can be used to identify her/him.  
Following these ideas several biometric based security systems have been developed 
using fingerprints, iris, voice hand and face features.  Among them, the face 
verification systems appear to be a desirable alternative because in is non-invasive and 
its computational complexity is low, it is the biometric method easier of understanding 
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since for us the face is the most direct way to identify people; besides that the data 
acquisition of this method consists on taking a picture, doing it one of the biometric 
methods with larger acceptance among the users.   

The recognition is a very complex activity of the human brain. For example, we can 
recognize hundred of faces learned throughout our life and to identify familiar faces at 
the first sight even after several years of separation with relative easy.  However for a 
computer it is not a simple task.  For instance, recently proposed face recognition 
systems, achieve a recognition rate of about 91% when the face image is not rotated or 
the rotation is relatively low.  However although, this recognition rate is good enough 
for several practical applications, it may be so large for applications where the security 
should be extreme; such that we cannot tolerate a high erroneous recognition average.  
This paper proposes a face recognition algorithm that is able of achieving an erroneous 
verification rate below 9%.  Several methods have been proposed for face recognition 
[2], [3] such as the methods based on statistical correlation of the geometry [4]; the 
face form which uses the distances among the position of the eyes, mouth, nose, etc. as 
well as those using the neuronal networks technology that trait to imitate the operation 
of the human brain [2]. Many of these systems can recognize a person even when they 
present some physical changes, such as the growth of the beard or mustache, changes 
in the color or the style of the hair, the use of glasses, etc.  Although in general are 
sensitive to rotations of the face images.  

Before starting the proposed methods analysis used for face recognition, it is 
necessary to point out the verification concept.  In face verification, the person says to 
the system about his/her identity, presenting an identification card or writing a special 
password.  The system holds the person's features (for example the persons face in this 
case), and then proceeds to solve if the person is who (his/her) claims to be.  
 

GMM training stage Features Extraction using the DGF or DWT Input face patterns. 

Verification algorithm Decision (accepted / rejected). Test stage 

 
 
 
 
 

Fig. 1. Proposed face verification algorithm. 

2 Proposed System 

This section provides a detailed description of the proposed face verification algorithm 
which consists of three stages.  Firstly a feature extraction of the face is carried out, 
using either the Gabor discrete transform (DGF) or discrete wavelet transform (DWT).  
Next using these features vectors, a model for each face is obtaining using a Gaussian 
Mixtures Model (GMM).  Finally during the verification process, the GMM output is 
used to take the final decision.  Figure 1 shows the block diagram of proposed 
algorithm. 
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Fig. 2. DGT model. 

2.1  Feature extraction with DGT 

The feature extraction stage is one of the most important steps in any pattern 
recognition system. To this end, the proposed algorithm uses the DGT which has some 
relation with the human visual system (HVS).  The two dimensional discrete Gabor 
functions (2D-DGF) depends on four parameters, two of them express their localization 
in the space (x, y) while the other two express the spatial frequency, fm, and the 
orientation φn, where m=1,2,..Nf and n=1,2,..,Nφ [5].  Thus to estimate the features 
vector, firstly the captured image (NxM) is divided in MxMy receptive fields each one 
of size (2Nx+1)x(2Ny+1) (Fig. 2), where Nx=(N-Mx)/2Mx, Ny=(M-My)/2My.  This fact 
allows that the number of elements in the features vector be independent of the 
captured image size.  Next, the central point of each receptive field whose coordinates 
are given by (ci,dk), where i=1,2,..,Nx; k=1,2,3,…,Ny, are estimated.  Subsequently the 
first point of the cross-correlation ψ(u,v) between each receptive field and the NfNφ 
Gabor functions hm,φ(x,y) is estimated, where 

))'y'x(jfexp()'y,'x(g)y,x(h m,f += πφ 2  (1) 

where denotes the Gabor function, and 

))cossin(),sincos(()','( nnnn yxyxyx φφφφ +−+=  (2) 

As shown in Fig. 1, NfNφ correlations are estimated for each receptive field, leading to 
an extremely large features vector.  Thus to reduce the elements in the features vector, 
the first point of the total cross correlation between each receptive field and the set of 
DGF is used, which can be obtained taking the average of ψ(u,v) with respect to v.  
Therefore the proposed algorithm features vector  M(u), is given by 

∑
=

=
vN

vv
vu

N
uM

1
),(1)( ψ  (3) 
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where Nv=NfNφ. To do the proposed method robust against changes of sizes and 
translation; the algorithm firstly assumes that the gray level of picture background is 
constant.  Next the algorithm estimates the position and size of the image by analyzing 
the gray label variation on the image.  Once the image size and position have been 
estimated, the image is divided in 12x9 sections, as shown in Fig. 2, whose central 
point will be always located in the space position (x, y), where x=0 and y=0.  After the 
image was divided in 108 sections, the features vector was estimated with 9 phases and 
6 normalized frequencies as mentioned before.  This produces a matrix with 5832 
elements that are subsequently reduced to 108 using eq. (3). 
 

 

Fig. 3. a) Original image. b) Cross correlation matrix between DGF and receptive fields. c) 
Features vector obtained of proposed algorithm. 

2.2  Feature extraction with DWT 
 
The most commonly used set of discrete wavelet transforms was formulated by the 

Belgian mathematician Ingrid Daubechies in 1988. This formulation is based on the 
use of recurrence relations to generate progressively finer discrete samplings of an 
implicit mother wavelet function; each resolution is a half of that of the previous scale.   

The DWT of a given signal x is estimated by passing it through a series of low pass 
and high pass filters (Fig. 4. First the samples are passed through a low pass filter with 
impulse response g(n,m) resulting in a convolution of the two. The signal is also 
decomposed simultaneously using a high-pass filter h(n,m).  The detail coefficients are 
the high-pass filter outputs and the approximation coefficients are the low-pass ones.  It 
is important that the two filters, related to each other, are known as a quadrature mirror 
filter.  However, since half the frequencies of the signal have now been removed, half 
the samples can be discarded according to Nyquist’s rule. The filter outputs are: 

 

∑ ∑
−∞= −∞=

−−=
j k

LOW jmkngmnxmnY )2,2(),(),(  (4) 

∑ ∑
−∞= −∞=

−−=
j k

HIGH jmkngmnxmnY )2,2(),(),(  (5) 

This decomposition reduces the spatial resolution since only a quarter of each filter 
output allows characterizing the face image. However, because each output has band 
width equal to a quarter of the original one, the output image can be decimated to 
reduce the image size. 
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Fig 4.  3 level wavelet decomposition 

 

Fig. 5. Gaussian Mixture Model 
 

Here only the approximation coefficients are used to characterize the face image.  
This decomposition is repeated to further increase the frequency resolution and the 
approximation coefficients decomposed with high and low pass filters and then down-
sampled. This is represented as a binary tree with nodes representing a sub-space with 
different time-frequency localization. The tree is known as a filter bank. 

At each level in the above diagram the signal is decomposed into low and high 
frequencies. Due to the decomposition process the input signal must be a multiple of 2n 
where n is the number of levels.  For example a signal with 32 samples, frequency 
range 0 to fn and 3 levels of decomposition, 4 output scales are produced: 
 
2.3  Face verification stage 

To perform the face verification task a GMM will be used because, the GMM, 
which consists of a sum of M weighted Gaussian density functions, is able to 
approximate any probability distribution if the number of Gaussian components is large 
enough.  Consider the GMM shown in Fig. 5 which is described by the following 
equation [6]: 

 

http://en.wikipedia.org/wiki/Filter_bank
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∑
=

=
M

i
ii xbpxp

1
)()/( rr λ  (6) 

where xr  is a N-dimensional vector, bi( xr ),i=1,2,…M, are the density components and 
pi, i=1,2,…M, are the mixture weights.  Each density component is a D-dimensional 
Gaussian function given as: 
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)2(

1)( )  (7) 

Where ( )’ denotes the transpose vector, μi denotes the mean vector and σi the 
covariance matrix which is assumed to be diagonal; and pi are the mixture weights 

which satisfies that . The model of the distribution is determined by the 

mean vector, the covariance matrix and the distribution weights for a face model is 
given by 

∑ =
=

M
i ip1 1

{ } M,..,,i,,p iii 21== σμλ .  The estimation of the optimal parameter is a 

non-linear problem, such that we need an iterative algorithm to estimate the optimal 
parameters of the face verification algorithm, and the Maximum Likelihood algorithm 
(ML) is used to search the optimal parameters of the system, providing the best 
approach to the face model under analysis.  So then the goal is to find the best 
parameters of λ that maximize the a posteriori probability distribution.  For a sequence 
of vectors T of training X={x1,…,xT}, GMM likelihood can be written as [7]: 

( ) ( )∏ =
=

T

t tXpXp
1

// λλ  (8) 

Equation (8) is not lineal in relation of the parameters λ, then is necessary to carry out 
the estimation in an iterative way using the Expectation-Maximization algorithm (EM), 
in which starting from an initial set of parameters λ(r-1) and a new model is estimated 
λ(r), where r denotes the r-th iteration, so that: 

( ) ( ))1(/)(/ −≥ rXprXp λλ  (9) 

 
To achieve this goal, each T partial feature vectors Xt, of the GMM parameters are 
updated [7]. During the testing phase we need to estimate the probability that one face 
under analysis corresponds to a given model, that is Pr(λ/X).  To achieve this, the 
Bayes theorem is used, then obtain: 

( )( )∑
=

=
T

t
tXpR

1
10 /logˆ λ  (10) 

where p(Xt/λ) is the conditional probability of the face X given by face model λ, this is 
the GMM system response shown in the Fig. 6. 
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3  Evaluation Results 

The evaluation of proposed system was carried out by computer simulations using 
the database created by Olivetti Research Laboratory in Cambridge, UK (ORL), which 
consists of images of 30 people with 10 images of each one which differs on, face 
rotation, different inclination, etc.  The images have a size of 92 x 112 pixels. 

After the feature vector is estimated using the DGT or the DWT it is applied to a 
GMM for obtaining the model of the face under analysis.  This is achieved introducing 
the estimated vectors to the Gaussian mixture model (GMM) to obtain the weights, the 
mean and variance as described in [6], [7], where for training we assume that the 108 
elements obtained in the feature extraction stage are divided in partial features vector of 
L elements as follows  

 

{ }1321210 ,...,,,,,...,,, −+++= LTTTT XXXXXXXXS  (11) 

 
Subsequently, form a group of vectors in L segments with T features vectors, Xt, each 
one in the following way: 
 

{ Ttt XXXXXXS ,...,,,,, 12100 += } (12) 

 

{ }kTttkkkk XXXXXXS ++++= ,...,,,...,,, 121  (13) 

 
In this work the system uses T=12 in order that each 12 feature vectors of the GMM 
parameters being updated.  In the table 1 and 3 the face rejection results using the DGT 
DWT respectively are shown, the Fig. 2 and 4 show the false acceptation rate using 
DGT and DWT respectively. 

Table 1. False rejection error using DGT. 

# of faces of 
training 

# 
Gaussian 
Mixtures 

Low 
threshold 

% 

Half 
threshold 

% 

high 
threshold 

% 
 9 12 8 5.1 

1 face 16 18.5 12.9 8.7 
 32 12.4 9.2 6.8 
 9 12 7.7 4.7 

3 faces 16 13.25 9.1 5.9 
 32 8.66 6.48 4.6 
 9 9.3 5.9 4 

5 faces 16 10.9 7 4.4 
 32 5.9 4.6 3.9 
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Table 2. False acceptation error using DGT. 

# of faces of 
training 

# 
Gaussian 
Mixtures 

Low 
threshold 

% 

Half 
threshold 

% 

high 
threshold 

% 
 9 11.57 6.71 3.14 

1 face 16 18.5 12.35 7.7 
 32 11.8 8.34 5.62 
 9 11.4 6.5 3.13 

3 face 16 12.5 8 4.5 
 32 7.42 5 2.9 
 9 8.7 4.5 2.2 

5 face 16 10.2 5.8 2.9 
 32 4.4 2.8 2 

Table 3. False rejection error using DWT. 

# of faces of 
training 

# Gaussian 
Mixtures 

Low 
threshold 

% 

Half 
threshold 

% 

high 
threshold 

% 
 12 4.55 4 3.41 

1 face 16 5.53 4.2 3.3 
 32 9.8 7.9 6.1 
 12 1.5 2.18 2.26 

3 faces 16 8.8 7.32 6.08 
 32 16.7 14.8 13.3 
 12 6.7 5.9 5.3 

5 faces 16 3.6 3.2 2.9 
 32 3.4 3 2.9 

Table 4. False acceptation error using DWT. 

# of faces of 
training 

# 
Gaussian 
Mixtures 

Low 
threshold 

% 

Half 
threshold 

% 

high 
threshold 

% 
 12 3.82 2.63 1.74 

1 face 16 4.54 3 1.9 
 32 9.2 7.11 5.1 
 12 0.66 0.56 0.43 

3 face 16 8 6.45 5.11 
 32 16.3 14.3 12.7 
 12 5.8 4.3 3.34 

5 face 16 1.31 0.9 0.44 
 32 1.45 1 0.8 

 
In the verification stage a threshold is used which depends of the face under 

analysis.  Top improve the verification performance this threshold may be divided in 
three categories: low, half and high thresholds.  Two variants more were introduced for 
evaluation: one is the numbers of faces used for the training and the second one is the 
numbers of Gaussians mixtures to be used and these variants are applied in the two 
used techniques 
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Simulation results show that proposed algorithm performs fairly well in comparison 
with other previously proposed methods [1], [2], [6], even with faces that present an 
appreciable rotation, as happens in the ORL database.  We can also see that there is not 
a much difference between using DWT and DGT.  

 
 

4  Conclusions 

This paper presented two face verification algorithms in which the DGT or DWT are 
used for feature extraction and the GMM to perform the verification task. Evaluation 
results obtained were very different with each one of the variants proposals, from 
18.5% in the worst case, until 3.9% in the best case, using DGT, and 16.7% in the 
worst case, until 2.9% in the best case, using DWT.  These results are very satisfactory 
if we consider that the database used is composed by 30 persons.  This quantity of face 
is very similar to any database in a real application.  In the case of accepting a person 
with a false identity we have a percentage of error of 18.5% at worst case and a 2% in 
the best one using the DGT; while using the DWT we have a 16.3% cases at worst 
case; and a 0.44% in the best one using DWT.  In summary, can observe that the 
system performance becomes better when more faces are used for training the GMM 
and it has a larger number of mixtures.  This is valid for false acceptation error as well 
as for false rejection error. 
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Abstract.  An exploratory and effective research around the possible 
application of the Perceptron paradigm as a method for feature selection is 
carried out. The main idea is training a Perceptron and then using the learned 
inter-connection weights as metric of which database’s attributes are the 
most discriminative for the class. We hypothesized that an inter-connection 
weight close to zero indicates that the associated attribute to this weight can 
be eliminated because it does not contribute with relevant information in the 
construction of the class separator hyper-plane of the Perceptron. The 
experiments that were realized, with 8 real and 11 synthetic databases, show 
that the proposed algorithm is a good trade-off among feature reduction, 
accuracy and processing time.  

1  Introduction 

Feature selection has become a relevant and challenging problem for the area of 
Knowledge Discovery in databases (KDD). An effective feature selection strategy [1] 
can significantly reduce the data mining processing time, improve the predicted 
accuracy, and help to understand the induced models, as they tend to be smaller and 
make more sense to the user.  

Although there is many feature selection algorithms reported in the specialized 
literature, none of them are perfect: some of them are fast, but not effective in the 
feature selection task (e.g., filter methods), and others are effective, but very costly in 
computational time (e.g., wrapper methods). 

Specifically, filter methods are more efficient; they use some form of correlation 
measure between individual attributes and the class [2][3]; however, because they 
measure the relevance of each isolated attribute, they cannot detect if redundant 
attributes exist, or if a combination of two or more attributes, apparently irrelevant 
when analyzed independently, are indeed relevant together [4]. On the other hand 
wrapper methods, although effective in eliminating irrelevant and redundant attributes 
and detecting inter-dependencies, are very slow because they apply the mining 
algorithm many times, changing the number of attributes each time of execution as 
they follow some search and stop criteria [5]. 

Here, we propose and experiment with a feature selection strategy, in which the 
trained Perceptron inter-connection weights are utilized like a metric, indicator or 
measure of attribute importance or relevance. The basic idea is to eliminate the 
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attributes whose associated weights are close to zero. Similar idea is used in more 
complex, time-consuming and memory demanding methods, like the Principal 
Component Analysis (PCA) technique and the Support Vector Machine (SVM) 
variants for Feature Selection (SVM-FS) [1][7]. 

To cover these topics, the article is organized as follows: Section 2 introduces our 
feature selection method; Section 3 details the experiments; Section 4 discuss and 
surveys related work; finally, conclusions and future work are given in Section 5. 

2   Feature Selection Perceptron Strategy 

The method to explore is the classic Rosenblatt´s Perceptron, as strategy for relevant 
attribute selection. We propose to use a “soft” or “relaxed” Perceptron (similar to [6]), 
in the sense that it can accept some percentage of misclassified instances; in this case 
the training stopping criterion occurs when no accuracy improvement is obtained. To 
measure the improvement/ no-improvement we use the generalization accuracy (Acc) 
and the Balanced Error Rate (BER) [7].  The Perceptron variation that we used has: a) 
as many inputs-inter-connection weights as attributes the dataset contain, b) only one 
neuron with a step activation function, and c) only one output.  To obtain the 
Perceptron output S, we use the equation: 

                                             { }ijii EWUS Σ=                                                     (1) 

where  Wi  are the i inter-connection weights;  Eij is the input vector (with i elements) 
that form an instance j; and U is a step function that outputs  1 (one) if  Σi Wi Eij  > θ  
and 0 (zero) otherwise. θ  is the Perceptron´s threshold. 

To train the Perceptron we apply the equations: 
 

( ) ( ) ( ){ }ijii ESTtWtW −+=+ α1     (2)   

                                 ( ) ( ) ( ){ }ijESTtt −−+=+ αθθ 1    (3)  

where T is the desired output (or target) and α  is the learning rate: this user parameter 
can take values between 0 and 1. 

Although there exist more sophisticated procedures in the area of neural network 
pruning [8], we choose this idea because of its simplicity (and therefore, efficiency) 
and direct application to feature selection, because of the direct relation between each 
feature and its Perceptron inter-connection weight. To execute the overall feature 
selection process we apply the procedure shown in Fig. 1. 

3   Experiments 

With the Perceptron for Feature Selection (PFS) we expect: 
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a) To use less amount of memory, because a Perceptron only requires to store as 
many inter-connection weights as “n” attributes the database has, as opposed to 
PCA that builds an “n2” matrix,  

b) To drop the processing time because, as opposed to SVM-FS [7] that involves 
solving a quadratic optimization problem, the Perceptron converges fast to an 
approximate solution, 

c) To avoid to carry out a combinatorial explosive search or exhaustive exploration; 
that is to say, without having to evaluate multiple attribute subset combinations, as 
the wrapper methods do (they evaluate multiple subsets applying the same 
algorithm that will be used in the data mining phase), or some filter methods, that 
employ different metric to evaluate diverse attribute subsets, and that use a variety 
of search strategies like Branch & Bound, Sequential Greedy, Best-First, Forward 
Selection, Sequential Backward Elimination, Floating, Random Search, among 
others,  

d) Implicitly capture the inter-dependences among attributes, as opposed to filter-
ranking methods, that evaluate only the importance of one attribute against the 
class, like F-score, Symmetrical Uncertainty, Correlation, Entropy, Information 
Gain, etc.  

 
Perceptron for Feature Selection  Procedure (PFS) 

Given a continuous or numeric dataset, with D attributes previously normalized [0,1], 
and N randomly chosen instances, 
1. Let Acc(t) = 0 (generalization accuracy), WithoutImprove = ni (number of 

accepted epochs without accuracy improvement). 
2. While Acc(t+1) better than Acc(t) (ni times). 

a. Train a “relaxed” Perceptron (initial weights in zero) 
b. Test after each epoch, and obtain Acc(t+1) 
c. If Acc(t+1) better than Acc(t): save weights and do Acc(t) = Acc(t+1)  

3. Drop attributes with small absolute inter-connection weights. 
4. Use the d remain attributes (d  < D) to create a model as the predictor with some 

classifier. 
 

Fig. 1. Perceptron for feature selection procedure. 
 

Then, the objective of this Section is to show the exploratory experimentation 
realized to verify/ invalidate these assumptions (hypothesis). 

We conducted several experiments with 8 real and 11 synthetic datasets to 
empirically evaluate if PFS can do better in selecting features than other well-known 
feature selection algorithms, in terms of feature reduction, accuracy and processing 
time. We choose synthetic datasets in our experiments because the relevant features 
and its inter-dependencies are known beforehand. 

3.1  Details 

As first experimentation phase, eight real databases were used. The first one is a 
database with 24 attributes and 2,770 instances; this database contains information of 
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Mexican electric billing customers, where we expect to obtain patterns of behavior of 
illicit customers. The next five datasets are taken form the UCI repository [9] (see 
Table 2 for details).  

Additionally, we experiment with two datasets taken from the NIPS 2003 feature 
selection challenge1. These datasets have very high dimensionality but relatively few 
instances. Specifically, Madelon database has 500 features and 2,000 instances and 
Gisette dataset has 5,000 features and 6,000 instances. 

On the other hand, we test our proposed method with 11 synthetic dataset. Ten of 
them with different levels of complexity: to obtain these datasets we use the functions 
described in [10]. Each of the datasets has nine attributes (1.salary, 2.commission, 
3.age, 4.elevel, 5.car, 6.zipcode, 7.hvalue, 8.hyears, and 9.loan) plus the class attribute 
(with class label Group “A” or “B”); each dataset has 10,000 instances. The values of 
the features of each instance were generated randomly according to the distributions 
described in [10]. For each instance, a class label was determined according to the rules 
that define the functions. We experiment also with the corrAL synthetic dataset [11], 
that has four relevant attributes (A0, A1, B0, B1), one irrelevant ( I ) and one redundant 
( R ); the class attribute is defined by the function Y = (A0 ∧A1) ∨ (B0 ∧ B1).  

In order to compare the results obtained with PFS, we use Weka´s [12] 
implementation of ReliefF, OneR, CFS and ChiSquared feature selection algorithms. 
These implementations were run using Weka´s default values, except for ReliefF, 
where we define 5 as the neighborhood number, for a more efficient response time. 
Additionally, we experiment with several Elvira´s [13] filter-ranking methods (see 
Table 1 for details).  

To select the best ranking attributes, we use a threshold defined by the largest gap 
between two consecutive ranked attributes, according to [11]  (e.g., a gap greater than 
the average gap among all the gaps). As inductor we utilized Weka´s J4.8 classifier 
(J4.8 is the last version of C4.5, which is one of the best-known induction algorithms 
used in data mining) with 10-fold cross validation (although we experimented using 
more classifiers, we obtained similar results). 

In the case of PFS (codified with C language), we set the learning rate α to 0.6, the 
maximum epochs equal to 500, and the number of epochs without accuracy 
improvement ni to 15, for all the experiments. All the experiments were executed in a 
personal computer with a Pentium 4 processor, 1.5 GHz, and 250 Mbytes in RAM.  In 
the following sub-Section the obtained results are shown.   

3.2  Experiments with 8 real databases 

Testing over the Electric billing database, we use the selected features for each 
method as input to the decision tree induction algorithm J4.8 included in the Weka tool. 
We notice that PFS obtains similar accuracy as Kullback-Leibler-2, but with less 
processing time (Table 1). In Fig. 2 we depict a detail of the interconnection weights 
obtained by each attribute when we apply PFS to the Electric billing database. Only for 
this database, attributes 22, 23 and 24 are random attributes and, following [14], we use 
this information to mark the threshold between relevant and irrelevant attributes.  

                                            
1 http://www.nipsfsc.ecs.soton.ac.uk/datasets/ 
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Table 1. J4.8´s accuracies with features selected by each method (Electric billing 
database). 

 
Method Total features 

selected 
Accuracy 

(%) 
 

Pre-processing time 

Kullback-Leibler 2 9 97.50 6 secs. 
PFS 11 97.29 3 secs. 
All attributes 24 97.25 0 secs. 
ChiSquared 20 97.18 9 secs. 
OneR 9 95.95 41 secs. 
ReliefF 4 93.89 14.3 mins. 
Euclidean distance 4 93.89 5 secs. 
Shannon entropy 18 93.71 4 secs. 
Bhattacharyya 3 90.21 6 secs. 
Matusita distance 3 90.21 5 secs. 
CFS 1 90.18 9 secs. 
Kullback-Leibler 1 4 90.10 6 secs. 
Mutual Information 4 90.10 4 secs. 
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Fig. 2. PFS´s weights for each attribute (Electric billing database). 

 
Testing over the five UCI datasets, PFS obtains similar average accuracy as CFS and 

ReliefF, but with less processing time and good feature reduction (Table 2). 
In order to compare our results with real very large databases, we experiment with 

Madelon and Gisette NIPS 2003 challenge data. In these cases we can not apply Weka 
or Elvira feature selection tools because they ran out of memory; so, for comparison, 
we use the results presented by Chen et.al [7]: they apply SVM with a radial basis 
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function kernel as feature selection method. Table 3 shows results for Madelon and 
Gisette datasets (N/A means information not mention in [7]). 

From Table 3 we can observe that the obtained BER using PFS is similar when SVM 
is applied; on the other hand both, accuracy and BER, are poor. The reason for this bad 
result  is  because  Madelon  is  a dataset with clusters placed on the summits of a five 
dimensional hypercube, so, in some sense, is a variation of the XOR problem, a non-
linear separable classification problem. Thus, PFS and SVM (still with a kernel 
function) fail with this database. In the case of Gisette, that contains instances of 
handwritten digits “4” and “9”; from Table 3 we can see that SVM obtains a superior 
BER, but PFS achieves an acceptable BER and accuracy, using few attributes (64 
against 913). 

 
Table 2. J4.8´s accuracies using the features selected by each method for five UCI 

datasets. 
 

Vote 
(16/435) 

Horse-c 
(27/368) 

Sick 
(29/3772) 

Sonar 
(60/208) 

Ionosphere 
(34/351) 

 
Method 

TF Ac Pt TF Ac Pt TF Ac Pt TF Ac Pt TF Ac Pt 

Avg. 
Acc 

All atts 16 96 0 27 66 0 29 98 0 60 74 0 34 91 0 85.0 

PFS 2 95 0.08 3 68 0.09 3 96 0.4 4 72 0.1 5 93 0.1 84.8 

CFS 1 95 0.04 2 66 0.04 2 96 0.25 18 74 0.09 8 90 3 84.2 

ReliefF 15 96 0.6 3 66 0.9 6 94 94 4 70 0.9 6 93 4 83.8 

SOAP2 2 95 0.09 3 66 0.02 2 93 0.12 3 70 0.02 31 90 0.01 82.8 

Mutual I 8 94 1 4 68 1 2 90 1.4 18 73 1 3 86 1 82.2 

OneR 8 90 0.9 3 67 1 3 88 1.3 12 72 1 4 85 1 80.4 

KL-1 5 91 1.1 4 61 1.2 3 92 1.7 16 70 1 2 86 1 80.0 

KL-2 4 88 1 4 62 1.1 2 89 1.5 11 68 1 3 83 1 78.0 

Matusita 6 86 1.9 3 61 2.3 2 91 3.3 17 68 2.5 2 83 2 77.8 

Bhattac 7 87 0.9 3 60 1 1 90 1.4 9 68 1 2 83 1 77.6 

Euclidea 8 86 1.2 3 62 1.4 2 90 1.2 10 67 1.1 2 82 1 77.4 

ChiSqua 3 87 1.4 2 60 1.6 3 88 1.3 11 65 1.2 2 80 1 76.0 

Shannon 3 86 1 4 61 1.3 2 87 1.6 9 66 1 2 80 1 76.0 

 
“(16/435)” means (attributes / instances) for Vote dataset, and so on. 

TF=Total features selected     Ac=Accuracy (%)     Pt=Pre-processing time (secs.) 
 
 
 
 

                                            
2 SOAP´s results were taken from [17]. 
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Table 3.  Accuracies and BER with features selected by each method  (Madelon- 
Gisette). 

 
Database Method Features  

Total (%) 
Accuracy 

(%) 
 

BER Pre-process. time 

PFS 21  (4. 2%) 58.35 0.4165 48 secs. 
Madelon 

SVM 13  (2. 6%) N/A 0.4017 N/A 

PFS 64  (1. 3%) 94. 5 0.0549 3. 3 mins. 
Gisette 

SVM 913 (18. 2%) N/A 0.0210 N/A 

 
 
3.3  Experiments with 11 synthetic datasets 
 

The results of applying PFS to 10 synthetic datasets are shown in Table 4. We can 
observe that the average processing time (column 2) and epochs (column 3) is 
acceptable. The generalized accuracy obtained for PFS is bad (column 4) but the 
resulting average accuracy of applies the selected features by PFS to the J4.8 classifier 
is good (column 5). In columns 6 and 7 we can see that the features selected by PFS are 
equal or near to the perfect attributes (Oracle column), in almost all cases, except for 
datasets 3 and 5; the average number of features selected is similar (2.7 vs. 3). 
    

Table 4. PFS with 10 Synthetic Databases. 
 

 
Database 

PFS 
time 

(secs) 

PFS 
Epoch 

PFS 
Acc 
(%) 

PFS+J4.8 
Acc (%) 

 

PFS 
Attributes 
Selected 

 
Oracle 

1 3 40 47 100 3-7 3 
2 2 24 55 100 1-2-3 1-3 
3 2 18 61 68 4 3-4 
4 2 17 63 84 1-3 1-3-4 
5 3 34 65 82 9 1-3-9 
6 4 47 66 99 1-2-3 1-2-3 
7 6 59 100 98 9-1-2 1-2-9 
8 4 39 100 100 1-2-4 1-2-4 
9 4 48 100 97 9-1-2-4 1-2-4-9 

10 3 37 99 99 4-8-7-1-2 1-2-4-7-8-9 
Avg. 3.3 36.3 75.6 92.7 (2.7) (3) 

 
Next, we use the selected features obtained by several feature selection methods as 

input to the decision tree induction algorithm J4.8 (see Table 5).  
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Table 5.  J4.8´s accuracies (%) with features selected by each method  (10 Synthetic 
DBs). 
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1 100 100 100 100 100 100 100 100 100 67 100 67 
2 100 100 100 73 73 73 73 73 73 73 73 100 
3 100 100 68 100 100 100 100 100 100 100 68 59 
4 100 90 84 84 84 84 84 84 84 84 84 84 
5 100 100 82 74 74 82 74 74 74 82 74 60 
6 99 99 99 99 99 99 87 87 99 68 64 69 
7 98 98 98 98 94 86 98 86 86 86 88 94 
8 100 100 100 100 99 99 100 99 - 99 100 98 
9 97 94 97 97 92 85 85 92 85 85 88 85 

10 99 80 99 99 97 97 99 97 98 97 97 80 
Avg. 99.3 96.1 92.7 92.4 91.2 90.5 89.8 89.2 84.9 84.1 83.6 79.6 
    

We use 10-fold cross validation in order to obtain the average test accuracy for each 
feature subset (in all cases, we obtain similar results using BER as quality measure 
criterion). The column “Oracle/All”, from Table 5, represents a perfect feature 
selection method (it selects exactly the same features that each dataset function uses to 
generate the class label and, in this case, is equal to the obtained accuracy if we use all 
the attributes). For dataset 8, only OneR cannot determine any feature subset, because 
ranks all attributes equally. From Table 5 we can see that the PFS average accuracy is 
better than several feature selection methods, while worse than only ReliefF. 

With respect to the processing time, this is shown in Table 6. We observe that, 
although PFS is computationally more expensive than ChiSquared and other filter-
ranking Elvira´s methods, these algorithms cannot detect good relevant attributes or 
some attribute inter-dependencies; on the other hand, PFS was faster than ReliefF, 
maintained good generalized accuracy. To have a better idea of the PFS performance, 
we can compare the results presented previously against the results produced by an 
exhaustive wrapper approach.  In this case, we can calculate that, if the average time 
required to obtain a classification tree using J4.8 is 1.1 seconds, and if we multiply this 
by all the possible attribute combinations, then we will obtain that 12.5 days, 
theoretically, would be required to conclude such a process.  
 

Table 6. Average processing time for each method in seconds (10 Synthetic 
Datasets) 

Exhaustive 
Wrapper 

ReliefF OneR PFS ChiSquared 
and Elvira 

1,085,049 (12.5 days) 573 (9.55 mins.) 8 3.3 1 
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When we test with the corrAL synthetic dataset, PFS was the only that can remove 
the redundant attribute (Table 7); results for FCBF and Focus methods was taken from 
[11]. Because the corrAL is a small dataset, processing time in all cases is near to zero 
seconds, and thus omitted. 
 

Table 7. Features selected by different methods (corrAL dataset). 
 

Method Features selected 
PFS A0, A1,B0, B1  
ReliefF R, A0, A1, B0, B1 
OneR R, A1, A0, B0, B1 
ChiSquared R, A1, A0, B0, B1 
Symmetrical Uncertainty R, A1, A0, B0, B1 
FCFB(log) R, A0 
FCFB(0) R, A0, A1, B0, B1 
CFS A0,A1,B0,B1,R 
Gain Ratio (Weka) R, A1, A0, B0, B1 
Focus R 

 
 
4   Discussion and Related Work 
 

A feature selection line of research is using the scale factors produced by, for 
example, the Principal Component Analysis technique (PCA), the Support Vector 
Machine (SVM) variants for Feature Selection (SVM-FS) or the Neural Network (NN) 
paradigms.  These approaches all eliminate the attributes whose associated scale 
factors are close to zero. 

Specifically, in the area of NN, there are several methods for post learning pruning 
inter-connection weights, for example Optimal Brain Damage or Optimal Brain 
Surgeon [8]. The objective of these approaches is to obtain a simplified NN, 
conserving good or similar classification power of the complete NN, and therefore, is 
not directly focused on the feature selection task. Brank et.al. [15] conducted a study 
to observe how several scale factor feature selection methods interact with several 
classification algorithms; however, in this research, no information about processing 
time and feature reduction is presented. 

Ruck et.al. [16] apply feature selection using a Multi-layer Perceptron which is 
much more complex than a Perceptron; they test with gradient descendent and 
extended Kalman filtering; again, in this work no information about processing time 
and feature reduction is presented, and they experiment with few and small datasets. 

SOAP [17] is a method that operates on numerical attributes and discrete class and 
has a low computational cost: it counts the number of times the class value changes 
with respect to an attribute whose values have been sorted into ascending order. SOAP 
reduces the number of attributes as compared to other methods; nevertheless, the user 
has to supply the number of attributes that will be used in the final subset. This is a 
common problem with the filter-ranking methods, that output a ordered list of all 
attributes, according to its relevance.  
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5   Conclusions and Future Work 
 

We have presented an easy to implement algorithm for feature selection called PFS 
that is good trade-off among generalization accuracy, processing time and feature 
reduction. To validate the algorithm we used 8 real databases and 11 synthetic datasets. 

The results show that PFS represent a good alternative, simple but effective, 
compared to other methods, because its acceptable processing time, accuracy and good 
performance in the feature selection task (feature selection ratio). For the case of the 
real Electric billing database, PFS obtains similar, or better, accuracy and feature 
reduction as Kullback-Leibler-2, CFS or ReliefF, but with the half of processing time. 
Similar comments apply for the rest of the experimented datasets. 

The proposed PFS algorithm has several advantages: (1) it requires a linear amount 
of memory; (2) its generalization accuracy and processing time is competitive against 
other methods, although its time complexity is a function of the epochs without 
accuracy improvement (Perceptron´s convergence); (3) does not realize exhaustive or 
combinatorial search; (4) finds some attribute inter-dependencies; and (5) obtains 
acceptable feature reductions. The main disadvantage is its limitation to classify only 
linear separable datasets. 

Some future works arise with respect to PFS improvement. For example: apply 
kernel functions to overcome the linear separability class limitation; try with other 
learning stopping criteria; realize experiments using a metric (e.g., F-score) to do a first 
attribute elimination, and then apply PFS. Another future work will be the application 
of the formalism to other very large power system databases such as the national power 
generation performance database, the national energy control databases, the energy de-
regulated market and the Mexican electric energy distribution database. 
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Abstract. We present a modification of the bottleneck neural network for
dimensionality reduction. We call our scheme a modified bottleneck network
(MBNN). Unlike a traditional bottleneck network for dimensionality reduc-
tion, an MBNN uses the class information and thus the transformed data
can be suitably used for classification problem. We also propose a new tech-
nique to create ensembles of neural networks using multiple projections of
the same data obtained from different MBNNs. We justify the suitability of
the proposed method by some experiments on some classification problems.

1 Introduction

Dimensionality reduction is probably one of the most important task in any pattern
recognition problem. This problem has been addressed from different viewpoints,
and by various kinds of tools. Naively, dimensionality reduction can be defined as
follows. Given the input data X = {xxx : xxx ∈ �p}, we want to find a transformation
Φ : X → X ′, where X ′ = {xxx′ : xxx′ ∈ �q} and q < p. Typically the set X ′ optimizes
certain criteria J . The criteria J usually depends on the problem that is being
solved, like for a classification problem J may be a measure of class separability or
the misclassification rate for a fixed classifier. Two important types of dimensionality
reduction are feature selection, where only a subset of the p features present in the
data points in X are selected and an other type is feature extraction where the data
is projected into some low dimensional space. In the second type of transformation,
the original features present in the data may loose their individual identity and the
final features obtained in X ′ may be a combination of all features present in the data
points of X . Note that the term feature extraction is a generic term which signifies
extracting features from a given set of features and includes such transforms which
increases the dimensionality of a given data set.

Dimensionality reduction enables obtaining a data whose representation is less
complex. This data thus can be learned by a learning machine which is less complex.
This gives rise to a computational saving in construction and use of the learning ma-
chine. Also dimensionality reduction can give rise to improved prediction accuracies
in scenarios where the training sample size is small (which is true in most real life
scenarios)[12].
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The problem of dimensionality reduction has been well addressed in literature
and it has been tried out in various paradigms. Previous studies on dimensionality
reduction focused mainly around statistical approaches like Principal Components
Analysis (PCA)[14], linear discriminant analysis (LDA) [10] etc. These methods
attempt to reduce the dimensionality of the feature space by creating new features
which are combination of the original ones. Hence, PCA and related methods are
feature extraction techniques which extract a new set of features from the available
set of features, and the dimensionality of the extracted feature space is less than that
of the original one. There are numerous variants of the PCA which tries to solve
the projection problem using various modifications of the main PCA technique [24].
The main drawback of these methods is that the new features lose their original
identity. Leaving aside the feature extraction methods, there have been other works
on feature selection using statistical techniques [13, 18].

Blum and Langley [4] have given an excellent survey for selection of relevant
features in machine learning. These approaches are different in evaluation of the
feature subsets. One can broadly classify the approaches as filter approaches and
wrapper approaches. In filter approach, the feature evaluation index is independent
of the main classification/function approximation algorithm, whereas in wrapper
approaches the features are evaluated by the main algorithm itself. Wrapper ap-
proaches are considered better as the relevance of a feature is generally dependent
on the task being performed and also on the tool being used to do the task [16].

There are many feature selection algorithms that use soft computing or com-
putational intelligence tools. Methods described in [6, 19] use genetic algorithms to
select the relevant feature subsets. Methods described in [20, 22, 23, 25] and a variety
of others use neural networks for feature selection. Feature selection has also been
attempted using fuzzy and neuro-fuzzy techniques [8, 21].

Our contribution: In this paper we discuss a technique to do dimensionality re-
duction using a neural network. Our method is a feature extraction technique. Our
technique projects a given data into a low dimensional space while preserving the
class separability of the data. Our technique depends on an special neural architec-
ture called the bottleneck neural network. The bottleneck neural network has been
previously used for data compression. The traditional bottleneck network do not use
class information present in a data thus the compression achieved is sort of unsu-
pervised, which may not be suited for classification problems. We discuss a simple
variant of the bottleneck network which uses the class information for classification.
We discuss several ways to use the transformed data for classification. We also pro-
pose a new technique to create neural network ensembles using the projected data
obtained from a modified bottleneck network. We test the method on some real life
classification problems.

2 The Bottleneck Neural Network

The bottleneck neural network is a nice strategy which has been used for data
compression. Given a data set Ξ = {ξ1, ξ2, . . . ξm} ⊂ �p, a multilayered perceptron
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(MLP) with p nodes in the input and output layer and q (q < p) nodes in a hidden
layer is trained. Further we shall refer to such an architecture with the notation p :
q : p. For training this network input-output pairs of the form (ξi, ξi) (i = 1, 2, . . . n)
are used. So the network is trained to learn an identity map, and for a properly
trained network, the output for ξi would be ξi itself. Now, the output of the hidden
layer for each ξi would be a q dimensional representation of ξi. Thus a reduction of
dimensionality is obtained. The bottleneck neural network has been previously used
in many applications [3, 17].

Bottleneck
Layer

Fig. 1. The Modified Bottleneck Network

2.1 Modified Bottleneck Network

Here we propose a variant of the bottleneck neural network which we call the mod-
ified bottleneck network (MBNN). Let X = {(xxxi, yyyi) : i = 1, 2, . . . n} be a training
data where xxxi ∈ �p and yyyi ∈ �s. We train an MLP with this data. We have no
restriction on the architecture of the MLP except that at least one of the hidden
layers (say, the rth layer) contains q (where q < p) nodes, we call this layer as the
bottleneck layer. Note, unlike the traditional bottleneck network in MBNN we are
not training the network to learn an identity map but our network tries to learn the
real input-output mapping present in the data.

Let B denote a MBNN. B is not different from an ordinary MLP in terms of
structure or the learning algorithm except the minimal restriction on its architecture
as stated earlier. The output of B is not the output of its output layer but is the
output of the bottleneck layer. For example, let us consider a data set S = {(xxx,yyy) :
xxx ∈ �5, yyy ∈ �2)}. Figure 1 shows a MBNN trained with S. As evident from Fig. 1,
the MBNN has an architecture of 5 : 3 : 4 : 2 with the first hidden layer (the hidden
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layer containing 3 nodes) as the bottleneck layer. One could have also chosen the
second hidden layer as the bottleneck layer. The network is trained with the data
set S using any convenient learning algorithm like the backpropagation or some of
its variants. For using this network, the output is tapped from the first hidden layer.
So for any input vector ξξξ ∈ �5, the output of the network would be ααα ∈ �3.

For the general case, let BX be a MBNN trained with X = {(xxxi, yyyi) : xxx ∈ �p, yyy ∈
�s)}. Let the rth layer of BX be the bottleneck layer with q nodes. Let αi ∈ �q

denote the output of the rth layer of BX for a data point xxx. From a properly trained
neural network we collect the output of the rth node and this output serves as a
projection of the original p dimensional data in a q dimensional space. We call this
data as the reduced data. It is likely that the reduced data retains the properties
required for learning the underlying function that the original data represents. This
is because the reduced data represents an internal configuration of the data within
the network, and truly this configuration helps the neural network in learning the
proper mapping present in the data.

The reduced data set obtained from a trained network can further be used to
train a new network possibly with a smaller architecture. Thus this will lead to lesser
training time and possibly better generalization. Next we discuss some of the ways
in which the reduced data obtained from an MBNN can be used.

3 How to Use the Reduced Data

An MBNN transforms a data set into a low dimensional space using a nonlinear
transform. Also, an important feature of this transform is that it uses the output
information (eg. the class labels for a classification data) for performing the trans-
form. The reduced data represents an internal configuration of a trained network
which further gets transformed into the output. This intermediate configuration is
thus suitable to be used in any other neural network. Next we discuss some scenarios
where a reduced data set may be useful.

3.1 As a Transform Before Training an MLP for Prediction

It is common knowledge that as dimensionality of a data goes up we need a bigger
network to learn the data. A bigger network means more adjustable parameters,
and as the number of parameters increases, the possibility of a network to overfit
becomes more. An overfitted network though performs good with the training data
can miserably fail to give acceptable results on test data sets. This problem becomes
more acute if the number of training samples are small. To avoid this a natural and
popular practice is to apply a dimensionality reduction on the data before training
a network with the data. Thus by reducing the dimension of the original data, the
data can be learned by a smaller network and thus possibility of overfitting becomes
less. The most used technique is to use Principal Components Analysis (PCA) on
the data. The PCA technique is a generic technique for dimensionality reduction
and it projects the data in a new space where it has maximum variance. This may
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not be the best objective for projection when we know what we need to do with
the data. For example, when the desired task is classification, class separability may
be a better objective than maximizing the variance. Also, if the targeted tool is a
multilayered perceptron, which functions in a highly nonlinear manner and produces
highly nonlinear class boundaries, use of the PCA (or other related projection tech-
niques like LDA) may not be always useful. The reduced data set obtained by a
MBNN will have better representation than the other known data projection meth-
ods in terms of classifiability by a neural network. The reason for this being that the
reduced data obtained by a MBNN is an internal representation of a neural network
meant for classifying the data.

A critique to this method may be that we need to train a network to get the
reduced data itself. Thus for data sets with huge dimensions the MBNN may itself
overfit the data if we need a network which performs good on the training data.
This is of course true. But as the MBNN is not used for prediction purposes, an
overfitted MBNN may not do us much harm. And we extract the reduced data of
low dimension from an MBNN and train a new network (possibly much smaller
than the MBNN itself), thus the network we use for prediction will have better
generalization capabilities.

3.2 In Constructing Neural Network Ensembles

Ensemble methods like bagging [5] and boosting [9] can enhance the prediction
ability of any classifier to a great extent. Neural network ensembles has also been
reported to perform better than single networks. Bagging is a method very suited to
neural networks, as bagging can decrease the variance of predictions in classifiers, and
neural networks which are known to be “unstable” have large variance in prediction
[5]. For neural networks, bagging involves creation of multiple bootstrap samples
from a given data set and training multiple neural networks with those bootstrap
samples. The final result is obtained by suitably aggregating the outputs of the
candidate networks of the ensemble. Thus creating a bagging ensemble of neural
networks is quite expensive in terms of computation, as neural network training is
expensive. Using an bottleneck neural network BN one can project the data to a
low dimensional space, and use bootstrap samples of the projected data to train
individual candidates of the ensemble. This can give considerable savings in training
times.

3.3 In Methods Which Uses Explicit or Implicit Density Estimation

There is a family of works which observes that one of the reasons of the phenomenon
of overfitting in MLPs is due to the fact that MLPs are trained with a finite train-
ing sample [7, 11, 15]. In a conventional training algorithm for training MLPs, the
network gets trained with a fixed sample of training points in each epoch. In [11] it
was proposed that overfitting can be reduced if the training set can be indefinitely
expanded, and the network be trained with a new set of data in each epoch. To
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achieve this, the authors in [11], use a method to estimate the probability density of
the data, and generate a new data set following the same probability density in each
epoch, thus the MLP faces new points in each epoch. In [15], the method reported in
[11] was modified by improving the procedure for density estimation. In [7] another
method to expand the training set was reported and it do not depend on explicit
density estimation but uses a k-NN heuristic to generate new points in each epoch.

All these methods reported in [7, 11, 15] can reduce the overfitting in MLP net-
works to a great extent. But as in [11, 15] a sort of a kernel density estimate is
considered using gaussian kernels, the correctness of the density estimate decreases
with the increase of dimension of the data. In [7] a K-nn technique is used which
also fails for high dimensional data. An easy fix of this problem may be to use the
reduced data obtained from an MBNN for training and density estimation not the
original data set.

3.4 Bagging with Multiple Projections of the Same Data

As discussed earlier bagging involves aggregating outputs of k classifiers trained
with k different bootstrap samples drawn from a given data set X . The idea behind
bagging is to create independent classifiers from the same data set. Each bootstrap
samples thus acts as a different data set for each classifier. Here we propose to use
different projections of the same data to train each candidate of the ensemble. We
propose to use the MBNN for projecting the data.

Given a data set X = {(xxxi, yyyi) : i = 1, 2, . . . n,xxx ∈ �p, yyy ∈ �s} we train k MBNNs
B1,B2, . . . ,Bk. Each Bi can have different architectures with different hidden layers
and different hidden nodes. The only restriction in each Bi being that the input
layer should contain p nodes, the output layer should contain s nodes, and for any
hidden layer should contain q(where q < p) nodes. From each of the networks we can
collect a different projection of the original data X , possibly in different dimensions.
Thus using each Bi we obtain the following transform Bi : X → X ′

i. Thus we train k

new neural networks using the data sets X ′

i for i = 1, . . . , k. We create an ensemble
of these k networks, and aggregate the final outputs using a suitable aggregation
function.

4 Experimental Results

We study the suitability of this method by applying it to some real life classification
problems. The data sets used are Lung Cancer, Sonar, Iono, DNA and Protein. The
summary of the data sets are presented in Table 1.

In all the simulations performed we used the neural network tool-box of MAT-
LAB. We used “traingdx” as the learning algorithm, which is a variant of back-
propagation with an ability to automatically tune the learning rate when necessary.
Tables 2,3,4,5 and 6 summarizes the results. Each row in the tables stands for a
different method and the columns report the average performance (with standard
deviation) in percentage on the test data. Each reported result is of a 10 fold cross
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Table 1. Summary of the data sets

Data Source Number of points No of features No of Classes

Lung Cancer [2] 32 56 3

Sonar [2] 208 60 2

Iono [2] 351 34 2

DNA [2] 2000 180 3

Protein [1] 698 125 4

validation repeated 20 times. We explain each row of each table in more details as
follows.

Table 2. Results on Lung Cancer

Methods Performance

1 MBNN Single 80.16667 ± 4.1578

2 MBNN Bagging 80.6667 ± 5.23

3 MBNN MP Bagging 83.7778 ± 3.674

4 PCA Single 78.1667 ± 3.6388

5 PCA Bagging 75.8333 ± 4.2492

6 Full Data Single NN 77.1667 ± 5.6501

7 Full Data Bagging 82.44 ± 2.194

1. MBNN Single:We trained a MBNN with 10 nodes in the hidden layer to get
a 10 dimensional reduced data. We trained 20 different networks with the same
reduced data each having the same architecture with 10 nodes in a single hidden
layer. Row 1 of the tables shows the average performance of those 20 networks.

2. MBNN Bagging Next using the same reduced data of 10 dimension as obtained
in row one we perform a bagging with 10 candidates in the ensemble. We use
the majority vote to aggregate the results of the 10 different candidate networks.
We created 20 different ensembles using the same reduced data. Row 2 shows
the average performance of those 20 ensembles.

3. MBNN MP Bagging: MP bagging signifies bagging with multiple projections.
In this experiment we trained 10 different MBNN each with 10 nodes in the
bottleneck layer and thus obtained 10 different projections of the data in 10
dimensions. We trained 10 different networks with 10 nodes in a single hidden
layer and aggregated their results using majority voting. This experiment was
also performed 20 times. The results of this experiment are summarized in row
3 of the tables.

4. PCA Single:We ran a Principal Components Analysis on the original data
with all features and took the 10 most significant components thus reducing the
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Table 3. Results on Sonar

Methods Performance

1 MBNN Single 82.1143 ± 3.048

2 MBNN Bagging 82.1929 ± 3.2514

3 MBNN MP Bagging 85.7929 ± 0.6167

4 PCA Single 77.6786 ± 1.4881

5 PCA Bagging 78.7857 ± 1.1756

6 Full Data Single NN 79.6214 ± 2.8686

7 Full Data Bagging 84.5429 ± 0.8891

Table 4. Results on Iono

Methods Performance

1 MBNN Single 89.9786 ± 0.9993

2 MBNN Bagging 90.2937 ± 1.1636

3 MBNN MP Bagging 90.8341 ± 0.2622

4 PCA Single 86.7246 ± 0.7528

5 PCA Bagging 86.1579 ± 0.6861

6 Full Data Single NN 87.8389 ± 1.7492

7 Full Data Bagging 91.0611 ± 0.9597

Table 5. Results on DNA

Methods Performance

1 MBNN Single 92.425 ± 0.675

2 MBNN Bagging 92.49 ± 0.5611

3 MBNN MP Bagging 94.585 ± 0.094428

4 PCA Single 90.72 ± 0.3048

5 PCA Bagging 90.6 ± 0.2856

6 Full Data Single NN 89.3 ± 0.1768

7 Full Data Bagging 94.8 ± 0.2619

Table 6. Results on Protein

Methods Performance

1 MBNN Single 76.3377 ± 1.4511

2 MBNN Bagging 76.4 ± 1.7995

3 MBNN MP Bagging 79.5584 ± 0.459

4 PCA Single 63.7143 ± 1.2786

5 PCA Bagging 64.4 ± 1.3853

6 Full Data Single NN 69.7633 ± 4.1204

7 Full Data Bagging 78 ± 0.5898
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original data to a 10 dimensional data. Row 4 of the tables shows the average
performance and the best performance among 20 MLPs with 10 hidden nodes
in a single hidden layer trained with the data of 10 features obtained by using
PCA.

5. PCA Bagging: The 10 dimensional data obtained by PCA is also used to train
an ensemble of 10 MLPs (each 10 nodes in a single hidden layer) using bagging.
Row 5 of the tables gives the average and best performance of 20 such ensembles
created with the 10 dimensional data obtained by PCA.

6. Full Data Single NN Row 6 gives the result on the data with all features
using a ordinary MLP.

7. Full Data Bagging Row 7 gives the results on the data sets for bagging using
the full dimensional data.

The results clearly show that the reduced data retains the class separability for
all data sets experimented with. For all the data sets the MBNN single gives a
better result than a single neural network trained with the whole data. The results
obtained by using a PCA for dimensionality reduction are significantly poorer than
the results obtained using a MBNN. MBNN MP bagging gives very encouraging
results in all cases. In fact the results obtained by MBNN MP bagging outperform
all other methods and is quite comparable with the results obtained by bagging on
the full data set.

5 Conclusion

We presented a simple modification of the traditional bottleneck network for di-
mensionality reduction. We also showed some specific ways to use the reduced data
obtained from an MBNN. The method of multiple projection bagging seems to work
quite well as a method to create neural network ensembles. The methods are tested
on some real life classification problems and the results obtained are encouraging.

References

1. http://www.nersc.gov/∼cding/protein
2. A. Asuncion and D.J. Newman, UCI Machine Learning Repository

[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science

3. Y. Araki, T. Ohki, D. Citterio, M. Hagiwara, K. Suzuki, “A new method for inverting
feedforward neural networks,” IEEE International Conference on Systems, Man and
Cybernetics, 2003. Volume 2, pp.1612 - 1617, 2003

4. A.L. Blum, P. Langley, “Selection of relevant features and examples in machine learn-
ing”, Artificial Intelligence, vol 97, no 1, pp. 245-271, 1997.

5. Leo Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140,
1996.

6. F.Z. Brill, D.E. Brown and W.N. Martin, “Fast genetic selection of features for neural
network classifiers”, IEEE Trans. Neural Networks, vol. 3, no. 2, pp. 324-328, 1992.

A Modified Bottleneck Neural Network for Dimensionality Reduction     135



7. D. Chakraborty and N. R. Pal, “Expanding the training set for better generalization
in MLP,” Proceedings of International Conference on Communication, Devices and

Intelligent Systems, CODIS-2004, pp. 454-457, 2004.
8. R. De, N.R. Pal and S.K. Pal, “ Feature analysis: neural network and fuzzy set theoretic

approaches”, Pattern Recognition vol 30, no 10,pp. 1579-1590, 1997.
9. Y. Freund and R.E. Schapire, “A short introduction to boosting”, Journal of Japanese

Society for Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 1999.
10. K. Fukunaga, Statistical Pattern Recognition, Academic Press, San Diego, CA, USA,

1991.
11. L. Holmstrom and P. Koistinen, “Using additive noise in backpropagation training,”

IEEE Trans. Neural Networks, vol. 3, pp. 24-38, 1992.
12. A. K. Jain, B. Chandrasekaran, “Dimensionality and sample size considerations in pat-

tern recognition practice,” in P.R. Krishnaiah, N.L. Kanal (eds.), Handbook of Statis-

tics, vol 2, North-Holland, Amsterdam, pp. 835-855, 1982.
13. A. K. Jain and D. Zongker, “Feature selection: evaluation, application and small sample

performance,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2,
pp. 153-148, 1997

14. I. T. Jollife, Principal Component Analysis, Springer Verlag, New York, 1986.
15. G. N. Karystinos and D. A. Pados, “On overfitting, generalization, and randomly

expanded training sets,” IEEE Trans Neural Networks vol 11, no. 5, pp. 1050-1057,
2000.

16. F. Kohavi and G. John, “Wrappers for feature subset selection”, Artificial Intelligence,
vol 97, no 1, pp. 273-342, 1997.

17. M. Marseguerra ans A. Zoia, “The autoassosiative neural network in signal analysis: I.
Data dimensionality reduction and its geometric interpretation”, Annals of Neuclear

Energy, vol. 32, pp. 1191-1296, 2005.
18. J. Novovicova, P. Pudil and J. Kittler, “Divergence based feature selection for multi-

modal class densities”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol
18, no 2, 1996.

19. M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn and A.K. Jain, “Dimensionality
reduction using genetic algorithms”, IEEE Trans. on Evolutionary Computing, vol 4,
no 2, pp. 164-171, 2000.

20. D.W. Ruck, S.K. Rogers, M. Kabrisky, “Feature selection using a multilayered percep-
tron”, Journal of Neural Network Computing, pp. 40-48, 1990.

21. M. R. Rezaee, B. Goedhart, B. P. F. Lelieveldt and J.H.C. Reiber, “Fuzzy feature
selection,” Pattern Recognition, vol. 32, pp. 2011-2019, 1999.

22. R. Setino, “Neural network feature selector”, IEEE Trans. Neural Networks, vol 8,
pp.654-662, 1997.

23. J.M. Steppe Jr, “Integrated feature and architecture selection”, IEEE Trans. Neural

Networks, vol 7, pp. 1007-1014, 1996.
24. M. Ture, I. Kurt, Z. Akturk,“Comparison of dimension reduction methods using patient

satisfaction data”, Expert Systems with Applications, Vol 32, pp. 422-426, 2007
25. J.M. Zurada, A. Malinowski and S. Usui, “Perturbation method for detecting redun-

dant inputs of perceptron networks”, Neurocomputing, vol 14, pp. 177-193, 1997.

136     E. F. Vázquez Santacruz and D. Chakraborty



 
 
 
 
 
 
 
 
 
 
 
 
 

Real World Applications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



Multiple Fault Diagnosis in Electrical Power Systems with 
Dynamic Load Changes using Probabilistic Neural 

Networks 
 
 

Juan Pablo Nieto González1, Luis E. Garza Castañón2, Rubén Morales Menendez3 

 
 

I.T.E.S.M. Saltillo Campus Mechatronics Department 
1Prol. Juan de la Barrera No. 1241 Ote. Colonia Cumbres, 

 25020, Saltillo, Coahuila, México 
juan.pablo.nieto@itesm.mx 

 
I.T.E.S.M. Monterrey Campus 

2Mechatronics and Automation Department,   3Center for Industrial Automation 
Ave. Eugenio Garza Sada No. 2501 Sur, Colonia Tecnológico 

64849, Monterrey, Nuevo León, México 
legarza@itesm.mx, rmm@itesm.mx 

Abstract. Power systems monitoring is particularly challenging due to the 
presence of dynamic load changes in normal operation mode of network nodes, 
as well as the presence of both continuous and discrete variables, noisy 
information and lack or excess of data. This paper proposes a fault diagnosis 
framework that is able to locate the set of nodes involved in multiple fault events 
and detects the type of fault in those nodes. The framework is composed of two 
phases: In the first phase a probabilistic neural network is trained with the 
eigenvalues of voltage data collected during symmetrical and unsymmetrical 
fault disturbances. The second phase is a sample magnitude comparison used to 
detect and locate the presence of a fault. A set of simulations is carried out over 
an electrical power system to show the performance of the proposed framework 
and a comparison is made against a diagnostic system based on probabilistic 
logic. 

 
 
1  Introduction 
 

As processes become more complex, the monitoring of them is very important in 
order to improve process performance, efficiency and product quality. Monitoring of 
industrial processes plays a substantial role in system safety, availability and 
production quality. Early detection of faults can help to avoid major breakdowns and 
incidents. In order to tackle those problems, fault detection and system diagnosis has 
been an active research domain since years. 

There exist a lot of research works related with fault detection. Most of the methods 
used are analytic, based on artificial intelligence (AI) or statistical methods. [1] 
classifies fault detection and isolation methods in three groups. 1)Quantitative Model 
Based, 2) Qualitative Model Based and 3) Process History Based. 
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Quantitative Model Based fault detection methods are based on a mathematical 
model of the system. The occurrence of a fault is captured by discrepancies between 
the observed behavior and the one that is predicted by the model. These approaches 
make use of state estimation, parameter identification techniques, and parity relations 
to generate residuals. Fault localization then, rest on interlining the groups of 
components that are involved in each of the detected discrepancies. However, it is often 
difficult and time-consuming to develop accurate mathematical models that 
characterize all the physical phenomena occurring in industrial processes. 

Qualitative Model Based fault detection methods use symbolic reasoning which 
generally combines different kinds of knowledge with graph theory to analyze the 
relationships between variables of a system. An advantage of these methods is that an 
explicit model of  the system to be diagnosed is not necessary. Knowledge-based 
approaches such as expert systems may be considered as alternative or complementary 
approaches where analytical models are not available. 

Process History Based fault detection methods only require a big quantity of 
historical process data. There are several ways in which these data can be transformed 
and presented as prior knowledge of a system. These transformations are known as 
feature extraction and could be qualitative, as those used by expert systems, and 
qualitative trend analysis methods or quantitative, as those used in neural networks, 
PCA, PLS or statistical pattern recognition. 

The reasons behind the increased interest in fault diagnosis in power networks are 
the complexity and high degree of interconnection present in electrical power 
networks, that can lead to an overwhelming array of alarms and status messages being 
generated as a result of a disturbance. This can have a negative impact on the speed 
with which operators can respond to a contingency. Therefore, in order to increase the 
efficiency of diagnosis, it is necessary to use automated tools, which could help the 
operator to speed up the process. Very recently, the need to develop more powerful 
approaches has been recognized, and hybrid techniques that combine several reasoning 
methods start to be used [2]. This approach incorporate model based diagnosis and 
signal analysis with neural networks. [3] presents Bayesian networks (BNs) to estimate 
the faulty section of a transmission power system. Simplified models of BNs with 
Noisy-Or and Noisy-And nodes are proposed to test if any transmission line, 
transformer, or busbar within a blackout area is faulty. In [4] an investigation is 
performed about the use of logistic regression and neural networks to classify fault 
causes. This paper also discusses about data insufficiency, imbalanced data constitution 
and threshold setting. Ren and Mi [5] propose a procedure for power systems fault 
diagnosis and identification based on Petri Nets and coding theory. They tested the 
approach with simulations over the IEEE 118-bus power system and highlight the great 
advantage to handle very easily future expansions. In [6] a Fault diagnosis system is 
presented, based on multi-agent systems. By using a negotiation mechanism between 
decision-making agent and a cooperative agent, fault diagnosis results can be obtained. 

In this paper it is proposed a multiple fault diagnosis framework composed by two 
phases. Eigenvalues are computed from the correlation matrix which is built from 
historical data, and then are used as a probabilistic neural network inputs. In first phase 
a most probably component state of each node is given and in second phase the 
comparison of each sample against a constant value gives the real component state and 
the location of a fault, finally the diagnosis of the system is carried out. 
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The organization of the paper is as follows: section 2 explains probabilistic neural 
networks basis and gives the correlation matrix and eigenvalues definitions. Section 3 
gives the framework general description. Section 4 shows how the framework works in 
a simulation example with single and multiple faults as well as a comparison of the 
general performance of it against a diagnostic system based on probabilistic logic. 
Section 5 concludes the paper. 
 
 
2   Preliminary 
 
2.1  Probabilistic Neural Network Basis 
 

PNN are conceptually similar to K-Nearest Neighbor (KNN) models [7]. The basic 
idea is that a predicted value of an item is likely to be about the same as other items 
that have close values of the predictor variables.  

 

 
Fig. 1. PNN are conceptually similar to KNN 

 
From Fig. 1 it is assumed that each case in the training set has two predictor 

variables, x and y. The cases are plotted using their x,y coordinates as shown in the 
figure. Also it is assumed that the target variable has two categories, positive which is 
denoted by a square and negative which is denoted by a dash. It can be note that the 
triangle is positioned almost exactly on top of a dash representing a negative value. But 
that dash is in a fairly unusual position compared to the other dashes which are 
clustered below the squares and left of center. So it could be that the underlying 
negative value is an odd case. The nearest neighbor classification will depend on how 
many neighboring points are considered. If 1-NN is used and only the closest point is 
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considered, then the new point should be classified as negative since it is on top of a 
known negative point. On the other hand, if 9-NN classification is used, the closest 9 
points are considered and then the effect of the surrounding 8 positive points may 
overbalance the close negative point. A probabilistic neural network builds on this 
foundation and generalizes it to consider all of the other points. The distance is 
computed from the point being evaluated to each of the other points, and a radial basis 
function (RBF) (also called a kernel function) is applied to the distance to compute the 
weight (influence) for each point. The radial basis function is so named because the 
radius distance is the argument to the function. Weight=RBF(distance) the further some 
other point is from the new point, the less influence it has. Different types of radial 
basis functions could be used, but the most common is the Gaussian function. The PNN 
architecture is shown in figure 2. The model has two layers: radial basis layer and 
competitive layer. 

Fig. 2. PNN architecture. 
 

There are Q input vector/target vector pairs. Each target vector has K elements. One 
of these element is 1 and the rest is 0. Thus, each input vector is associated with one of 
K classes. When an input is presented the ||dist|| box produces a vector whose elements 
indicate how close the input is to the vectors of the training set. An input vector close 
to a training vector is represented by a number close to 1 in the output vector a1. If an 
input is close to several training vectors of a single class, it is represented by several 
elements of a1 that are close to 1. Each vector has a 1 only in the row associated with 
that particular class of input, and 0's elsewhere. The multiplication Ta1 sums the 
elements of a1 due to each of the K input classes. Finally, the second layer, produces a 
1 corresponding to the largest element of n2, and 0's elsewhere. Thus, the network has 
classified the input vector into a specific one of K classes because that class had the 
maximum probability of being correct. 
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2.2  Correlation Matrix and Eigenvalues Definitions 
 

Correlation matrix definition. A Correlation matrix describes correlation among M 
variables. It is a square symmetrical M x M matrix with the (ik)th element equal to the 
correlation coefficient rik between the (i)th and the (k)th variable. The correlation 
coefficient is obtained as  
 

 
 

The diagonal elements (correlations of variables with themselves) are always equal to 
1.00 [8]. 

Eigenvalue definition. Let A be a k x k square matrix and I be the k x k identity 
matrix. Then the scalars 
 

kλλλ ,,, 21 K      (2) 
 
satisfying the polynomial equation 
 

IA λ−      (3) 
 
are called the eigenvalues or characteristic roots of a matrix A. The equation |A - � I| = 
0 is called the characteristic equation, thus similar matrices and A and its transpose 
matrix have same eigenvalues [8]. 
 
 
3  Framework Description 
 

The proposed detection framework is shown in figure 3. As the framework is a 
Process History Based fault detection method, this only requires a big quantity of 
historical data of the power system's nodes containing normal operation data and faulty 
data samples from the different types of faults that could be present in the system. 
These data sets are used as prior knowledge of the power system to perform the 
detection process. 
The first step is to obtain several data sets from the power system's nodes. These data 
sets are matrices formed by windows of m samples and n power system's nodes where 
the voltage of each line of a certain node is monitored, that means three readings per 
node. Such matrices are constructed with normal node operation and different node 
faults present in system. For each node data sets its correlation matrix is obtained to see 
how their three lines are related. Once having the correlation matrix, their 
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corresponding eigenvalues are computed as shown in section 2.2, such that in this way 
a signature to each of the different possible component states or fault types of the 
power system's nodes (K in figure 2) are given. The eigenvalues of the correlation 
matrix for each fault signature, then serve as the training vectors of the PNN 
corresponding to Q as described in section 2.1.  
 

 
Fig. 3. General fault detection framework. 

 
Each node will have then three eigenvalues (R components in figure 2) as they are 

comming from its correlation matrix that is a 3 x 3 matrix. Then the detection process 
is carried out in two phases. First phase that serves as a first filter or information 
discriminator. When there is a system to monitor, a window of m samples and n power 
system's nodes is taken, then each node is analyzed separately. m samples of the three 
lines corresponding to a node being monitored to find out which is its most probably 
state are taken. From the data set corresponding to a node being monitored its 
correlation matrix and its corresponding eigenvalues are obtained and then these last 
are used as an input vector to the PNN previously trained. It is mentioned "the most 
probably state" because unfortunately not all the eigenvalues of all of the node states 
are so different such that PNN could not classify them easily. But it has been found that 
for certain signature faults eigenvalues are very similar, thus there is here a 
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discrimination/classification phase, because it is necessary to look for the real state but 
only comparing between just a couple of similar signatures instead of the whole bunch 
of node states. The output from the PNN automatically discriminates node states that 
are very different and gives the most probably real node state. Once the one possible 
node state is obtained, a second phase of the framework begins to work. In the second 
phase each sample of each node is taken and its magnitude is obtained, then a 
comparison against a constant magnitude of the probably signature faults are carried 
out. This comparison serves as a classifier that gives the real node component state and 
can be used too to locate the period of time or sample number where the fault occurs. 
 
 
4  Case Study 
 

This section shows the performance of the framework proposed in a multiple fault 
simulations in the IEEE network shown in figure 4. 

 
Fig. 4. IEEE reliability test system single line diagram. 
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Figure 4 shows an electrical power system having dynamic load changes. 24 fault 
simulations were carried out to determine the performance of the approach including in 
them symmetrical and unsymetrical faults at random nodes (3,9,10 and 13) taking into 
account different multiple faults scenarios combining faults such as: one line to ground 
(A GND), two lines to ground (A-B GND), three lines to ground (A-B-C GND), or 
faults between two lines (A-B or B-C) and the no fault mode (NO FAULT). 
 
The methodology proposed is applied as follows: 
 

1. Obtain windows of 100 samples from normal and faulty operation history 
process data  (electrical voltage in each node's line). 

2. Obtain correlation matrix for each node, which gives a 3 x 3 matrix. 
3. Obtain the eigenvalues from the correlation matrix (this gives 3 eigenvalues), 

with this 3  eigenvalues form an input vector to train the PNN. 
4. Take a test data set of 100 samples from the electrical power system being      

monitored. 
5. Obtain correlation matrix for each node, which gives a 3 x 3 matrix. 
6. Obtain the eigenvalues from the correlation matrix (this gives 3 eigenvalues), 

with this 3  eigenvalues form an input vector to the PNN. 
7. First Phase: Take the output of the PNN as one of the two probably states of 

the node  monitored. 
8. Second Phase: Take each sample of each node monitored and obtain its 

magnitude, then compare it against the constant magnitude of the two 
probably signature faults and classify  it using this simple criteria. Locate the 
period of time or sample number where the fault  occurs. 

9. Give the diagnosis of each node being monitored. If a fault is present in a 
specific node give  the type and location of it, else print NO FAULT. 

 
In the following tables the performance of the approach is shown taking into 

account three possible cases. Case 1, system is working properly during the first 25 
samples from a total of 100, that means 25 samples are ok and 75 samples corresponds 
to fault present in system. Case 2 takes 50 samples of normal operation data and 50 
samples with fault present. And case 3 takes 75 samples of normal operation and 25 
with fault present. Table 1 and 2  shows a detailed example of how percentages were 
obtained. Tables 3 and 4 gives a summary of the obtained percentages for each of the 
three cases considered. 

From tables 3 and 4 it can be said that the different performances are due because 
eigenvalues of correlation matrices are very similar when there are a major quantity of 
normal operation data in sample window. The more normal operation data in sample 
window the more difficult to classify eigenvalues by PNN because they are very 
similar. 



Table 1. Detail performance of detection per node's component state with 25 samples 
ok and 75 samples with fault present (case 1). 

 
Component 

State Correct Wrong Accuracy 
A-B-C GND 14 0 100% 

A-B GND 10 0 100% 
A GND 14 0 100% 

A-B 18 0 100% 
B-C 16 0 100% 

NO FAULT 13 11 54.16% 
 

Table 2. Detail performance of detection per node's number with 25 samples ok and 75 
samples with fault present (case 1). 

 

Node Number Correct Wrong Accuracy 
3 20 4 83.33% 
9 19 5 79.16% 

10 22 2 91.66% 
13 24 0 100% 

 
Table 3. Accuracy of detection per node’s component state for the different cases. 
 

Component State Case 1 Case 2 Case 3 
A-B-C GND 100% 100% 100% 

A-B GND 100% 100% 100% 
A GND 100% 85.71% 92.85% 

A-B 100% 83.33% 50% 
B-C 100% 68.75% 68.75% 

NO FAULT 54.16% 58.33% 79.16% 
 

Table 4. Accuracy of detection per node number for the different cases. 
 

Node Number Case 1 Case 2 Case 3 
3 83.33% 83.33% 83.33% 
9 79.16% 75% 70.83% 

10 91.66% 87.5% 62.5% 
13 100% 95.83% 100% 
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An important thing to remark is that there has been carried out several tests when all 

data were from normal operation and it has been found out that the framework have 
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detected 100% of them as NO FAULT node's component state.  Percentages shown in 
tables are low because criteria used in the second phase of the framework has to be 
with the maximum magnitude value and a threshold that needs to be set as the upper 
limit to make the difference between two very similar signatures for the same node. 

Figure 5 shows an example of the results obtained for a simulation of case 2, that 
has the following faults types: 

 
1. 3 A GND, that is a fault present in node 3 of type line A to ground. 
2. 9 A-B GND, that is a fault present in node 9 of type line A and B to ground. 
3. {10,13} NO FAULT, that is nodes 10 and 13 working properly. 

 

 
Figure 5. Example of the results given by matlab simulation 

 
 
 



4.1  Comparison against a diagnostic system based on probabilistic logic. 
 
To observe the general performance of the proposal, a comparison against a diagnostic 
system based on probabilistic logic taken from [12] has been carried out. Table 5 and 6 
show the performance of the diagnostic system based on probabilistic logic. 

 
Table 5. Performance of detection per node’s component of the diagnostic system 

based on probabilistic logic. 
 

Component State Correct Wrong Accuracy 
A-B-C GND 14 0 100% 
A-B GND 10 0 100% 

A GND 12 2 85.7% 
A-B 15 3 83.3% 
B-C 16 0 100% 

NO FAULT 17 7 70.8% 
 
Comparing the results of both frameworks it can be note that in general they have a 

very similar performance, but when comparing case 1 of the proposal against the 
diagnostic system based on probabilistic logic it could be said that  framework propose 
has a better performance. Another important point is that the proposal is relatively 
easier to implement and to update when power system grows up. 
 
Table 6. Performance of detection per node number of the diagnostic system based on 

probabilistic logic 
 

Node Number Correct Wrong Accuracy 
3 19 5 79.1% 
9 21 3 87.5% 

10 21 3 87.5% 
13 23 1 95.8% 
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5  Conclusions 
 

This paper has presented a fault detection framework for electrical power systems 
with dynamic load changes using a PNN based on history process data. An advantage 
over model based methods is that this framework needs historical data of normal 
system operation as well as faulty data sets to train the PNN, which in practice it is 
relatively easy to obtain for computer controlled systems. It has been decided to use the 
PNN because is ideal when working on classification problems. Its most important 
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advantage is that it needs only a little time for its training. It has been proposed a two 
phases relatively easy to implement fault diagnosis method.  

In the first phase the eigenvalues of the correlation matrix are taken and used them 
as inputs for a PNN to classify the node's component state. It has been shown how this 
classification could be improved and carry out when eigenvalues are very similar with 
the implementation of a second phase where a simple comparison of each sample 
magnitude to the constant value of a certain signature fault has been apply and at the 
same time it gives the location of a fault if a it is present.   

It can be concluded too, that as there is as many faulty data in the sample window 
the proposal has a better performance because eigenvalues are easily classified by the 
PNN as they have very different values. Another advantage of this proposal is that as it 
diagnostics each node, it could be detected simultaneous and nonsimultaneous simple, 
multiples, a combination of different faults as well as their corresponding location on 
each node separately. 
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Abstract.  Data in real world tasks are usually imbalanced, i.e. some classes 
have much more instances than others. It is one of the reasons that cause the de-
crease of generalization ability of machine learning algorithms. Therefore, in this 
paper, we handle the class imbalance problem and proposes an under-sampling 
method based on SOM (Self Organizing Map), one of neural networks. We apply 
our methods to UCI Repository data sets that have a class imbalance problem. 
Finally we show the improvements of new sampling method compared with 
other sampling methods. 

1   Introduction 

In a pattern recognition problem, if the number of data belonging to a class is ex-
tremely larger or smaller than that of data belonging to another class, there happens the 
imbalance of data. Class imbalance is often observed in response modeling, remote 
sensing, image classification, etc. For example, in data used in response modeling, the 
number of customers who have responded to marketing and purchased goods is much 
smaller than the total number of customers. What is more, frequently most of impor-
tant information is included in purchase customers, namely, in the minor class 
[1,2,3,4,5,6]. 

In a dataset containing the class imbalance problem, data belonging to the major 
class are distributed excessively compared to data belonging to the minor class. In such 
a case, the major class infiltrates into the area of the minor class and has a negative 
effect on the performance of classification algorithms. Thus, it is essential to solve the 
class imbalance problem in order to enhance classification performance. 

As solutions for the imbalance of data, two types of methods have been proposed as 
follows [7]. One is using a learning algorithm revised by adding a part that reflects the 
imbalance of data. This type of methodologies include the method of imposing differ-
ent penalties on patterns misclassified into the minor class and the major class and the 
method of adjusting the boundary surface of separation. The other resolves data imbal-
ance by restructuring learning data through sampling. This type of methodologies 
include largely three methods: over-sampling, under-sampling and ensemble[8]. Sam-
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pling-based methods are advantageous over revised algorithm-based methods. Sam-
pling-based methods are easily expandable because they do not revise the algorithm 
itself but deal with how to compose data used in learning. The reason is that, while 
revised algorithm-based methods depend on one algorithm, sampling-based methods, 
if their high performance is proved through a specific algorithm, can be applied imme-
diately to other pattern recognition algorithms. 

Sampling is one of techniques for adjusting the size of a training data-
set[9,10,11,12,13]. In general, under�sampling and over�sampling are used. 
Over�sampling replicates minor category data, so it does not add new information 
through the sampling. In addition, it is efficient in term of time complexity when han-
dling a large volume of data. Under�sampling uses only a part of major category data, 
so the sample may not represent the characteristics of the whole major category. The 
ensemble method divides the dataset of the major class into k subsets and forms a 
learning dataset by combining each subset with the data of the minor class. The classi-
fier is trained with each of the k learning dataset and the data are combined in several 
gathering methods of ensemble. This method shows improvement in performance 
experimentally, but it has disadvantages such as low accuracy of used problems, the 
possibility of distorted distribution of data due to the use of simple separation, and 
difficulty in maximizing the advantage of ensemble because the population of ensem-
ble depends on the imbalance ratio. Under-sampling uses only a part of the major class 
data and thus it cannot represent the entire data of the major class. Particularly when 
the data difference between the minor class and the major class is large, data distribu-
tion is distorted severely. Thus, although under-sampling enhances performance, the 
results of individual experiments vary significantly. Many of recent under-sampling 
methods under study select the major class using specific strategies [8,17]. 

In order to solve the problems in under-sampling, the present study proposes a 
method of selecting major class data useful in learning using the mechanism of bio-
logical competition. The method clusters data of similar characteristic using a cluster-
ing method rather than random sampling of major class data and then builds learning 
data limitedly. The proposed method obtains meta-data reexpressed in competition 
relation by SOM (self-organizing map), which is a method of unsupervised learning, 
and deletes major class data around the minor class. This method is advantageous in 
that it can reflect the characteristics of the entire data using data distribution, and de-
creases data size through sampling. 

This paper is composed as follows. Chapter 2 reviews recent research trends, and 
Chapter 3 discusses a novel under�sampling techniques based on neural network. 
Chapter 4 conducts an experiment and analyzes the results, and Chapter 5 draw con-
clusions. 

2   Related works 

Kubat and Matwin[14] also selectively under-sampled the majority class while keep-
ing the original population of the minority class with satisfied results. The majority 
examples were divided into four categories: some noise overlapping the positive class 
decision region, borderline samples, redundant samples and safe samples. The result of 
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Kubat’s experiment showed considerable improvement in performance, but not if the 
degree of imbalance was high. 

Batista et al[15] used a more sophisticated under-sampling technique in order to 
minimize the amount of potentially useful data. The majority class instances are classi-
fied as “safe”, “borderline” and “noise” instances. Borderline and noisy cases are de-
tected using Tomek links, and are removed from the data set. Only safe majority class 
instances and all minority class instances are used for training the learning system.  

Japkowicz [16] discussed the effect of imbalance in a dataset. She mainly evaluated 
two strategies: under-sampling and resampling. Two re sampling methods were con-
sidered. Random resampling consisted of resampling the smaller class at random until 
it consisted of as many samples as the majority class and “focused resampling” con-
sisted of resampling only those minority instances that occurred on the boundary be-
tween the minority and majority classes. Random under-sampling was also considered, 
which involved under-sampling the majority class samples at random until their num-
bers matched the number of minority class samples; focused under-sampling involved 
under-sampling the majority class samples lying further away. She noted that both the 
sampling approaches were effective, and she also observed that using the sophisticated 
sampling techniques did not give any clear advantage in the domain considered.  

Kim et al[17] proposed a focused sampling method which is more superior than pre-
vious methods. To solve the problem, The proposed method must select some useful 
data set from all training sets. To get useful data set, The proposed method devide the 
region according to scores which are computed based on the distribution of SOM over 
the input data. The scores are sorted in ascending order. They represent the distribution 
of the input data, which may in turn represent the characteristics of the whole data. A 
new training dataset is obtained by eliminating unuseful data which are located in the 
region between an upper bound and a lower bound. The proposed method gives a bet-
ter or at least similar performance compare to classification accuracy of previous ap-
proaches. 

3   The proposed methods 

Because under-sampling uses only a part of major category data, the sample cannot 
represent the whole major category and distorts data distribution severely. To solve 
these problems, this study proposes an under-sampling method based on SOM (Self 
Organizing Map), one of neural networks. 

For under-sampling, the present study used SOM, a method of unsupervised learning. 
As a result, we can reexpress high-dimensional data distribution two-dimensionally. 
Each data reexpressed into meta-data is allocated to a grid on the two-dimensional map. 
Because a grid can contain one or multiple data, it is very efficient to express data 
compactly. In order to minimize heterogeneity among grids containing information on 
different classes, grids adjacent to the minor class are selected and the selected major 
class grids are removed. Because the selected major class grids contain a large number 
of data, this process can reduce the number of data samples considerably. 
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3.1 SOM learning selecting the best-matching unit (BMU) 
 
In Kohonen's learning, each neuron calculates the connection strength vector and the 

distance to the input vector. In addition, each neuron competes with others for the 
privilege of learning, and the closest neuron (best-matching unit) wins the competition. 
This is the application of the biological competition mechanism to learning. The best-
matching unit is the only neuron that can send output signal. In Kohonen's learning, 
only the winner can issue output, and the winner and its adjacencies can adjust their 
connection strength. Because clustering is not the objective of this study, we do not 
need learning for adjusting connection strength. That is, only the method of selecting 
the best-matching unit is applied to under-sampling. 

When the construction of a Kohonen network require three tasks, which are gener-
ally not necessary in other types of neural networks. One is initializing the connection 
strength vector of neurons on the layers adequately with random values. In the present 
study, it was initialized with [1,1,1,.....,1] according to the number of attributes. An-
other task is using normalized values between 0 and 1 for the connection strength vec-
tor and input vector. The other task is determining the size of the 2-dimensional grid. 

In general, the size of the grid is determined based on [ceil(5* sdatasample )] and 

is a multiple of the number of attributes, and with the size of the grid, the number of 
rows of the grid is calculated. For example, if the number of data is 200 and the num-
ber of attributes is 8, grid size becomes 72 [9*8]. The three factors are very important 
values to be emphasized in Kohonen network, but this study used values obtained 
through trials and errors. This part shall be discussed later. 

The process of selecting the best-matching unit is as follows. In the process, we can 
obtain the result that the connection strength vector of the best-matching unit is closest 
to the input vector. 

 
(1) Present a new input vector. 
(2) Calculate the distance between the input vector and each neuron. 
(3) Find the position of the closest grid among the calculated distances. 
 
In order to select the best-matching unit, the distance between input and output neu-

rons is calculated. The distance is calculated using Euclidean distance. To find the 
best-matching unit, the unit and distance of all maps are calculated for each data vector. 
 

for i=1:dlen, 
  for j=1:munits, 
   for k=1:dim, 
     Dist(j,i)=Dist(j,i)+mask(k)*(D(i,k)-M(j,k))^2; 
   end 
  end 
end 
(dlen:data samples, munits:row of grid, dim:column of 
grid Dist(j,i): distance from i to j, mask(k): mask is 
the weighting vector for distance calculation, M:codebook 
matrix, D: data matrix) 
 

Fig. 1. Calculation of distance between the input vector and each neuron. 



                Improving Under Sampling with Neural Networks for Class Imbalance Problem     155

3.2 Elimination of adjacencies (from the units of the minor class) 
 
The proposed method is as follows. After the position of the closest grid among the 

calculated distances is obtained as a result of 3.1, each unit of the minor class is named 
uniti. Then, adjacent units uniti-1 and uniti+1 are stored in the eliminated unit candi-
date set. Here, in order to store more units in the candidate set according to the charac-
teristic of data, the condition can be changed to uniti-2, uniti+2, ....uniti-c, uniti+c. 

 
Uniti : results of 3.1 
C : candidate sets of elimination units 
n : number of units 
for i= to n 
if (i=unit of the minor class) 
C=C+adjacency unit(uniti-1, uniti+1) 
end if 
return C 

 
Fig. 2. Generation of the eliminated unit candidate set. 

 
The generated candidate units to be eliminated are removed from the units and, as a 

consequence, data units of the major class, which are necessary for learning, are ob-
tained. 

The figure below shows the three steps for obtaining the units of the major class. The 
step of initial map generation and the step of allocation to each grid were explained in 
3.1. For example, let's assume 100 input data and map size of [7 4]. Each data is allo-
cated to each grid and forms a sub cluster. This is called a unit. As a result, the number 
and ratio of major class data can be reduced by eliminating units adjacent to the minor 
class (in Figure 3, red units). In this example, the minor class has 13 data and the major 
class has 87 data in the step of grid allocation. In the next step, the number of major 
class data can be reduced from 87 to 56 by eliminating units adjacent to the minor class. 
Even more adjacent units can be eliminated by the researcher's judgment. This crite-
rion should be considered together with the characteristic of data. It is because the 
form of adjacent data may be different from the figure below depending on the grid 
distribution of the minor class and the major class. If the units of the minor class are 
distributed unevenly or major class data and minor class data share the same unit, units 
to be eliminated for high performance should be decided carefully. 

 

 
 

Fig. 3. Map formation step-nit allocation step-eliminate step. 
 
In the figure above, the map formation step and the unit allocation step were ex-

plained in 3.1. In 3.2, major class units adjacent to the minor class are eliminated. 
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The method proposed in 3.2 is different from the method proposed by Kim et al. [17]. 
Their method generated data as in 3.1 but divided the result of reexpressed distribution 
into two sections (upper and lower). Data between the two sections were regarded as 
unuseful patterns and were not used in learning. This method can decrease the imbal-
ance ratio to some degree but it may eliminate useful patterns. That is, if minor class 
data are not included in the two sections, the sampling method is meaningless. 

4   Experiments 

Because under-sampling uses only a part of major category data, the sample cannot 
represent the whole major category and distorts data distribution severely. To solve 
these problems, this study proposes an under-sampling method based on SOM (Self 
Organizing Map), one of neural networks. In this section, we evaluate the performance 
of the proposed approach in the various domain. the experiments were performed with 
Matlab 7.0, on 1GB RAM, Pentium IV processor. For experiment on the proposed 
method, we used the data of the UCI Repository [18] available on the Web. 

 
Table 1. Data sets used in the experiments. 

 
data set examples attributes class(min.maj.) class(min.maj.)(%) 

pima 768 8 (1,0) 35.02%, 64.97% 
breast 683 10 (1,0) 34.99%, 65.00% 
glass 214 9 (ve_win_float_proc, 

remainder) 
7.9%, 92.5% 

wine 178 13 (3, remainder) 26.96%, 73.03% 
 
In this experiment, we used the 5-fold hold-out method and the cross-validation 

method for the accurate measurement of the result of the experiment on the proposed 
method. The experiment divides experiment data into 5 partial datasets. One of them is 
used in validation, and the other 4 are used in learning. In this study, kNN was used as 
a basic classifier to evaluate performance. The performance scale should reflect data 
imbalance. In most of pattern recognition algorithms, simple accuracy measured as 
follows is used as a performance scale.  

 

Accuracy=
FNFPTNTP

FNTP
+++

+
 

 
In case there happens data imbalance, however, simple accuracy cannot reflect the 

accuracy of the minor class sufficiently. For example, let's assume that only 10 (1%) 
out of 1000 customers purchased and the other 990 (99%) did not purchase. If the 
response model judges that none of the customer purchased, the simple accuracy of the 
response model is 99%, which is seemingly very high performance. However, the 
model failed to distinguish purchase customers, who are important, and thus it is mean-
ingless. In this study, we use G-Mean as a performance scale for the balanced consid-
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eration of the accuracy of the minor class and the major class. G-Mean (Geometric 
Mean) is a scale that can consider the minor class and the major class equally. It is 
measured as follows, and with this, the accuracy of the two classes can be understood 
as a geometric mean.  

 

G-Mean=
TNFP

TN
FNTP

TP
+

×
+

 

 
Table 2. The accuracy (Accu, G-Mean). 

 
  pima breast glass wine 

Accu 0.7292 0.9484 0.9679 0.9244 
No sampling 

G-Mean 0.6731 0.9602 - - 
Accu 0.4260 0.9326 0.6759 0.8202 

kim [17] 
G-Mean 0.6457 0.9216 0.2843 0.3333 

Accu 0.9055 0.9025 0.8539 0.9244 
proposed 

G-Mean 0.8664 0.9860 0.6667 0.3333 
 
As a whole, the proposed method showed high G-mean, enhancing the accuracy of 

both the two classes. The method proposed by Kim et al. [17] divided the result of 
reexpressed distribution into two sections (upper and lower), each of which contained 
25% of the data. Here, discarded data may contain important information. In order to 
minimize the loss of important data, we eliminated data on the boundary between the 
minor class and the major class rather than selecting data to be eliminated by fixing the 
sections of the classes. Major class data on the boundary were removed by the re-
searcher's judgement. Clarifying this part is one of tasks to be studied in the future. 

In case of glass and wine, performance was very low. G-mean could not be calcu-
lated because minor class data could not be classified properly when classification was 
made without sampling. The reason for this phenomenon is believed to be that, in the 
process of imbalance data generation, one class was used as the minor class and the 
other classes were used as the major class because the data contained three or more 
classes. This shows that the result of experiment depends on the characteristic of data. 

 
Table 3. The result of calculating imbalance ratios. 

 
 samples pima(768) breast(683) glass(214) wine(178) 

Min 268 239 17 48 No sam-
pling Maj 500(65.10%) 444(65.00%) 197(92.06%) 130(73.03%) 

Min 135 132 9 18 
kim [17] 

Maj 250(64.93%) 209(61.29%) 99(91.66%) 71(79.77%) 
Min 126 229 17 48 

proposed 
maj 350(73.52%) 228(49.89%) 79(82.29%) 71(59.66%) 

 
The table above shows the result of calculating imbalance ratios. The ratio of major 

class data decreased in general except PIMA. The imbalance ratio of pima data did not 



158     M.-S. Kim 

have a significant effect on the accuracy of the major class and the minor class. Rather, 
as shown by G-mean, the overall accuracy and the accuracy of the minor class were 
improved. 

The present used SOM to reexpress the center of class distribution. This method 
learns input data given without any specific instruction and expresses the characteristic 
of the data using specific output neurons in the space. Accordingly, we can have ad-
vantages as follows by using the results in selecting under-sampling learning data for 
solving the class imbalance problem. 

First, the ratio of class imbalance data can be decreased. Because the distribution of 
the entire data is reexpressed in summarized units and sampling is made from data 
within a specific area, the imbalance ratio can be decreased considerably. 

Second, this method can solve the problem that sampled data do not represent the 
whole data. In random under-sampling, the distortion of data distribution is worsened 
with the increase of size difference between the major class and the minor class. How-
ever, the representativeness of data can be preserved through under-sampling by a 
specific strategy. 

Third, this method is easily expandable for learning algorithms. Because it provides 
the method of composing data to be used in learning, it is applicable to any learning 
algorithm with improved performance. 

5   Conclusion 

The present study proposed an efficient data selection method for solving the prob-
lem of class imbalance. In this study, first, the distances between input and output 
neurons was calculated to select the best-matching unit by applying SOM, which is 
unsupervised learning. This step finds the position of the closest grid among the calcu-
lated distances. Second, by eliminating units adjacent to minor class data, we obtained 
more homogeneous major class data and more heterogeneous redistribution of major 
and minor class data. That is, the problem of class imbalance was solved by using only 
useful data. The improved concentrated sampling method has advantages as follows. 
First, the class imbalance ratio is reduced. Second, the problem that sample data cannot 
represent the whole data is solved. Third, expandability for learning algorithms is high. 

References 

1.  S. Cho, H. Shin, E. Yu, K. Ha, and D. MacLachlan, “Data Mining Problems and Solutions 
for Response Modeling in CRM,” Entrue Journal of Information Technology, Vol.5, No.1, 
(2006) 55-64. 

2.  L. Bruzzone, D. Fernàndez Prieto, “A Combined Supervised and Unsupervised Approach 
to Classification of Multi Temporal Remote Sensing Images,” IEEE 2000 International 
Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, 24-28, Vol. 1, 
(2000) 162- 164. 

3.  R. Yan, Y. Liu, R. Jin, A. Hauptmann, “On Predicting Rare Classes With SVM Ensembles 
In Scene Classification,” IEEE International Conference on Acoustics, Speech and Signal 



Processing (ICASSP), (2003) 21-24. 
4.  Guobin Ou and Yi Lu Murphey, “Multi-class pattern classification using neural networks,” 

Journal of Pattern Recognition, Vol 40, Issue 1, (2007) 4-18. 
5.  Vicenc Soler, Jesus Cerquides, Josep Sabria, Jordi Roig, Marta Prim, Imbalanced Datasets 

Classification by Fuzzy Rule Extraction and Genetic Algorithms, IEEE International Con-
ference on Data Mining - Workshops (ICDMW'06), (2006) 330-336. 

6.  Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizabeth Shriberg and Andreas Stolcke, “A 
study in machine learning from imbalanced data for sentence boundary detection in 
speech,” Journal of Computer Speech & Language, Vol 20, Issue 4, (2006) 468-494. 

7.  Yanmin Suna, Mohamed S. Kamela, Andrew K.C.Wongb,YangWangc, "Cost-sensitive 
boosting for classi?cation of imbalanced data," Journal of Pattern Recognition.2007 

8.  Pilsung Kang and Sungzoon Cho, "EUS SVMs: Ensemble of Under-Sampled SVMs for 
Data Imbalance Problems", Proceedings of International Conference on Neural Informa-
tion Processing 2006 

9.  Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W. , SMOTE : Synthetic Minority Over-
sampling Technique, Journal of Artificial Intelligence Research 16, (2002)321-357. 

10.  Japkowicz, N. , "The Class Imbalance Problem : Significance and strategies," International 
Conference on Artificial Intelligence, 2000. 

11.  Chawla, N.V., Hall, L. and Kegelmeyer, W. , "SMOTE : Synthetic Minority Oversampling 
Techniques," Journal of Artificial Intelligence Research 16, pp321-357, 2000. 

12.  Maloof M. A. , "Learning when Data Sets are Imbalanced and When Costs are Unequal 
and Unknown," ICML Workshop on Learning from Imbalanced Data Sets II, 2003. 

13.  Chawla, N. V. , “C4.5 and Imbalanced Data sets: Investigating the effect of sampling 
method, probabilistic estimate, and decision tree structure,” ICML-2003. 

14.  Kotsiantis S., Pierrakeas C., Pintelas P., "Preventingstudent dropout in distance learning 
systems using machine learning techniques," AI Techniques In Web-Based Educational-
Systems at Seventh International Conference on Knowledge-Based Intelligent Information 
& Engineering Systems, (2003) 3-5. 

15.  Batista G., Carvalho A., Monard M. C. , "Applying One-sided Selection to Unbalanced 
Datasets," In O. Cairo, L. E.Sucar, and F. J. Cantu, editors, Mexican International Confer-
ence on Artificial Intelligence (MICAI), (2000) 315–325. 

16.  Japkowicz N., “The class imbalance problem:Significance and strategies,” International 
Conference on Artificial Intelligence, Las Vegas, 2000. 

17.  Man-sun Kim, Hyung-Jeong Yang, Soo-Hyung Kim, Wooiping Cheah, "Improved Fo-
cused Sampling for Class Imbalance Problem," Journal of Korea Information Processing 
Society, No.14(b), Vol.4 (2007). 

18.  http://www.ics.uci.edu/~mlearn/databases/ 
19.  Jigang Xie, Zhengding Qiu, "The effect of imbalanced data sets on LDA:A theretical and 

empirical analysis," Journal of Pattern Recognition, (2007)557-562. 

                Improving Under Sampling with Neural Networks for Class Imbalance Problem     159 



 



Closing Price Prediction for Auctions of Hotel Rooms on 
the TAC Classic 

Eber Jair Flores Andonegui1, Darnes Vilariño Ayala1, Fabiola López y López2

1 Facultad de Ciencias de la Computación, BUAP 
Puebla, México 

2 Dirección de Modalidades Alternativas de Educación, BUAP 
Puebla, México 

eberjair@hotmail.com darnes@cs.buap.mx, fabiola.lopez@siu.buap.mx 

Abstract. In this paper a brief description of the Trading Agent Competition 
(TAC) Classic and the problems that agents must face are presented. Moreover, 
episodes are proposed as a solution to predict the closing price of hotel rooms for 
a bid in the competition. To do that, a five layer neural network is used and, after 
upgrading the original neural network twice, the results, obtained from 20 games 
among dummy and other agents are shown. 

1   Introduction 

The Trading Agent Competition (TAC) has been organized during many years ago. In 
this competition, travel agents compete against each other in order to better satisfy the 
requirements of their customers. What makes the game interesting is the fact that every 
trading agent is a software agent and, it is specialized on selling travel packages to de-
termined customers. Each travel package includes flights and hotel room reservations 
as well as tickets for entertainment activities of the customers [1]. 

The main problem is that every travel agent must propose to its customer the best 
day to travel, according to the conditions of the market, the customer requirements on 
hotel quality and desired entertainment and, flights availability. Travel agents work in 
an autonomous way, i.e. they must be able to take decisions on their own. To do so, an 
architecture that includes the following components has been proposed: (a) learning 
schemas that allow agents to adapt their behavior to the current environment, (b) 
mechanisms to interact with the platform and other participants and (c) capabilities to 
analyze the changing conditions on the market. 

Many papers have been written about the TAC Classic, and some of the production 
of 2004 and 2005 is referred. For example, Sardinha et al 1 present a multiagent archi-
tecture that solves this problem. Here, each agent of the system specializes in a part of 
the market, and it can predict the purchase prices of tickets in the following next days 
by checking the room availability. This multiagent system considers a learning archi-
tecture that is supported on a knowledge base which is created during the game time. 
Pannos Toullis et al2 approach the problem by using fuzzy logia and reasoning rules to 
predict the room prices, by considering available historical data. Trying to efficiently 
assign the amusement shows, they design a strategy that guarantees the requirements of 
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each client. Michael P. Wellman et al, on 3 proposes a hierarchical distribution of the 
original problem, by analyzing and predicting the behavior of a rival agent. Against one 
rival, the Walverine agent may predict the whole of its behavior. Against two rivals, the 
agent may predict a 74.1% of their behavior. But if the rivals are extended to four of 
them, the agent may predict only the 2.4% of their behavior. In general, those proposals 
consist on multi-agent systems that allow the specialization of each subagent on a part 
of the whole market.  

Our research has been done in three different phases: an analysis of the conditions of 
the environment where agents participate; a study of the platform where the competi-
tion takes place; and the design and implementation of a Neural Network that can pre-
dict the closing bidding prices for the hotel rooms. The paper is structured as follows: 
Section 2 gives a brief description of the TAC Classic. Section 3 describes the main 
problems of the game. Section 4 shows the design of the neural network that can pre-
dict the closing bidding prices for the hotel rooms. Section 5 presents the results for the 
local tests over the neural network itself. Finally, Section 6 contains the conclusions 
about our results. 

2   The TAC Classic Description 

The TAC Classic provides a platform where simulations of games can be done. The 
platform is in charge of the following tasks: hosting the participants; activating the 
agents once the simulation starts and removing them once the simulation ends; and 
providing relevant information from each round. Some of the data obtained from the 
platform are used as configuration values to participate on further simulations. These 
data consist on the bidding for hotel rooms, flights and entertainment shows prices. 

In each TAC Classic game, 8 travel agents participate. These agents organize travel 
tours from TACTown to Tampa for eight different customers during an imaginary pe-
riod of 5 days. Customers express their preferences for every aspect of the trip, Their 
preferences are represented by a utility function [1]. The goal of each agent is to maxi-
mize the total utility of their customers. Agents compete against each other to obtain 
the best result on assembling the tours of their clients. They participate on 28 bids. A 
tour consists of a round flight, hotel reservation and tickets for entertainment events 
such as the alligator wrestling, an amusement park or a museum. 

Each one of these goods –flights, hotel reservations and entertainment events- are 
traded in separate markets with different rules as following:  

There are two hotels in Tampa: Tampa Towers (TT), which has a high price because 
it is the most comfortable hotel, and Shoreline Shanties (SS) which is the cheapest op-
tion for traveling to Tampa. Once the hotel has been assigned, it cannot be changed 
during the staying of the client in Tampa. Since the client needs hotel on his arrival 
night and until the pre-departure night, there is no hotel available on the last day of 
game. To get a room, the agent must participate on ascending auctions: one auction for 
each combination of hotel and night, each with 16 rooms being auctioned off. The price 
of each hotel is based on the customer preference for the Tampa Towers Hotel. The 
agents are not allowed to exchange hotel rooms between themselves. For a deeper 
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specification of the other parameters such as flight reservations and entertainment 
events, we recommend to check [1]. 

Regarding hotel rooms, each agent must send an offer for the auction. While it is 
open, the auction price is updated with the current values. All of the bids are presented 
as a pair (q, p) where q is the quantity, and p is the price offered by the agent. If q is 
less than zero, then it is indicated that the agent wants to ‘sell’ a quantity q of tickets on 
a base price p. If q is over zero, then the agent is interested in ‘purchasing’ certain 
quantity q of tickets by paying p. The client preferences are specified as follows: The 
day when they wish to arrive to Tampa (PA); the departing day from Tampa (PD); a 
prize for assigning the best hotel (HP) -this value is between $50 and $150-; and a prize 
value for assigning an entertainment type -on a range between $0 and $200 according 
to the customer preferences: AW for alligator wrestling, AP for amusement park, and 
MU for museum. 

The tour is specified by using these variables: the arriving day (AA), the departure 
day (AD), and a binary value (0 or 1) that indicates whether the Tampa Towers was se-
lected (TT?). 

The tour is feasible if it contains the hotel reservations for each night between the ar-
rival and departure dates. The shortest stay on Tampa is for one day, and obviously the 
customer will not stay at the hotel while flying back to TACTown. It is important to 
remark that the obtained prize for reserving the Tampa Towers on a travel is for the 
whole tour and not for each night spent in Tampa. 

The winning agent is the one that obtains the highest score of the game. The score is 
obtained from the obtained utilities less the costs for each tour. The profit of each client 
is measured in dollars and is calculated by the following utility function: 

u = 1000 - travel_penalty + hotel_bonus + fun_bonus (1) 

where: travel_penalty = 100*(|AA - PA| + |AD - PD|); 

hotel_bonus = TT? * HP;   and 

fun_bonus = AW?*AW + AP?*AP + MU?*MU. 

The parameter hotel_ bonus can be $0 if the client is not assigned to the Tampa Towers 
(TT?=0) for staying. If he is assigned (TT?=1) the hotel price will take the HP value 
defined previously, and it is added to the general utility. 

3   Problems to be solved by the Agent 

Agents should be able to offer clients optimized tour packages that satisfy most of their 
needs.  Therefore, it is important for agents to get a reservation at the Tampa Towers in 
such a way that the pair arrival-departure days are in accordance with the desired stay-
ing days. In addition, agents must also get the required entertainment events for the 
staying days in Tampa. 
One way to solve the problem is by programming separate modules that solve a part of 
the whole problem (i.e. dividing the problem into sub-problems, see Figure 1). Then, 
the agent makes its own decisions by considering the solutions found by each module. 
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Each module has been designed to operate different kinds of transactions, such as 
the hotel rooms by using English auction and the flight prices by using a stochastic 
function. Once the agent predicts the next possible scenario, it consults the possible 
strategies and the tasks that it should perform to confront the stage, and finally it saves 
the results of applying the current strategy. Once the decisions are made, the offers are 
sent to the server. One of the most important problems during the game is to guarantee 
a room for the clients during their stay in Tampa. To solve this problem, an artificial 
neural network is proposed, such as He et al [5] did. 

 

  

Fig. 1.  Problem solution by programming separate modules. 

To get the hotel rooms the agent must participate in auctions. The format of the auc-
tions for the hotel rooms is English Standard, it means ascending from one to many. 
The only modification is that the auctions are closed randomly on every minute of 
game. Each auction is closed randomly during the eight minutes of the game. The agent 
does not know previously which auction will be closed during the next minute. Each 
hotel offers 16 rooms per night, on a minimum price of $0. 

The requested price is announced every minute, and it is calculated by considering 
the sixteenth highest price of all the bids. When an agent makes a new bid, the sug-
gested price must be higher than the one established, by considering the following 
rules: the offered price of a new bid must be at least one unit higher than the requested 
price. If the current offer acquires q rooms, the new offer must request at least q rooms, 
at least one unit higher than the requested price. Agents cannot retreat their bids. When 
an auction is closed, the 16 units with the highest offered prices will be sold and agents 
will pay the requested price. Since the requested price is known only every minute of 
the game, it is not sure that for an offered price, that the agent can obtain the required 
rooms. A possible solution can be found by trying to predict the requested price and 
make decisions about how much to spend for the required rooms. 
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4   Designing the Neural Network 

The factors that are considered to predict the closing price of an auction are, first, the 
customer preference for the hotel type (Pref). A higher preference for the room tends to 
increase the offered price for it. Pref is fuzzily defined with the values Low, Medium 
and High. We also consider the average closing price on previous auctions for the same 
room (Prom). Some rooms tend to be more required, so the offering price could be in-
creased. The fuzzy values for this variable are Low, Medium and High. Another factor 
that is considered is the distribution of the closed auctions (Dist). If the auctions of the 
hotel rooms on the closer days to the current auction are closed, the price for the same 
room may tend to increase because clients cannot change the hotel during their staying 
at Tampa. The fuzzy values considered are Spread, Half and Gathered. The only values 
this variable can take are (a) 0 if no auction from the two nearest auctions to the current 
day has closed; (b) 1 for one of the two auctions that has closed; and (c) 2 if both auc-
tions are closed. For the expected price (Price) five fuzzy values were considered: 
Very_Low, Low, Medium, High and Very_High. We create 27 rules of fuzzy reasoning 
and a 5-layer neural network.  

The values for the input variables correspond to the first layer. Each node in this 
layer returns a belonging value for the input. For the cases of the values of Pref and 
Prom, a normal distribution functions is given as follows: 
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Where x is the input value and the parameters x  and δ are fixed when the neural net-
work learns from its environment in order to reduce the prediction error for all of the 
corresponding nodes to the variable Pref. For all of the nodes related to the variable 

Prom, the parameters x  and δ are calculated as follows: 
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It can be observed that the assignment of values for these parameters depends on the 
general behavior of the auctions, and it does not depend on the neural network itself. It 
means that the assignment is not fixed through the learning process. To determine the 
factor Dist, a discrete activation function is used, it is given by: 
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Where the values a, b and c , and they are fixed when the neural network learns 

to decrease the prediction error. The second layer belongs to the inference rules. This 
layer determines the strength of the rule by multiplying all of the inputs: 
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Where  is the group of nodes from the first layer, that pass information to the i 

node on the second layer. The third layer calculates the importance degree for each 
rule, or in other words, the relative strength of each rule by following the function: 
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Where  is the group of nodes from the second layer that correspond to the i node. 
The fourth layer accumulates the weights of each rule, by considering the same output, 
to generate the value for the output variable, by applying the following function: 
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Where  is the group of nodes from the previous layer that corresponds to the i 

node of the current layer. Finally the fifth layer gathers all the values of the fuzzy out-
put variables from the fourth layer, with their assigned weight as follows: 

)3(
iC

∑ ∑
∈ ∈

=
)4( )3(

)'()5(

Ci Cj
ji

i

prS    (9) 

Where  is the group of nodes from the fourth layer. Once the price is obtained on 
the output of the neural network, if it is smaller or equal to the requested price in the 
current auction, then the requested price is taken, and increased over a 10%, as the next 
offering price. A second version of the same neural network can be obtained by consid-
ering the current asked price Asked_Price as an input on the first layer, instead of the 
customer preference Pref. Using the same fuzzy rules the functioning of the new net-
work is explained as follows: A current asked price Asked_Price means that some 
agents are pursuing the same auction, and then it tends to increase the next requesting 
price. During the training of the neural network the parameters are adjusted, in order to 
guarantee the learning of the network itself. The main objective is to minimize the error 
value, which is calculated by: 

)4(C

∑ −=
j

jj SYE 2)5( )(
2
1    (10) 



              Closing Price Prediction for Auctions of Hotel Rooms on the TAC Classic     167

Every time that a new group of data is received, the output values of all the nodes are 

saved, in order to calculate 
S
E
∂
∂  of each node. These values are considered on the appli-

cation of the optimizing algorithms to minimize the errors on the calculations. The first 
adjusted parameters are the ri parameters that are on the fourth layer. The applied tech-
nique, as applied on the paper of He et al. [5] is based on the optimal direction of 
maximal decrease: 
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Where η is the learning factor, that is initially considered as 01.=η . The inference 

rules to adjust the parameters ri in the fourth layer is: 
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Then,  ri is updated as follows:  
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The following parameters that must be adjusted are x  and δ  for all the nodes of the 
first layer that correspond to the input variable Pref. The implemented technique is 

based on the optimization by targeted gradients. Let it be  the gradient of the itera-

tion t (t>1), then the new search direction is obtained by combining the current maxi-
mum descent direction against the previous direction, that is: 
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By using Fletcher-Reeves’s Upgrade it is obtained: 
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Then for modifying the learning rules for the parameter x ,  a gradient that considers 

the next partial derivative as the error function –where  is the group of nodes from 

the second layer that are connected with the i node of the first layer as follows: 
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where: 
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The rule for adjusting the parameter ix  is: 
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Similarly for iδ  the adjusting rule is calculated from: 
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The rule for fixing the parameter iδ  is: 
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1−+−= tttt pgp β ;   and   
i

t
Eg
δ∂
∂

=  

For the nodes of the first layer that correspond to the variable Dist, the parameters a, b 
and c must be adjusted by using the same technique of conjugated gradients. Only one 
difference must be applied because a discrete activation function must be applied, so to 
find a direction to reduce the error, the Lagrange Interpolation is proposed. For this 
particular problem it is used: 
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Once the polynomial is obtained, the adjusting rule for the parameter a can be calcu-

lated, as on the parameters x  and δ  from the formulae: 
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The adjusting rule for the parameter ai can be defined as follows: 
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Similarly, the adjusting rule for the b parameter is calculated from the formulae: 
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And the adjusting rule for the parameter bi is defined by: 
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Finally the adjusting rule for the parameter c is calculated by: 
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Then the adjusting rule for the parameter ci comes from: 
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It can be observed from the characteristics of the interpolation and because it is a dis-
crete function, that the error differential caused by the parameter variance is many 
times zero. This value brings itself a problem with the update value, because it be-
comes undetermined. When this happens, an updating value is proposed by default, 

1=β . Due to this situation, a third version for the neural network is proposed. This 

version includes the updates made from the second version and some modifications of 
the calculation of the values for a, b and c. This is made by implementing the maxi-
mum descent method, and it is indicated as follows: 
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Where, the differentials are calculated by using the same formulas from the first and 
second version. In the next section, the obtained results from the performance of the 
three versions of the neural network are presented. 

5   Obtained Results  

Many tests were developed in order to find the most efficient of the three versions of 
the neural network. The tests were made on a local server by simulating 20 games of 
the TAC Classic, for both learning factors 0.01 and 0.001, with the three implemented 
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versions of the neural network. The main objective is to find the best behavior for the 
prediction of the hotel room prices. To make the tests, two agents from the TAC Agent 
Repository [6] were downloaded and installed to compete in the platform –UTTA06 
and MerTACor. The agents and the server were executed on the local network. 

The three described versions of the neural network were tested, each with different 
input variables and optimization techniques. The networks RN1 and RN2 have the 
three input values –Preference, Average Price and Distribution-, and uses Conjugated 
Gradient for optimization and learning. For the third network RN3, only the Distribu-
tion input values were tested with Maximal Descent Optimization technique. 

By using the learning factor f = 0.01 with RN1, the average prediction error is calcu-
lated in 49.5024696, with RN2 it is 56.233856, and with RN3 the error was 
53.3619775. Considering a learning factor f = 0.001 the Average Prediction Error for 
RN1 is 59.7812932, with RN2, 52.07654 and with RN3, it is 52.0490384.  

6   Conclusions 

In this paper, the output and input values for the problem of the prediction of the hotel 
room prices were defined. Twenty-seven rules were established in order to build a neu-
ral network of five layers. The learning techniques implemented on the neural network, 
by using discrete activation functions was also explained, and is considered as the real 
contribution of this paper.  

By changing the controlled variables, three different versions of the neural network 
were developed, named RN1, RN2 and RN3. By analyzing the obtained results on the 
presented tests, it can be inferred that RN3 with a learning factor f = 0.001 offers the 
best behavior of all the implementations. Then, an agent with this network will be used 
to predict the prices on the room hotel auctions.  

A heuristic to solve the assignation problem for bidding prices for tickets for the 
amusement shows has been designed, and for the assignment of the remaining tickets a 
differential equation has been proposed. At this moment, we are at the testing phase of 
the agent; we are currently analyzing how the maximum income is guaranteed by de-
pending on the constructed tour packages. 
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Abstract. An important characteristic of a controller is the adaptation to dynamic 
changes in the system to be controlled; however most of the algorithms used 
consist on complex and computationally expensive structures. This paper pre-
sents a controller based on radial neural networks which is able to perform pa-
rameter adaptation as a response to changes on the system dynamics using a sim-
ple reinforcement learning rule. The approach has been tested on a typical non-
linear benchmark plant: the steering ship control. 

1   Introduction 

Conventional controllers are only efficient where the system to be controlled (the 
plant) or rather the model of that system represented within the controller is character-
ized by constant parameters applicable at all operating points. And yet, most complex 
systems are characterized by parameters that vary with the system operating point, thus 
failing to meet the basic assumption just stated. 

Neural networks have been successfully applied on identification and control of dy-
namical systems. They are also regarded as good approximation elements for model-
ling non-linear systems, with remarkable results on designing neurocontrollers [1]. 
Advantages seem evident as they do not require the plant´s model as a proper selection 
on data from system´s input and output might suffice.  

There exist several neural architectures for controlling dynamic systems [2]. The 
design procedure includes two steps, first the identification of the plant dynamics and 
second the controller generation from the inverse approximation of operational data. 
Following this assumption, the new controller would have the ability to control the 
plant by constantly keeping the same dynamic characteristics, which is not sometimes 
the case. 

Radial function neural networks may require more neurons than a classical feed-
forward network. However, the weights on the overall structure hold a semantic mean-
ing which in turn allows a customized update rule and therefore approaches each neu-
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ron accordingly to its overall contribution [3], and therefore have been considered as 
an attractive proposal for online adaptation. 

Considering the use of reinforcement learning in control engineering, the controller 
learns how to lead the plant through direct interaction by generating signals to the plant 
and evaluating their impact. The controller would therefore modify its parameters 
according to the relative success or failure of its actions [4]. Applying reinforcement 
learning to control implies that the controller learns how to stabilize the plant through a 
direct interaction. It applies input signals to the plant measuring the output to evaluate 
overall impact of the control signal. Hence the controller updates its parameters by 
evaluating the relative success of its actions [4]. 

This work presents a controller based on radial neural networks which is able to per-
form parameter adaptation as a response to changes on the system´s dynamics by using 
a simple reinforcement learning rule based on a reference model of the plant response. 
The approach has been tested on the steering ship control. 

This work is organized as follows: section 2 present a brief description of the neural 
network theory, in particular to radial base networks. Section 3 describes main features 
on reinforcement learning while section 4 shows the ship steering problem which is 
used in demonstrations. Section 5 explains the reinforcement signal used in updating 
the parameters while Section 6 describes the radial-based neuro-controller architecture 
which lies on the foundations of this work. Section 7 presents the adaptation law ap-
plied to the fixed controller while Section 8 discusses some conclusions and future 
work.   

2   Radial Base Neural Networks 

Radial base neural networks (RBNNs) use functions whose output depends on the 
distance between the input and a value w considered as reference. Figure 1 shows a 
representation of such arrangement. RBNNs differ from other feedforward networks 
on the fact that the activation function receives as input the difference ( dist ) between 

the input vector and the weights instead of its arithmetic product. 
 

1x  

2x

3x

nx

1,1w 1,nw
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( )iR x  

b 

 
Fig. 1. Schematic representation of one radial base neuron. 
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The activation function normally employed is a Gaussian [6] as represented by the 
following equation: 
 

2( ) exp
( )i i

x w
R x

σ
⎛ − ⎞

= ⎜ ⎟
⎝ ⎠

 (1) 

The network`s output y is computed by the product ( )iR x  times b. The last parame-

ter becomes important given that it can modify the sensitivity of function ( )iR x  in the 

network input. Hence, as long as the input vector x goes further away from the centre 
on ( )iR x  as represented by vector w, the value of decreases. ( )iR x

3   Reinforcement Learning 

In control engineering, appropriate actions required by the plant to keep the re-
quirements are commonly unknown. In the case of non-linear systems, neural networks 
have shown good skills to be applied for identification by using the backpropagation 
learning rule. Unfortunately it also shows some drawbacks. It requires the network 
outputs in advance to training. Reinforcement Learning (RL) method holds a more 
convenient feature for the systems control problem. Instead of requiring an appropriate 
control action to learn from, it accepts a reward index to score its own actions, com-
monly known as the critic. Such element is able to define an acceptable or disappoint-
ing performance on following the required control strategy. The overall method resides 
in the middle of supervised and unsupervised algorithms.  

 
 

Reinforcement 
Learning 
Controller 

Critic 

x 
u(t) 

p(t) 

Plant 
x 

 
Fig. 2. Reinforcement Learning control scheme. 

 
After receiving the system state x (Fig. 2), the learner receives reinforcement p(t) 

from the environment notifying about the usefulness of its output u(t). The main objec-
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tive is therefore to maximize this reward signal over the time [7]. This can be achieved 
by trial and error training until the learner is able to discover those outputs with a 
maximum reward. 

The main component within an RL based control scheme is therefore the critic sig-
nal and how it is processed to adjust the controller parameters.  The solution proposed 
in this paper employs radial base neural networks and a critic signal named as RJ . In 

order to provide a reliable critic signal to represent how the plant must behave on real 
time, our implementation uses a reference model based approach. 
  

 

 

 

 
x 

ϑ  

δ  

V 

v 

u 

Fig. 3. The ship´s model. 

4   The Plant Model 

The testbed in this paper is the ship´s steering wheel control problem [8] as ex-
plained in Fig. 3. The ship moves forward in the x direction with a speed u, while ϑ  
refers the steering angle which in turn depends on steering wheel angleδ . Hence rϑ  is 

the target direction angle as defined by the captain o desired trajectory. The objective is 
to develop a control strategy to assure that ϑ  follows rϑ . The ship´s movements can be 

 

3
1 2 1 2 1 2

1 1 1( ) ( ) ( ( )) ( ( ) ( ))Kt t H t tϑ ϑ ϑ τ δ
τ τ τ τ τ τ
⎛ ⎞ ⎛ ⎞

+ + + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

&&& && & & tδ  (2) 

 
with ( ( ))H tϑ&  being a non-linear function on the relationship between δ andϑ  on 

steady state. From a well-known test called the “spiral” [1], the function can be ap-
proximated by 

 

3( ( )) ( ) ( )H t a t b tϑ ϑ ϑ= +& & &  (3) 
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with a  and b  being real valued and a  always positive. This paper considers 

a =b =1 while δ is limited to 80±  degrees as in [8]. The value of K and constants 

iτ depends on the ship´s speed u. 

5  Reinforcement Signal based on the Reference Model 

Commonly a reference model is used to score the desired performance on closed-
loop. A fixed trajectory is generated from the reference model as to define how the 
plant must behave on each time instant. In such model, all performance indexes must 
therefore be clearly defined. If the reference model holds a very strict behaviour model 
in terms of performance, then the controller would never reach a satisfactory adapta-
tion to it. 

In general, the reference model may be continuous or discrete, linear or non-linear, 
time invariant or not. In this paper, the reference model which represents a correct 
response in  time is a continuous expression as follows: 

 

( )1( )
1 (

mY sG s
)s R s

= =
+

 (4) 

 
The reference model is discretized using as sample time T=0.1 seconds and its bilin-

ear transform is defined as follows: 
 

19 1 1( ) ( 1) ( ) ( 1
21 21 21m my kT y kT r kT r kT= − + + )−  (5) 

 
With r(kT) is the reference signal. The reinforcement signal employed in this work 

by the parameter update rule is given by: 

( ) ( )R mJ y kT y kT= −  (6) 

 
with y(kT) being the plant´s output. It is important to provide one more feature in case 
the plant´s output approaches the desired behaviour. It due case the reinforcement 
learning should be zero, i.e. no parameter adjustment is done. In real-time operation, if 
small values on the reinforcement signal results on several changes on the controller 
parameter set, instability may occur as a result of unnecessary storage of such updating 
orders. In order to avoid such problem in this work, we employed a threshold function 
that allows changes if only the reinforcement signal may be consider as admissible. 
Such function is defined as follows (considering α =0.005). 
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(7) 

6  The Neurocontroller 

This section describes the most important features in the neurocontroller with re-
spect to its own ability to modify its behaviour as a response to changes on the plant´s 
dynamics. The radial base neural network controller follows the work of Passino in [5].  

The controller seeks to regulate the ship´s direction by using 2 inputs: steering error 
and its derivative. The network architecture is shown in Fig. 4.  
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Fig. 4. The neural network architecture used as controller. 
 
The network has 121 radial base neurons distributed among all input span for  ϑ  

,
2 2
π π⎛−⎜

⎝ ⎠
⎞
⎟  (also known as e in this work), and for ϑ&  (-0.01, 0.01) (also named as c). 

The radial base function parameters (Gaussians) are defined by the variants over the ϑ  
axis in both ways yielding  
 

0.7
Rnϑ

πσ =  (8) 
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0.020.7
Rnϑσ =&  (9) 

 

In the expression above,  represents the linear neuron distribution. In this work 

such value is 11 with a total receptive field number of =121. Using this data set, the 

overall input space is fully covered while allowing a smooth transition between neu-
rons.  

Rn
2
Rn

The values on vector  [ ]1 2 121b b b=b L are computed following the Passino´s 

method on [5]. The training data set is obtained from simulation on the ship´s dynami-
cal model. Under this assumptions, the system was able to control the non-linear ship 
model (section 4), considering a speed of u=5 m/s. However, if a change on the plant´s 
dynamics occurs, such as varying the ship´s speed then the control rule is lost. 

7   Reinforcement Learning based Controller Adaptation 

There are several options to adjust the network weights using the reinforcement sig-
nal. This paper considers the update of vector [ ]1 2 121b b b=b L  which multiplies 

all 121 functions on the radial base (receptive fields). 
The adaptation law on these parameters is defined by the following equation: 

 

( ) ( 1) ( ) ( , )i i R ib kT b kT J kT R ϑ ϑ= − + &  (10) 

 
The parameter b on neuron i is computed considering its previous value plus the re-

sult of the product between the reinforcement signal RJ  and the radial base value  

which triggered such neuron. 
iR

In order to test the performance of the adaptation law and the quality on the non-
linear control law applied to the ship, the dynamics model is changed from  u=5 m/s to 
10 m/s. The fixed radial base neurocontroller (explained in section 6) is taken as refer-
ence and the vector b is changed according to the adaptation law presented in (10). The 
results are shown in Fig. 5. 

It can be seen that the adaptation time is very small allowing testing the plant 
against to one dynamics change. In order to test the robustness on the controller adap-
tation, the effect of wind perturbations on the ship are considered. Assuming the wind 
is flowing on time intervals (as normally happens in the sea), the overall effect may be 
simulated by adding a sinusoidal signal to the steer angle (input to the plant) as fol-
lows: 

2 sin(2 (0.001)* )
180

tπ π⎛ ⎞
⎜ ⎟
⎝ ⎠

 (11) 
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Fig. 5. Controller response using the adaptative controller and changing the dynamics 
on the model to u=10 m/s. 

 

 
Fig. 6. Controller´s response one wind perturbation as defined in Eq. 11. 
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Figure 6 shows the controller´s response to the perturbation. It can be seen how the 
controller is able to perform the required modifications to dismay the perturbation´s 
effect which normally tend to generate instability. It can also be observed within the 
steady state analysis, how the wind effect can be modelled as a sinusoidal disturbance 
on the steer angle. Another important feature to consider in the controller adaptation 
comes from the fact of adding noise to the plant´s output despite still keeping control 
of the plant. This test adds uniformly distributed and random noise to the output as 
shown in Fig. 7. 

 

 
Fig. 7. Controller´s response considering noise added to the output. 

7   Conclusions 

This paper presents a neural network based controller and a reinforcement learning 
update algorithm. The overall algorithm is able to exert control over a non-linear prob-
lem despite applying changes on the plant´s dynamics. The reinforcement signal is 
computed from measurements on the plant´s performance and its comparison to a 
simple reference model.  

Despite it appropriately controls the plant, the neurocontroller initially shows some 
overshooting as a result of the parameter adaptation (Fig. 5). It takes about 1.2 seconds 
to define that no more changes are required in the controller´s structure. 
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The updating algorithm based on reinforcement has shown an acceptable robust-
ness, as it keeps the ship steering control despite perturbations shown by Fig. 6 or the 
noisy signals presented by Fig. 7. 

References 

1. Miller, W.T., Sutton, R.S.  and Werbos, P.J.,  editors. Neural Networks for Control. The 
MIT Press, Cambridge, MA, 1991. 

2. Narendra, K.S.  and  Parthasarathy, K., Identification and Control of Dynamical Systems 
using Neural Networks. IEEE Transactions on Neural Networks 1(1):4-27, 1990. 

3. Chen, S.,  Billings, S.A., and Grant, P.M.,  Recursive hybrid algorithm for nonlinear sys-
tem identification using radial basis function networks. International Journal of Control, 
55(5):1051-1070, 1992. 

4. Farrell, J.A., and Baker, W., Learning Control Systems. In P.J. Antsaklis and K.M Passino, 
editors, An Introduction to intelligent and Autonomous Control systems, pages 273-262. 
Kluwer academic publishers, Norwell, MA, 1993. 

5. Passino, K.M., and Antsaklis, P.J., A System and Control Theoretic Perspective on Artifi-
cial Intelligence Planning Systems. International Journal of Applied Artificial Intelligence, 
3:1-32,1989. 

6. Sanner, R. M and Slotine, J. J. E. Gaussian Networks for Direct Adaptive Control. IEEE 
Transactions on Neural Networks, 3(6), 837-863. 

7. Barto, A. G., Bradtke, S. J., and Singh, S.P. Learning to Act using Real-Time Dynamic 
Programming. Department of Computer Science, University of Massachusetts.  

8. Amström K. J. and Wittenmark. Adaptive Control. Addison-Wesley, Reading, MA. 1995. 



Direct Adaptive Vector Neural Control of a Three Phase 
Induction Motor 

Ieroham S. Baruch, Carlos R. Mariaca-Gaspar, and Irving P. de la Cruz 

CINVESTAV-IPN, Department of Automatic Control, Av. IPN No 2508, 
Col. Zacatenco, A.P. 14-740, 07360 Mexico D.F., Mexico 

{baruch, cmariaca, idelacruz}@ctrl.cinvestav.mx

Abstract. The paper proposed a complete neural solution to the direct vector 
control of three-phase induction motor including real-time trained neural control-
lers for velocity, flux and torque, which permitted the speed up reaction to the 
variable load. The basic equations and elements of the direct field oriented con-
trol scheme are given. The control scheme is realized by nine feedforward and 
recurrent neural networks learned by Levenberg-Marquardt or real-time BP algo-
rithms with data taken by PI-control simulations. The graphical results of model-
ling shows a better performance of the NN control system with respect to the PI 
controlled system realizing the same general control scheme. 

1   Introduction 

The application of Neural Networks (NN) for identification and control of electrical 
drives became very popular in last decade. In [1], a multilayer feedforward neural 
network is applied for a DC motor drive high performance control. In [2], a recurrent 
neural network is applied for identification and adaptive control of a DC motor drive 
mechanical system. In the last decade a great boost is made in the area of induction 
motor drive control. The induction machine of cage type is most commonly used in 
adjustable speed AC drive systems [3]. The control of AC machines is considerably 
more complex than that of DC machines. The complexity arises because of the vari-
able-frequency power supply, the AC signals processing, and the complex dynamics of 
the AC machine [3], [4]. In the vector or Field-Oriented Control (FOC) methods, an 
AC machine is controlled like a separately excited DC machine, where the active 
(torque) and the reactive (field) current components are orthogonal and mutually de-
coupled so they could be controlled independently, [3]-[7]. There exist two methods 
for PWM inverter current control – direct and indirect vector control, [3]. This paper 
applied the direct control method, where direct AC motor measurements are used for 
field orientation and control. There are several papers of NN application for AC motor 
drive direct vector control. In [8] a feedforward NN is used for vector PW modulation, 
resulting in a faster response. In [9] an ADALINE NN is used for cancellation of the 
integration DC component during the flux estimation. In [10] a fuzzy-neural uncer-
tainty observer is integrated in a FOC system, using an estimation of the rotor time 
constant. In [11] an Artificial NN is used for fast estimation of the angle used in a FOC 
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system. In [12] a flux and torque robust NN observer is implemented in a FOC system. 
In [13], an ADALINE-based-filter and angular-velocity-observer are used in a FOC 
system. In [14], the authors proposed a NN velocity observer used in FOC high per-
formance system for an induction motor drive. In [15] a Feedforward-NN (FFNN)-
based estimator of the feedback signals is used for induction motor drive FOC system. 
The paper [16] proposed two NN-based methods for FOC of induction motors. The 
first one used a NN flux observer in a direct FOC. The second one used a NN for flux 
and torque decoupling in an indirect FOC. The results and particular solutions obtained 
in the referenced papers showed that the application of NN offers a fast and improved 
alternative of the classical FOC schemes, [17]. The present paper proposed a neural 
solution of a direct FOC. The system achieved adaptation to a variable load applying 
real-time learned neural controllers of IM velocity, flux, and torque. In our early work, 
[17], the phase (a,b,c), the (q,d,0) model, and the coordinate transformation between 
them has been completely described, so here we may skip those parts. 

2   Field Orientation Conditions and Flux Estimation 

The flux and torque decoupling needs to transform the stator flux, current and voltage 
vectors from (a, b, c) reference frame into (q-d,s) reference frame and than to station-
ary and synchronous reference frames, [17]. In the next equations, the following nota-
tion is used: v –voltage, i-current, λ-flux, r-resistance, L-inductance, ω-velocity; the 
sub-indices are r- rotor, s-stator, q, d- components of the (q, d, 0) model; the upper 
index s means stator reference frame and e means synchronous reference frame; the 
prime means relative rotor to stator value. The Fig. 1a illustrates the current and volt-
age vector representations in stator and rotor synchronous frames and also the mag-
netic field orientation, where the rotor flux vector is equal to the d-component of the 
flux vector, represented in a synchronous reference frame (λ’e

dr=λr), which is aligned 
with the d-component of the current in this frame. For more clarity, the current and 
flux orientation in the synchronous reference frame are shown on Fig. 1b. So, the field 
orientation conditions are:  

´ ´ '0; 0;e e
qr qr r drp eλ λ λ= = = λ

e

 (1) 

Taking into account that the rotor windings are shortcut, (the rotor voltage is zero), 
also the given up field orientation conditions, and the (q, d, 0) model, [17], we could 
write:  

' ' ' ' ' '0 ( ) ;0r qr e r dr r dr dr
e e er i r i pω ω λ λ= + − = +  (2) 

Using the (q, d, 0) model, [17], for the q-component of the rotor flux, it is obtained: 

' ' ' ' ' '0; ; ( / )e e
qr m qs r qr r lr m qr m r qs
e e eL i L i L L L i L L iλ = + = = + = − ' ;  (3) 

Using (1) and (3), the torque equation [17] could obtain the form: 
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'
'

3
2 2

em
em dr qs

r

eLPT i
L

λ=  (4) 

The equation (4) shows that if the flux of the rotor is maintained constant, so the torque 
could be controlled by the q-component of the stator current in synchronous reference 
frame. From the second equation of (2), taking into account (3) it is easy to obtain the 
slipping angular velocity as: 

' ' '( / )( /e e
e r r m r qs drr L L i )ω ω λ− =  (5) 

The final equations (3), (4), (5) gives us the necessary basis for a direct decoupled field 
oriented (vector) control of the AC motor drive, where (see Fig. 1b) the q- component 
of the stator current produced torque and its d-component produced flux. Following 
[17], we could write: 

( ) ( )(1 / ) ; (1 / )s s s s s s
qs qs s qs ds ds s dsp v r i p v r iλ λ= − = −  (6) 

' '( ) / ; ( )s s s s s s
qr qs s qs m dr ds s ds mi L i L i L iλ λ= − = − / L  (7) 

( ) ( )´ 2' ' ' ' ' ' '( / ) ; ( / ) ; [ ( / )s s s s s s
qr r m qs s qs dr r m ds s ds s s m rL L L i L L L i L L L Lλ λ λ λ= − = − = − ]  (8) 

Now it is easy to compute the angle needed for field orientation, the rotor flux, and the 
sin, cos - functions of this angle, needed for flux control, torque estimation, and coor-
dinate transformations, which are: 

' ' 2 ' 2 ' ' ' '( ) ( ) ; / ; cos /s s s s
r qr dr qr r drsin rλ λ λ ρ λ λ ρ λ= + = = λ  (9) 

'
'

3
2 2

em
em r qs

r

LPT i
L

λ=  (10) 

 

 
 
Fig. 1. Vector diagrams of the stator current, voltage and the rotor flux. a) The current and volt-
age vector representations in stator and in rotor synchronous reference frames. b) The stator 
current and the rotor flux vector representations in synchronous reference frame 
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3   General Control Scheme and NN Realization of the IM Control 
 

A general block diagram of the direct vector control of the Induction Motor drive is 
given on Fig. 2a. The direct control scheme contains three principal blocks. They are: 
G1, G2, G3 – blocks of PI controllers; block of coordinate (abc) to (q-d,s,e) transfor-
mation, [17]; block of vector estimation, performing the field orientation and the 
torque, flux and angle computations (see equations (9), (10)); block of inverse (q-d,s,e) 
to (a,b,c) transformation; block of the converter machine system and induction motor. 
The block of the converter machine system contains a current three phase hysteresis 
controller; a three phase bridge ASCI DC-AC current fed inverter; an induction motor 
model; a model of the whole mechanical system driven by the IM ((2/P)J(d�r/dt)=Tem-
TL, where J is the moment of inertia, TL is the load torque). The block of vector estima-
tion performed rather complicated computations. The Fig. 2b illustrates the flux and 
angle estimation for field orientation, computing (6), (8), (9). The rotor flux computa-
tions block (see Fig. 2b) performs computations given by (6), (8), illustrated by the 
Fig. 2c. The rotor flux, the angle, and the sin, cos -functions computations are given by 
equation (9). The torque estimation is computed by equation (10). 

3.1   Neural Network Realization of the Control Scheme 

The simplified block-diagram of the direct neural vector control system, given on 
Fig. 2a is realized by nine FFNNs. We will describe in brief the function, the topology 
and the learning of each FFNN. The main contribution here is the introduction of the 
neural P/PI velocity, flux and torque controllers which are capable to adapt the control 
system to load changes.  

 
The FFNN1. The first NN1 is an angular velocity neural PI controller with two inputs 
(the velocity error, and the total sum of velocity errors) and one output (the torque set 
point). The weights learning is done in real – time using the Backpropagation (BP) 
algorithm. The FFNN1 function is given by the following equation: 

 

  
Fig. 2. Block diagrams. a) General BD of a direct IM vector control. b) BD of the vector estima-
tion computations. c) BD of the flux estimation computations 
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*( ) [ ( ) ( ) ( )]sum
p vel i velT k g k e g k e kϕ= +  (11) 

Where: gp and gi are proportional and integral FFNN1 weights; � is a tanh activation 
function; evel is a velocity error; T* is the torque set point – output of the FFNN1. The 
integration sum of errors is: 

0
( ) ( )

n
sum
vel vel

k
e k e k

=

= ∑  
 

(12) 

Where n is the total number of iterations. The BP algorithm for this FFNN1 is: 
2

2

( 1) ( ) ( )[1 ( *( )) ] ( )

( 1) ( ) ( )[1 ( *( )) ] ( )
p p vel vel

sum
i i vel vel

g k g k e k T k e k

g k g k e k T k e k

η

η

+ = + −

+ = + −
 

 
(13) 

 
The FFNN2.The second FFNN2 is a torque neural P controller with one input and one 
output (the torque error and the stator q-current set point). The function and the real-
time BP learning of this FFNN2 are given by: 

* ( ) [ ( ) ( )]e
qs p Ti k g k e kφ=  (14) 

* 2( 1) ( ) ( )[1 ( ( )) ] ( )e
p p T qs Tg k g k e k i k e kη+ = + −  (15) 

Where: gp is a proportional weight; � is a tanh activation function; eT is a torque error; 
� is a learning rate parameter; iqs

e*is a current set point - output of FFNN2. 
 
The FFNN3. The third FFNN3 is a flux neural PI controller with two inputs and one 
output (the flux error and its sum, and the stator d-current set point). The function and 
the real-time BP learning of this NN3 are given by: 

*( ) [ ( ) ( ) ( )]e s
ds p flux i fluxi k g k e g k e kϕ= + um

i
i

 (16) 
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* 2
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e
p p flux ds flux
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i i flux ds flux
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g k g k e k i k e k

η

η

+ = + −

+ = + −
 

 
(17) 

Where: gp and gi are proportional and integral FFNN3 weights; � is a tanh activation 
function; eflux is a flux error; � is a learning rate parameter; ids

e* is a current set point - 
output of FFNN3. The integration sum of errors during n iterations is: 

0
( ) ( )

n
sum
flux flux

k
e k e k

=

=∑  
 

(18) 

 
The FFNN4. The fourth FFNN4 is a torque off-line trained neural estimator (realizing 
(10) equation computation) which has two inputs and one output (the rotor flux, the 
stator q-current, and the estimated torque). The topology of this FFNN4 is (2-10-1).  
 
The FFNN5. The fifth FFNN5 performed a stator current (a,b,c) to (q-d,s,e) transfor-
mation, [17]. The FFNN5 topology has five inputs (three i i  –stator currents; 

sin�, cos�), two outputs ( i – stator currents) and two hidden layers of 30 and 20 

neurons each (5-30-20-2).  

, ,as bs cs

,e e
qs ds
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The FFNN6. The sixth FFNN6 performed an inverse stator current (q-d,s,e) to (a,b,c) 
transformation using the transpose of the transformation matrix, [17]. The FFNN6 
topology is (4-30-10-3) (four inputs -two  –stator currents; sin�, cos�; three out-

puts- – stator currents; two hidden layers of 30 and 10 neurons).  

,e e
qs dsi i

, ,as bs csi i i
 
The FFNN7. The seventh FFNN7 performed rotor flux estimation using equation (9). 

The rotor (q-d,r) flux components ,s s
qs dsλ λ  are previously computed using equation (6) 

(see Fig. 2c), and they are inputs of FFNN7. The other two inputs are the stator cur-

rents: ,s s
qs dsi i . The FFNN7 output is the rotor flux: '

rλ . The NN7 topology is (4-30-

10-1).  
 
The FFNN8 and FFNN9. The FFNN8, and FFNN9 are similar to FFNN7 and per-
formed separately the q and d rotor flux components estimation using equations (8). 
The FFNN8, FFNN9 topologies are: (2-10-5-2). The values of sin�, cos�, (9), needed 
for the coordinate transformations are obtained dividing the outputs of NN8, NN9 by 
the output of NN7. 

All the FFNN4-9 are learned by 2500 input-output patterns (half period) and gener-
alized by another 2500 ones (the other half period). The FFNN4-9 learning is off-line, 
applying the Levenberg-Marquardt algorithm [18], [19] during 61, 29, 32, 35, 47 and 
49 epochs of learning, respectively. The final value of the MSE reached during the 
learning is of 10-10 for all the FFNN4-9. 

4   Graphical Results of the Control System Modeling 

The parameters of the IM used in the control system modelling are: power- 20Hp; 
nominal velocity – N = 1800 Rev.pm; pole number P = 4; voltage- 220 volts; nominal 
current – 75 A; phase number 3; nominal frequency 60 Hz; stator resistance rs = 0.1062 
Ohms; rotor resistance referenced to stator rr’= 0.0764 Ohms; stator inductance Ls = 
0.5689. 10-3 Henry; rotor inductance referenced to stator Lr’ = 0.5689. 10-3 Henry; 
magnetizing inductance Lm = 15.4749. 10-3 Henry; moment of inertia J = 2.8 kg.m2. 
The control system modeling is done changing the load torque in different moment of 
time. The Fig. 3a, b showed the angular velocity set point vs. the IM angular velocity 
in the general case of velocity control and particularly with load torque changes (PI 
and NN control). The results show that the angular velocity control system has a fast 
speed up response and satisfactory behaviour in the case of load change. The Fig. 4 a, 
b showed the flux graphics of control system with hysteresis control applying the PI 
control scheme and NNs. The results show a faster and better response of the neural 
system which tried to maintain the flux constant in the case of load changes. The Fig. 5 
a, b; Fig. 6 a, b; Fig. 7 a, b, c, d show the torque and current graphics with hysteresis 
control in the same cases and load changes.  
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Fig. 3. Graphical results of the IM velocity control. a) General graphics of the angular velocity 
control; b) Graphical results of angular velocity control with load changes 
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Fig. 4. Graphical results of the IM flux control. a) Graphics of the flux classical control vs. flux 
neural control; b) Graphics of both (classical vs. NN) flux control with load changes 
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Fig. 5. Graphics of the torque control with load changes. a) Graphics of the torque classical and 
neural control; b) Graphics of both torque control (PI control vs. neural control) in the IM start 
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Fig. 6. Detailed graphics of the torque control using both control schemes and load changes. a) 
Processes from 0.7 sec. to 1.1 sec; b) Processes from 1.2 sec. to 1.6 sec 
 

 

 
 
Fig. 7. Graphical results of (a,b,c) stator currents during neural control and load changes for 
periods of time of (0.7-1.2 sec.) and (1.2-1.7 sec.). a), c) Current set points; b), d) Currents 
 

The Fig. 7 a, b, c, d shows the (a,b,c) stator currents set points and the stator cur-
rents of hysteresis controlled system using neural control schemes in load changes 
conditions for different time intervals. The Fig. 8 a, b shows the same stator current set 
points and currents during the start of the IM. The results show a good performance of 
the neural control system at all. 
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Fig. 8. Graphical Results of (a,b,c) Stator Currents During the Start of the IM. a) Current Set 
Points; b) Currents 

5   Conclusions 

The paper proposed a complete neural solution to the direct vector control of three 
phase induction motor including real-time trained neural controllers for velocity, flux 
and torque, which permitted the speed up reaction to the variable load. The basic equa-
tions and elements of the direct FOC scheme are given. The control scheme is realized 
by nine feedforward neural networks learned with data taken by PI-control simula-
tions. The NN PI or P adaptive neural controllers are learned on-line using the BP 
algorithm. The complementary blocks which realized coordinate and computational 
operations are learned off-line using the Levenberg-Marquardt algorithm with a 10-10 
set up error precision. The graphical results of modelling shows a better performance 
of the adaptive NN control system with respect to the PI controlled system realizing 
the same computational control scheme with variable load. 
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Abstract. In this paper we present an approach to detect and diagnose
single or multiple faults in power transmission networks using Bayesian
Networks (BNs). A BN model of the power system is generated by
taking in account the relationships existing between the nodes in the
network and the primary and secondary protection elements. The diag-
nostic system is implemented by using two different inference algorithms:
a first-order logic theorem prover (used by the Independent Choice Logic
framework), and an approximate inference method based on rejection
sampling and likelihood weighting sampling. The input to the diagnostic
system is a set of discrete alarms coming from the status of breakers at
the moment of failure. The output of the system is a set of explanations
to the observed symptoms. In both cases, the theorem prover and the
approximate method, the main interest lies on the most likely explana-
tion. The approach is tested by diagnosing faults in a simulated electrical
power network with 12 nodes and 32 protection breakers.

1 Introduction

The purpose of monitoring a process or system operation is to reduce the oc-
currence of sudden or dangerous shutdowns, equipment damage, and personal
accidents and to assist in the operation of the maintenance program. In any of
these cases, appropriate and timely action becomes crucial, hence the impor-
tance of developing algorithms that gives an optimal trade-off between finding
an exact solution and finding it quickly.
It is no surprise that the problem of process monitoring and fault diagnosis has
become an important area of research in the Artificial Intelligence community.
In general terms, a monitoring system for process operation should consider not
only early detection and diagnosis, but also robustness, adaptability and reason-
able storage and computational resources.
As the need to solve more complex real world decision problems has increased,
the adequate treatment of uncertainty has become fundamental. This is espe-
cially true in large, highly interconnected systems such as power transmission
networks, where for a given fault scenario, hundreds or thousands of alarms are
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generated. The complexity and high degree of interconnection present in elec-
trical power networks, can lead to an overwhelming array of alarms and status
messages being generated as a result of a disturbance. This can have a negative
impact on the speed with which operators can respond to a contingency, and
therefore it becomes necessary to use automated tools that can help the operator
to speed up the resolution process.
In the last decade, different AI algorithms have been proposed for solving the
diagnosis problem in power networks: alarm processing aids have relied on the
use of Expert Systems [4,5], Neural Networks [10], Fuzzy Logic [1] or Petri Nets
[9]. More recently, the need to develop more powerful approaches has motivated
the development of systems based on Bayesian Networks [11,12] that can deal
very efficiently with uncertainty inherent to power systems. BNs are powerful
graphical probabilistic models that encode in a compact way multivariate prob-
ability density functions.
In this paper we describe an approach to automate fault diagnosis in electrical
power transmission networks using a discrete Bayesian network formalism. In
order to perform the inference within the BN model, two different approaches
are used: a theorem prover for a probabilistic first-order logic framework, and an
approximate method based on rejection sampling and likelihood weighting. The
general idea is to explore the possibility of having a diagnostic system able to
perform online diagnosis. The input to the diagnostic system is a set of discrete
alarms representing the status of protection breakers. The system generates ex-
planations consistent with the discrete observations: each explanation contains
the hypothesized nodes in a faulty state. We show results from experiments in
a simulated power network with 12 nodes and 32 protection breakers.
The paper is organized as follows: Section 1 provided a general introduction.
In section 2 we describe the necessary background regarding BNs and inference
methods. In Section 3 we develop a case study. In section 4 we analyze the related
work, and finally section 5 sets forth our conclusions.

2 Background

2.1 Bayesian Networks

BNs are directed acyclic graph (DAG) in which nodes represent random vari-
ables and arcs determine the probabilistic information needed to specify the joint
probability distribution of all network variables, as shown in figure 1. In this BN
model, every node has a set of discrete states and the functional relationships
between power network nodes and protection breakers nodes are specified by the
arcs. To specify the probability distribution of a BN, one must provide also the
prior probabilities of all root nodes, and the conditional probabilities of the rest
of the nodes given all the possible combinations of their direct predecessors (see
for instance table 1).

A BN constitutes an efficient representation of a joint probability distribu-
tion over domain variables. Formally, it can be stated in this way: given a set
of random variables X1, X2, . . . Xn , each of which has a domain Dom[Xi] of
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Fig. 1. Bayes network representation of the power network

Table 1. Probability distribution for breaker Br12 node in the power network

Bus 1 Ok Fault

Bus 2 Ok Fault Ok Fault

Normal 1 0.9 0 0

Open 0 0.1 0.95 0.95

Fail 0 0 0.05 0.05

possible values, then the full joint distribution of a BN is specified by the chain
rule:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Parents(Xi)). (1)

BNs allow causal representations of observation dependencies as well as effi-
cient algorithms for probabilistic inference; as a result, they are useful in model-
ing situations in which causality plays an important role but there is incomplete
information. In these cases, BN’s provide a potentially useful probabilistic rep-
resentation. To perform inference over BNs, there are different methods such
as: exact methods, first-order logic theorem provers and approximate methods.
Exact methods allow an accurate calculation of probabilities, but are not ade-
quate for large BN models due to excessive computing time. Theorem provers
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are adequate when BN models are translated to first-order logic as in the In-
dependent Choice Logic (ICL) framework [7]. Theorem provers have been used
in the past with large BN models [2]. Approximate methods take samples from
BNs considering the existing evidence. These methods are more adequate to
apply over large BN models.

Approximate Inference Methods. The central idea is to sample the BN
model N times in order to obtain a posterior probability distribution P̂ and
show whether there is a convergence of estimated probabilities to actual ones.
The sampling methods used in the diagnosis scheme are:

Rejection Sampling. In this method the probability P̂ (X|e) is estimated from
samples agreeing with evidence e.

function Rejection Sampling (X, e, bn, N) returns an approximation to P (X|e)
N[X] ← a vector of counts over X, initially zero.
for j = 1 to N do

x ← PriorSample(bn)
if x is consistent with e then

N[x] ← N[x] + 1 where x is the value of X on x
return Normalize N [X]

Likelihood Weighting. This method relies on fixing evidence variables, sam-
pling only non-evidence variables, and weighting each sample by the likelihood
according to evidence.

function WeightedSample (bn, e) returns an event and a weight
x ← an event with n elements; w ← 1
for j = 1 to n do

if Xi has a value xi in e
then w ← w × P (Xi = xi|Parents(Xi))
else xi ← a random sample from P (Xi = xi|Parents(Xi))

return x, w

function LikelihoodWeighting (X, e, bn, N) returns an approximation to P (X|e)
W[X] ← a vector of counts over X, initially zero.
for j = 1 to N do
x, w ← WeightedSample(bn)

W[x] ← W[x] + w where x is the value of X on x
return Normalize W [X]

2.2 The Independent Choice Logic.

The Independent Choice Logic is used for modeling multiple agents acting un-
der conditions of uncertainty. ICL was proposed and developed by David Poole
[7]. ICL is inspired by game theory, Bayesian networks, probabilistic Horn ab-
duction, Markov decision processes, agent modeling and dynamical systems. In
ICL, knowledge representation is provided by a symbolic modeling language
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which guides the user how to model the domain. In order to use an ICL frame-
work for fault diagnosis, it is necessary to represent the power network with a
logical model.

System representation in the ICL framework. To illustrate the process
of representing the power transmission network in the ICL framework, consider
the simplified power network shown in figure 2.

Fig. 2. Single line diagram of a small power network

The first step is constructing the BN to model the dependency between
network elements. The random variables without parents are the nodes or buses,
and for simplicity, they are assumed to be the only source of faults. The breakers
have two parents (buses), because they are the main protection for one bus and
the backup protection for another one - for instance breaker Br12, is the main
protection for bus1 and the backup protection for bus2 (see figure 1). This scheme
of backup protection allows the isolation of a bus fault, even in the event of a
main breaker malfunction. From the BN, the following translation procedure
is used to model the power network in the ICL framework. The procedure is
similar to the one developed in [13].

1. The random variables with no parents are encoded as random choices.
For instance, Bus 1 is represented as:

random([bus1(ok):0.9,bus1(faulted):0.1])

The last representation states that Bus1 has a 0.9 probability to be in normal
state and 0.1 probability to be in a faulted state. Prior probabilities may be
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estimated by a human expert or extracted from complete reliability methods.

2. For each random variable Bri(V ) with n parents, there is a rule of the form:

Bri(V ) ← bus1(V1) ∧ · · · ∧ busn(Vn) ∧ cBri(V, V1, . . . , Vn)

The intended interpretation of cBri(V, V1, . . . , Vn) is that Bri has a value V
because bus1 has value V1, . . ., and busn has value Vn. For instance, the rule
for Breaker Br12 is:

Br12(StBr) ← bus1(StB1) ∧ bus2(StB2) ∧ cBr12(StBr, StB1, StB2)

3. For each combination of the values of arguments in cBri(V, V1, . . . , Vn) vari-
ables, there is an assertion as a random choice. This step is similar to filling
conditional probability tables for a BN.

Once the power network BN model has been translated to ICL, a theorem prover
is applied to generate explanations (diagnoses) which are consistent with the set
of observations. The explanations contain a set of suspicious faulty elements in
the power network.

3 Case Study

The case study is the diagnosis of faults in a 12-buses power transmission net-
work. This is a portion of the network described in [3]. The single line diagram
of the tested transmission network is shown in figure 3. The system consist of 12
buses, 16 lines and 32 breakers. The BN representation for the power network is
shown on figure 4.

We implement two different methods for inference in BNs, to test the per-
formance of each one. In the first implementation we use a probabilistic logic
representation (ICL) with inference computed by a theorem prover and in the
second we use an implementation of the BN on MatLab with inference computed
by approximate methods. Single and multiple faults were considered with clean
evidence (complete information given by the correct status of protection break-
ers) and noisy evidence (missed information of some breakers and fail-to-open
status in main breakers). Every fault scenario was repeated 10 times for both
implementations and average time was recorded.When using ICL representa-
tion, most likely explanation was used, and in all cases the correct diagnosis
was found. In the other case, with approximate inference algorithms, time of
diagnosis was recorded when correct diagnosis probability exceeded a 0.5 value
threshold. To run the experiments we use a 800 MHz AMD Turion 64 computer
with Windows XP operating system and 384 MB of RAM. The approximate
inference algorithms were implemented in MatLab v7.2, and the ICL code was
taken from [8].

The results of experiments show that approximate method by Likelihood
Weighting sampling outperform in most cases the other two inference algorithms
(see tables 2, 3, 4, and 5). In the other hand, Rejection Sampling performance
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Fig. 3. Power Network single line diagram

Fig. 4. BN model of the power network
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seems competitive when using clean evidence, but is not adequate when noisy
evidence is given, as it shows poor results. ICL approach performance followed
closely behind LW method, but started to degrade when more than 3 faults
were present at the same time. Another interesting point is that extreme proba-
bilities of failure plays an important role when using sampling methods, because
more samples have to be generated in order to achieve steady probabilities and
consequently running time for a reliable diagnosis increases proportionally. In
other experiments we perform (results not shown here) we have found that in
this case ICL is a good alternative of choice.

Table 2. Runtime (seconds) for different implementations of BNs in a single fault
scenario. Where RS means Rejection Sampling, LW is Likelihood Weighting and ICL
is Independent Choice Logic. In all cases correct diagnosis was found for the three
methods, and LW was the fastest approach

Faulted without Noise with Noise

Node RS LW ICL RS LW ICL

2 0.047 0.013 0.305 0.039 0.002 0.266

6 0.052 0.006 0.174 0.034 0.006 0.141

9 0.048 0.006 0.79 0.063 0.005 0.77

11 0.041 0.013 0.17 0.075 0.002 0.142

Table 3. Runtime (seconds) for different implementations of BNs in a scenario with
two faults. Where RS means Rejection Sampling, LW is Likelihood Weighting and
ICL is Independent Choice Logic. In all cases correct diagnosis was found for the three
methods, and LW was the fastest approach

Faulted without Noise with Noise

Nodes RS LW ICL RS LW ICL

2,3 0.175 0.025 0.638 2.589 0.025 0.47

8,9 0.036 0.023 2.167 0.042 0.030 1.586

3,7 0.039 0.025 0.458 0.036 0.025 0.287

1,10 0.030 0.017 3.928 0.3.35 0.023 3.344

4 Related Work

The closest works to ours are stated in [11,12]. In [11] Bayesian networks with
Noisy-or and Noisy-and are used to avoid the specification of big conditional
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Table 4. Runtime (seconds) for different implementations of BNs in a scenario with
three faults. Where RS means Rejection Sampling, LW is Likelihood Weighting and
ICL is Independent Choice Logic. In all cases correct diagnosis was found for the three
methods, and LW was the fastest approach. The performance of RS method was very
poor with noisy evidence and was omitted

Faulted without Noise with Noise

Nodes RS LW ICL LW ICL

2,3,4 0.223 0.020 0.575 0.234 0.322

7,8,9 0.364 0.255 3.233 0.227 0.892

1,3,7 0.519 0.152 1.049 0.275 0.514

5,8,12 0.275 0.152 1.00 0.230 0.600

Table 5. Runtime (seconds) for different implementations of BNs in a scenario with
three faults. Where RS means Rejection Sampling, LW is Likelihood Weighting and
ICL is Independent Choice Logic. In all cases correct diagnosis was found for the three
methods, and LW was the fastest approach. The performance of RS method was very
poor with noisy evidence and was omitted

Faulted without Noise with Noise

Nodes RS LW ICL LW ICL

1,2,3,4 0.670 0.995 1.106 1.320 0.409

7,8,9,10 1.378 4.945 8.430 0.227 2.666

2,6,8,10 0.970 0.600 16.028 0.770 4.902

3,7,9,12 0.530 0.509 3.603 0.881 1.006

probability tables. In our case, conditional probability tables are bounded be-
cause we just consider two possible states in power network nodes (normal and
faulted) and three states on breaker devices (normal, open and faulted). They
implemented different models for elements of the power network, such as trans-
formers, busbars and transmission lines, whereas we just consider a single model
for the whole network. Another difference is that they apply an algorithm to
verify and learn parameters (probabilities) in the models, while in this work this
feature is not considered. In [12] a BN model similar to the one presented here
is proposed but in this case the main difference is that they consider other pos-
sibilities, such as failures on the transmission lines. In this work a MonteCarlo
approximate inference algorithm is used, although no specification of running
times for the analyzed fault scenarios are given. The size of power network used
in their experiments is similar to our network.
Although in both papers realistic cases were tested, no further analysis is made
about the quality of evidence or the performance when multiple faults are present
on the system.
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5 Conclusions

A Power networks fault diagnosis approach, based on Bayesian networks has
been presented. We have tested the method on a power network with realistic
proportions. We have also implemented two different inference methods which
offer different strengths and weaknesses under different circumstances. Rejection
Sampling showed a good performance when clean evidence was present, whereas
likelihood weighting was the best method with and without noisy evidence. In
the other hand, ICL method based on a theorem prover seems to be more appro-
priate when extreme probabilities of failure are used and approximate methods
increase in a significant way their running times.
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Abstract. The paper propose a new Recurrent Neural Network (RNN) model for 
systems identification and states estimation of a highly nonlinear wastewater 
treatment bioprocess using the recursive Levenberg-Marquardt learning algo-
rithm. The estimated states of the RNN model are used for an indirect adaptive 
trajectory tracking sliding mode control. The applicability of the proposed con-
trol scheme is applied for continuous wastewater treatment bioprocess model, 
taken from the literature, where a good convergence and a low Mean Squared Er-
ror of reference tracking is achieved. 

1   Introduction 

The rapid growth of available computational resources led to the development of a 
wide number of Neural Networks (NN)-based modelling, identification, prediction and 
control applications, [1], [2]. The main network property namely the ability to ap-
proximate complex non-linear relationships without prior knowledge of the model 
structure makes them a very attractive alternative to the classical modelling and control 
techniques. The neural networks and the neuro-fuzzy based techniques were success-
fully applied in several engineering areas as: direct model reference adaptive control of 
MIMO nonlinear processes, [3]; modeling and control of wastewater treatment proc-
ess, [4]; neuro-fuzzy control of robotic exoskeleton, [5]. The proposed in the literature 
neural control gives a good approximation of the nonlinear plants dynamics, better 
with respect to the other methods of control, but the applied static NNs have a great 
complexity, and the plant order has to be known. The application of Recurrent NNs 
(RNN) could avoid these problems and could reduce significantly the size of the ap-
plied NNs.  

In some early papers, [6], [7] the state-space approach is applied to design a RNN 
in a universal way, defining a Jordan canonical two or three layer RNN model, named 
Recurrent Trainable Neural Network (RTNN) and the Backpropagation (BP) algorithm 
of its learning. Then this general RTNN approach is extended using the Levenberg-
Marquardt (L-M) algorithm of learning, [8], [9], applied for direct neural control of 
mechanical and biotechnological plants. In the present paper we go ahead applying an 
indirect adaptive sliding mode control of the same biotechnological plant, using RTNN 
identifier learned by the L-M learning algorithm, executed in real-time, [9]. 
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2   RTNN Topology and Levenberg-Marquardt learning algorithm 

A Recurrent Trainable Neural Network model and the dynamic BP learning algo-
rithm, together with the explanatory figures and stability proofs, are given in [7]. The 
RTNN topology (see Fig. 1), given in vector-matrix form is described by the following 
equations: 

 

  (1) ( 1) ( ) ( );    ( );| | 1i iX k JX k BU k J block diag J J+ = + = − <
 ( ) [ ( )]Z k X kϕ=  (2) 

 ( ) [ ( )]Y k CZ kϕ=  (3) 
 

where: Y, X, and U are, respectively, output, state and input vectors with dimensions l, 
n, m; J is a (nxn)- state block-diagonal weight matrix; Ji is an i-th diagonal block of J 
with (1x1) dimension. The inequality in equation (1) represents the local stability con-
ditions, [7], [8], imposed on all blocks of J; B and C are (nxm) and (lxn)- input and 
output weight matrices; ϕ[.] is vector-valued sigmoid or hyperbolic tangent-activation 
function; k is a discrete-time variable. The stability of the RTNN model is assured by 
the activation functions and by the local stability condition (1).  

The recursive L-M algorithm [8]-[12] is derived by incorporating a regularization 
term to the recursive prediction error algorithm which becomes: 

 

  (4) ( ) ( ) ( 1) (1 ( ))( [ ( )] [ ( )] )
w

T
NR k k R k k Y W k Y W k Iα α= − + − ∇ ∇ + ρ

ρ

 
Unfortunately, the inversion matrix lemma is now no longer practical and one par-

tial but effective solution is to add a small constant ρ to one of the diagonal elements of  
 at time as proposed in [11], [12]. The equation (4) can then be 

expressed as: 

[ ( )] [ ( )]TY W k Y W k∇ ∇

 

  (5) ( ) ( ) ( 1) (1 ( ))( [ ( )] [ ( )] )
w

T
NR k k R k k Y W k Y w k Zα α= − + − ∇ ∇ +

 

 
 

Fig. 1. Recurrent neural network topology (1,2,1). 
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where
wNZ  is a  diagonal matrix with one non-zero diagonal element which 

changed from iteration to iteration as follows: 
wN N× w

N>
 

  (6) 1,  when : mod( ) 1,  and :ii w wz i k N k= = +
 0,  otherwiseiiz =  (7) 
 
With this modification the expression (4) can be re-written in a concise form as: 

 

  (8) 1( ) ( ) ( 1) (1 ( ))( [ ( )] ( ) [ ( )])TR k k R k k W k k W kα α −= − + − Ω Λ Ω
 

where  is a [ ( )]w kΩ 2wN ×  matrix with the first column corresponding to 
 and the second column consist of a [ ( )]Y W k∇ 1wN ×  vector with one element set to 

1, in accordance with equations (9) and (10) above, as it is: 
 

 1 1 0[ ( )]
[ ( )] ,  and 

00 .... 1 .... 0

T
T Y W k

W k
ρ

−⎛ ⎞∇ ⎛ ⎞
Ω = Λ =⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠
⎟  (9) 

 
The matrix inversion lemma can now be applied to (8) leading to following recur-

sive Levenberg-Marquardt formulation: 
 

  (10) [ ( )] ( ) ( ) [ ( )] ( 1) [ ( )]TS W k k k W k P k W kα= Λ +Ω − Ω

 11( ) [ ( 1) ( 1) [ ( )] [ ( )] [ ( )] ( 1)]
( )

TP k P k P k W k S W k W k P k
kα

−= − − − Ω Ω −  (11) 

 

Typically the choice of α is in the limits: 0.95 1α< < . 
As the recursive L-M is based on the Newton method of optimization, it does not 

needs a stability proof. Next the given up topology and learning are applied for identi-
fication and sliding mode control of wastewater treatment bioprocess. 

3   Indirect Adaptive Sliding Mode Control Systems Design 

Based on the state and parameter estimations, performed by the RTNN identifier, 
we could propose the following indirect adaptive control scheme, depicted in Fig. 2. 
The block diagram of that control contained a RTNN identifier and a linear Sliding 
Mode Controller, designed using the estimated weight parameters.  

Let us suppose that the studied nonlinear plant possess the following structure:  
 

 ( 1)  ( ( ), ( ))p pX k F X k U k+ =  (12) 

 ( )  ( ( ))pY k G X kp=  (13) 
 

where: Xp(k), Yp(k), U(k) are plant state, output and input vector variables with dimen-
sions Np, L and M, where L=M is supposed; F and G are smooth, odd, bounded 

An Indirect Adaptive Neural Control of a Wastewater Treatment Bioprocess...     205



nonlinear functions. The linearization of the activation functions of the learned identi-
fication RTNN model, which approximates the plant (see equations (1) to (3)), leads to 
the following linear local plant model: 

 

 ( 1) ( ) ( )X k JX k BU k+ = +  (14) 

 ( ) ( )Y k CX k=  (15) 

 
where L=M, is supposed. 
 

 
 

Fig. 2. Block - diagram of the closed-loop system containing neural identifier and 
sliding mode controller. 

 
Let us define the following sliding surface with respect to the output tracking error: 

  (16) 
i=1

( 1) ( 1) ( - 1) ;  | | 1
P

iS k E k E k iγ+ = + + + <∑ iγ

where: S(.) is the sliding surface error function; E(.) is the systems output tracking 
error; γi are parameters of the desired error function; P is the order of the error func-
tion.  The additional inequality in (16) is a stability condition, required for the sliding 
surface error function. The tracking error in two consecutive steps is defined as: 

 

 ; ( ) ( ) - ( )E k R k Y k= ( 1) ( 1) ( 1)E k R k Y k+ = + − +  (17) 

where R(k) is an L-dimensional reference vector and Y(k) is an output vector with the 
same dimension. 

The objective of the sliding mode control systems design is to find a control action 
which maintains the systems error on the sliding surface which assure that the output 
tracking error reaches zero in P steps, where P<N. The control objective is fulfilled if: 

 

 ( 1) 0S k + =  (18) 

Now, let us to iterate (15) and to substitute (14) in it so to obtain the input/output lo-
cal plant model, which yields: 

 

  (19) ( 1) ( 1)  [ ( ) ( )Y k CX k C JX k BU k+ = + = + ]
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From (16), (17), and (18), it is easy to obtain: 
 

  (20) 
1

( 1) ( 1) ( 1) 0
P

i
i

R k Y k E k iγ
=

+ − + + − + =∑
 
The substitution of (19) in (20) gives: 
 

  (21) 
1

( 1) ( ) ( ) ( 1) 0
P

i
i

R k CJX k CBU k E k iγ
=

+ − − + − + =∑
 
As the local approximation plant model (14), (15), is controllable, observable and 

stable, see [7], the matrix J is diagonal, and L=M, the matrix product (CB) is nonsingu-
lar, and the plant states X(k) are smooth  non- increasing functions. Now, from (21) it 
is easy to obtain the equivalent control capable to lead the system to the sliding surface 
which yields: 

 

 ( ) 1

1
( ) ( ) ( 1) ( 1)

P

eq i
i

U k CB CJX k R k E k iγ−

=

⎡ ⎤= − + + + − +⎢ ⎥
⎣ ⎦

∑  (22) 

 
Following [13], the SMC avoiding chattering is taken using a saturation function 

inside a bounded control level Uo, taking into account plant uncertainties. So the SMC 
takes the form: 

 ( )
( ) ( )

( ) ( ) ( )
0

0 0

,                        
       

,     

eq eq

eq eq eq

U k if U k U
U k

U U k U k if U k U

⎧ <⎪= ⎨
− ≥⎪⎩

 (23) 

 
The proposed SMC cope with the characteristics of the wide class of plant model 

reduction neural control with reference model, defined by Narendra, [1], and repre-
sents an indirect adaptive neural control, given by Baruch, [7]. 

4   Description of the biological Wastewater Treatment Bioprocess 

Wastewater treatment is performed in an aeration tank, in which the contaminated 
water is mixed with biomass in suspension (activated sludge), and the biodegradation 
process is then triggered in the presence of oxygen. The tank is equipped with a sur-
face aeration turbine, which supplies oxygen to the biomass, and additionally changes 
its suspension into a homogeneous mass. After some period, the biomass mixture and 
the remaining substrate go to a separating chamber where the biologic flocks (biologic 
sludge) are separated from the treated effluent. The treated effluent is then led to a host 
environment. The aim is good settling of the biomass in the settler and high conversion 
of the entering organic material in the bioreactor (see Fig. 3). The main objective of the 
control system is to keep the recycle biomass concentration close to the reference sig-
nal, and this should be achieved in the presence of disturbances and measurement noise 
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acting on the recycle flow rate. A detailed description of all reactions arising in the 
bioreactor would lead to a high-order model of differential equations [14]. For the 
control strategy developed in this work a simplified reduced order model is sufficient, 
as far as it preserves the structural properties of the process, [15]. The model equations 
are derived using the mass balance of the bioreactor and the settler. 
 

 
 

Fig. 3. Biological wastewater treatment with settler. 
 
Mass balance to the bioreactor. The obtained equations are as follows: 

 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )in R R
d

F t F t F t
RX t S c t X t X

V V
μ

+⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

& t  (24) 

 
( ) ( ) ( )1( ) ( ) ( ) ( ),in in R

in
F t F t F t

S t S X t S S t
Y V V
μ

+
= − + −&  (25) 

 
where the state variables are: X(t), biomass concentration; S(t), the substrate measured 
by the Chemical Oxygen Demand (COD); V is the reactor volume; FR represents the 
recycle flow rate (manipulated variable), Fin is the influent flow rate; Sin is the influent 
substrate concentration (potential disturbance, also expressed as COD), and Y>0 is the 
yield coefficient. Here cd X denotes the decay rate of the biomass concentration (which 
is added in the model to simulate biomass mortality), with cd > 0 as the decay rate 
parameter. The variable μ(⋅) (specific growth rate) is modeled by a Mono-type equa-
tion: 
 

 
( ) ( )

( ( ))
( ) ( )

m

m

t S t
S t

K t S t
μ

μ =
+

 (26) 

 

where: μm(⋅) is the maximum growth rate and Km(⋅) is the half-saturation constant of 
biodegradable organic matter. It is the concentration of the substrate for which 

2mμ μ=  . Both parameters are subject to variations.  
 
Mass balance to the settler. It is supposed that none of the biomass is left in the efflu-
ent Fe of the settler (see the Fig. 3), so that the whole biomass in the clarifier is settled. 
The dynamics of the concentration of the biomass in the settler, XR (t), can be de-
scribed by the following mass balance equation: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )in R W R
R R

S S

F t F t F t F t
X t X t

V V
⎛ ⎞ ⎛ ⎞+ +

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

& X t  (27) 
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where: FW denotes the waste flow rate and Vs is the volume of the settler. We can ap-
proximate the settler behavior by: 
 

 ( ) ( ) ( )RX t q t X t=  (28) 
 

where the parameter q(t) is considered as continuously differentiable and bounded 
function with bounded inverse, bounded derivative, and q(t) >1 for all t ≥ 0. 

 
Process measurements. The sensor dynamics is modeled by: 
 

 ( ) ( ) ( ) ( )mm m RT X t X t X t n t= − + +&  (29) 
 

The bioprocess dynamics is corrupted by some white Gaussian noise n(t). The specific 
model, we consider for the simulations, is obtained after substitution of XR(t) from 
equation (28) into equation (24) and has the following form: 

 

 
( )( ) ( ) 1( ) ( , ( )) ( )

( )
in

R d
F tq t q t

RX t t S t c
q t V V

μ
⎛ ⎞−

= + − − +⎜ ⎟
⎝ ⎠

&& X t  (30) 

 
( ) ( ) ( )1 1( ) ( , ( )) ( ) ( )

( ) ( )
in in R

R in
F t F t F t

S t t S t X t S S t
Y t q t V V

μ
+

= − + −&  (31) 

 

Time-varying control reference. The control objective is to assure that the biomass 
concentration in the recycle flow tracks asymptotically a time-varying reference signal, 
which is proportional to the influent flow rate and it is assumed to be measurable: 

 

 ( ) ( )R ref ref inX t k F t=  (32) 
 

The specific model considered for process simulation is the system of nonlinear dif-
ferential equations (29), (30), (31), and the Monod-type equation (26), with constant 
parameters: 

 
  (33) 1,5.107 [l],  300 [mg COD /l], 1/12 [h]in mV S T= = =

 
The model uncertainties are taken into account by introducing time-varying pa-

rameters as: 
 ( ) 0.2 0.1sin(2 / 3 4 / 3)m t tμ π π= + + ; ( ) 90 30sin( / 2)mK t tπ= +  (34) 

 ( ) 0.6 0.1sin( / 3 / 3)Y t tπ π= + + ; ( ) 4 sin( / 6)q t tπ= + ; (35) 

 ( ) ( )( )-4=10 25 5 sin /12dc t tπ+ ⋅  (36) 
 

The control objective is to track the reference signal, given by the equation (32), 
where the parameters are as follows: 

 

 ;3 3.8 10 [mgh/l2]refk −= ∗ ( )6( ) 3 10 1 0.25sin /12inF t tπ= ∗ +  (37) 
 

An Indirect Adaptive Neural Control of a Wastewater Treatment Bioprocess...     209



The initial conditions are always set to:  
 

  (38) 3(0) 8 (mgCOD/l), (0) 11.4*10 (mg/l), (0) 0 (mg/l)R mS X X= = =
 

In order to overcome saturation of the RTNNs, the output and the input of the plant 
are scaled by the following procedure: 

  

( )11400 5700p my X= − ; ( )( )5 6*7.5 10 3 10R Conv m stabF U F⎡ ⎤⎡ ⎤= × + × −⎣ ⎦⎢ ⎥⎣ ⎦
X K  (39) 

 

where the scaling parameters are given by: Kstab= 3*10-3 , Fconv= 0.0038. These scale 
factors correspond to the range of the reference signal. Note that the variable U is the 
bioreactor input control signal, generated by one of the proposed control algorithms, 
while FR is the physical process input (the recycle flow rate). Analogous, yp is the 
scaled output of the bioreactor, while Xm is the real measured output. Consequently, 
the reference signal is also normalized following the same procedure (see equations 
(32) and (37). The reference signal is given by: 
 

 ( )( ) ( ) 11400 / 5700Rrefr k X k= −  (40) 

 

Hence, substituting (37), (44) into (32), and the obtained result in (39), the scaled ref-
erence signal is obtained as: 
 

 ( ) ( )0.5sin 12
kr k π=  (41) 

 
The inverse transformation of (46) and the physical bioprocess control signal are as: 
 

 ;5700 11400m pX y= + ( ) 80.5 1.71 10R pF U y= − ×  (42) 

 
Note that the recycle flow rate FR is a function of the control variable U, computed by 
the feedback control with respect to the estimated state and the feedforward control 
with respect to the scaled plant reference r(k). 

5   Simulation Results 

A graphical simulation results obtained with the described above wastewater treat-
ment biotechnological plant, obtained using the given up identification and sliding 
mode control methodology, are shown on Fig. 4. All simulations are performed using 
the following set of equations: the process description (29), (30), (31); the Mono-type 
equation (26); the time variable plant parameters (34)–(36); the plant output scaling 
equation (39); the scaled reference signal equation (41); the scaled plant input equation 
(42). In all simulations, the severe realistic conditions such as measurement noise are 
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taken into account by generating a stochastic signal added to the process input and 
output, both with variance 1200, which is commonly used to simulate noisy measure-
ments.  
 

 
 
Fig. 4. Graphical results obtained using Indirect SMC and L-M algorithm a) Comparison be-
tween the plant output and the reference signal of the control system; b) The control signal; c) 
System Identification; d) Same as c), but during the first 2 hours. e) States of the plant; f) MSE 
of control obtained during 20 simulations; g) MSE of identification during 25 epochs; h) The 
MSE of indirect sliding mode control. 
 

The variance chosen corresponds to 10% noise on the data. The process is simu-
lated over a period of 50 hours, which gives an idea about its periodic behavior (a 
typical period is about 24 hours) and the period of discretization is set to T0=0.01h (it 
is 1 hour of the process time). The parameter used is α=0.95. The activation functions 
of the hidden and output network layers are hyperbolic tangents. The identification 
RTNN has topology (1, 2, 1). The results show a good convergence of the system 
output to the desired trajectory after approximately 1.5 h and a good filtration of the 
noise which makes a MSE% reduction up to 0.5%. The behavior of the control system 
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in the presence of 10% white Gaussian noise on the plant output could be studied ac-
cumulating some statistics of the final MSE% (ξav) for multiple run of the control pro-
gram which results are given on Table 1 for 20 runs. The mean average cost for all 
runs (ε) of control, the standard deviation (σ) with respect to the mean value and the 
deviation (Δ) are given by the following formulas: 

 

 21 1
1 1

;    ;     =
k k

n n

av i avn nk i
ε ξ σ ξ

= =
= Σ = Σ Δ Δ −ε  (43) 

  
Where k is the run number and n is equal to 20.  

The mean and standard deviation values of process control are respectively: 
 
 1.3324 %;     0.0719 %ε σ= =  (44) 

 
Table 1. Final MSE % of control (�av) for 20 runs of the control program. 

 

No. 1 2 3 4 5 6 7 8 9 10 
MSE 1.322 1.302 1.468 1.342 1.422 1.402 1.342 1.268 1.314 1.386 
No. 11 12 13 14 15 16 17 18 19 20 

MSE 1.228 1.342 1.222 1.348 1.214 1.341 1.244 13.42 1.382 1.434 

6   Conclusions 

In this paper a RTNN model and a dynamic Levenberg-Marquardt learning algo-
rithm are proposed to be applied for identification and state estimation of a nonlinear 
bioprocess plants. The proposed RTNN model has a Jordan canonical structure, which 
permits to use the generated vector of estimated states directly for process control. The 
obtained states are used to design an indirect sliding mode control law. It performs 
very well under restrictive conditions of periodically acting disturbances, parameter 
uncertainties and inevitable sensor dynamics. The simulation results, obtained with a 
continuous wastewater treatment bioprocess plant model, taken from the literature, 
confirm the applicability of the proposed identification and control methodology. 
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Abstract. In this article, the usage of artificial neural networks for the marble’s 
cutting process simulation by a hydroabrasive suspension waterjet, which pres-
sure has been reduced to 30 MPa, are presented. A triple layer neural network of 
the perceptron type, which is taught by the errors backward propagation algo-
rithm, has been applied. The article provides detailed description of neural net-
work. This neural network simulates the marble treatment process and predicts 
its efficiency due to given parameters. Impact of the most important parameters, 
as pressure, traverse speed, abrasive flow rate, length and diameter of nozzle was 
shown. The process parameters, which allow to achieve the maximum cut’s 
depth have been determined. 

1   Introduction 

In the article refers the simulation model cutting of hydroabrasive suspension waterjet 
cutting process of marble [3]. Laboratory investigations were carried out on test stand 
[4] has been built from two containers and four independent hydraulic branches, which 
enable an adjustment of the basic flow parameters. Each branch consists of the follow-
ing valves: a cut-off valve, a throttle valve, a non-return valve and a manometer. An 
overflow valve performs the function of an element preventing an excessive increase 
of pressure. It is set at the pressure of 30 MPa.  
A hydraulic monitor P26 type is the source of a high pressure. It is made on the basis 
of elements of a plunger pump made by an WOMA company. It makes it possible to 
obtain the maximum pressure of 75 MPa with the rate of water flow of 75 dm3/min.  
The materials were cut by directing the hydroabrasive jet perpendicular to the ma-
chined material [6], and then a rectilinear traverse speed in relation to the working 
nozzle. The thickness of the samples was selected in such a way that, with the most 
effective machining parameters, cutting through these should not occur, which would 
make it difficult to correctly determine the depth of the cut. 
Rock used for tests, marble, is a metamorphic rock resulting from the metamorphism 
of limestone composed mostly of calcite (a crystalline form of calcium carbonate, 
CaCO3). It is extensively used for sculpture, as a building material, and in many other 
applications. The word 'marble' is colloquially used to refer to many other stones that 
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are capable of taking a high polish. This metamorphic process causes a complete re-
crystallization of the original rock into an interlocking mosaic of calcite, aragonite 
and/or dolomite crystals. The temperatures and pressures necessary to form marble 
usually destroy any fossils and sedimentary textures present in the original rock. 
Pure white marble is the result of metamorphism of very pure limestone. The charac-
teristic swirls and veins of many colored marble varieties are usually due to various 
mineral impurities such as clay, silt, sand, iron oxides, or chert which were originally 
present as grains or layers in the limestone. 

2   Artificial Neural Network 

The artificial neuron is the basic unit of the artificial neuronal net similarly as in the 
case of neuronal biological nets, nervous cell is the basic unit. The properties of the 
artificial neuron answer is the most important [5] properties of the biological neuron. 
You should always remember that artificial equivalents functions are very simplified 
[8] in the relation to real nervous cells. The artificial neuron makes up the kind of the 
converter about many entries and one exit. One can distinguish two blocks of the proc-
essing of the information inside him. The first is the adding up block, where input 
signals are multiplied by there importance and added up.  
The topology of the net consisting from 5 neurons of the input layer, 30 neurons of 
hidden layer and one outputs neuron (Fig.1.) was accepted to prediction [1] the water-
jet cutting process.  

The entrance data directed to the input layer present the most important parameters 
of the cutting process, which efficiency depends on them. These are: 
• Jet pressure, at the same time determining its speed and kinetic energy. Because 

the jet energy grows with the square of the speed, it is the most important parame-
ter. And therefore increasing of the pressure causes the increase of the cut’s depth. 

• Abrasive flow rate, influencing on the jet’s kinetic energy. Increasing of the abra-
sive flow rate causes the increase of energy and cut’s depth. But the excessive in-
creasing may cause the drop of stream’s energy, as a result of the unfavourable in-
teraction between grains. 

• Traverse speed, determining the contact time of abrasive grains with the target. 
Increasing of the traverse speed generally leads to the fact that less abrasive grains 
are being put in touch with the target, what causes the less efficiency of the cutting 
process. Reducing of the traverse speed leads to the increasing of the slot’s cutting 
depth.  

• The length of a nozzle is directly connected with obtaining maximum energy by 
the jet. In a nozzle, which is too short, the jet is not able to achieve a proper speed 
(to speed up). However, a too long nozzle may cause the drop of energy, because 
of the hydraulic losses and rubbing by abrasive during the flow. 

• The nozzle’s diameter, connected with the abrasive flow rate, pressure and hy-
draulic power. This value is also connected with the width of a cutted slot. The aim 
is to minimize the diameter, in order to achieve the maximum depth in the range of 
determined capacity of the cutted slot. 
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The cut’s depth has been used as an output parameter. It is parameter, which describes 
in the best way abrasive properties of the jet. And therefore it is most often used for 
this purpose. Optimisation of the cutting process is usually done in order to achieve the 
maximum cut’s depth. 

 
Input layer   Hidden layer   Output layer 

 

Fig. 1. Artificial Neural Network digram Fig. 2. Diagram of learning the ANN 

In the hidden layer neuron has logistic activation function. This is an S-shaped (sig-
moid) curve, with output in the range (0,1). The most commonly - used neural network 
activation function. Neurons in input and output layer have linear activation function. 
The quantity of input and output neurons were taken from the accessible results of 
investigations directly. 96 laboratory tests results, containing all 5 input values and one 
output value, have been used for the teaching process of neural network. From process 
of training excluded 10% of chances, which one used to verification of training proc-
ess. The net was learning with the algorithm of backward propagation, getting stable 
results after 30 000 iterations (Fig. 2.) with learning rate of 0.1 and momentum 0.3. To 
research [2] was utilized the commercial Statistica Neural Networks for Windows 
application of the StatSoft Inc company. 

3   Effects of Artificial Neural Network Modelling 

Fig. 3b depicts the results of the artificial neural networks modeling of hydroabra-
sive suspension jet cut in a variable pressure and traverse speed conditions. In com-
parison Fig. 3a presents the laboratory analysis in which the surface was adjusted using 
the least square method. The graphs in the whole show a great convergence in the 
material cut depth values, a near identical character of dependence and approximate 
maximum value. In this case maximal between modeled and laboratory values does not 
go beyond 4.34mm and average discrepancy is equal 0.76mm.  

Laboratory studies results, conditioned by variable pressure and abrasive flow rate 
conditions, are presented in Fig. 4a. Modeling effects are shown in a Fig. 4b. In this 
case, it can be also observed that modeling effects are compatible with lab studies. The 
greatest discrepancy is observed at the maximum pressure and abrasive flow rate. In 
this case standard maximal discrepancy between modeled and laboratory values does 
not go beyond 4.04mm and average value is 0.72mm. Fig. 5a depicts a laboratory 
study on marble cutting with the use of 50mm long nozzle while Fig. 5b depicts artifi-
cial neural networks modeling of that process. Here also a great modeling and lab 
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studies compatibility is observed. At maximum cut depth deviation does not exceed 
1mm. In this case maximal discrepancy between modeled and laboratory values does 
not go beyond 1.98mm, and average discrepancy is 0.35mm 

  
a) laboratory analysis b) modeled with the use of ANN 

Fig. 3. Influence traverse speed and pressures onto depth of cutting. 

  
a) laboratory analysis b) modeled with the use of ANN 

Fig. 4. Influence abrasive flow rate and pressures onto depth of cutting. 

  
a) laboratory analysis b) modeled with the use of ANN 

Fig. 5. Influence abrasive flow rate and 50mm nozzle diameter onto depth of cutting. 
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Cutting with the use of 75mm long nozzle is presented in Fig. 6a, while its artificial 
neural network modeling is shown in graph 6b. What can be observed here is, that the 
modeling, compatible with the laboratory studies (best compatibility at the extreme 
values). The character of variability is a little different, but the values of maximum 
cut’s depth (the deviation doesn’t exceed 2mm) reached at the abrasive flow rate 80g/s 
and the nozzle diameter about the 2mm, are similar. 

With the maximum nozzle diameter, the smallest cut was achieved at the minimum 
abrasive flow rate. In this case maximal discrepancy between modeled and laboratory 
values does not go beyond 3.13mm and average discrepancy is 0.27mm 

 
 

a) laboratory analysis b) modeled with the use of ANN 

Fig. 6. Influence abrasive flow rate and nozzle 75mm diameter onto depth of cutting. 

  
a) laboratory analysis b) modeled with the use of ANN 

Fig. 7. Influence abrasive flow rate and 100mm nozzle diameter onto depth of cutting. 

A laboratory study on cutting with the use of 100mm long nozzle is presented in 
Fig.7a, while its artificial neural network modeling is presented in Fig. 7b. In this 
range, modeling effects are also compatible with lab studies. Best compatibility was 
achieved at the low working nozzle diameters and low abrasive discharge. Main treat-
ment parameter – cut depth – peaks at the maximum abrasive flow rate and minimum 
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working nozzles diameters. In this case maximal discrepancy between modeled and 
laboratory values does not go beyond 2.74mm and average value is equal 0.2mm 

4   Simulation of the Cutting Process  

The artificial neural networks use in the cut depth designating, give similar estimates 
in every considered case. The divergences do not go beyond 6%. The remaining pa-
rameters modeling results do not exceed 5%. In some cases, the discrepancy is at 10%. 
Maximal discrepancy between modeled and laboratory values is included in the inter-
val from 1.98 to 4.34mm and average discrepancy in the interval from 0.2 to 0,76mm. 
In most of the cases, the variation character due to the artificial neural network model-
ing was compatible with the results obtained in empirical way. This will allow applica-
tion of this model [7] to forecast cutting results for all the variable machining parame-
ters. 

4.1   Impact of Traverse Speed on Cutting Depth 

On the bases of obtained results it can be stated that in the whole range of parameters 
the depth of cut is inversely proportional to the cutting speed (Fig. 3.).  

Maximum depth of cut was obtained at the minimum traverse speed of 1mm/s and 
this was accepted as the optimum speed. 

4.2   Impact of Pressure on Cutting Depth 

On the bases of obtained results it can be stated that in the whole range of tested 
parameters the depth of cut is either proportional to the working pressure (Fig. 3.) or 
that the highest pressure will result in the greatest cutting depth (Fig. 4.). 

Optimum working pressure will be maximum pressure, in this case equal to 
p=28MPa. This pressure was used for further simulation work. 

4.3 Impact of Abrasive Flow Rate on Cutting Depth 

The optimum for this parameter is not as obvious as for the previous two. On the 
bases of results shown in Fig’s 4&5 it could be concluded that the optimum flow rate 
is ma=70g/s but results obtained and shown in Fig’s 6&7 allow only to conclude that 
increasing the abrasive flow rate results in only marginal increase in cutting depth. 

For a 50mm long nozzle the relationship of the abrasive flow rate to the cutting 
depth is linear and inversely proportional. Increasing the length of the nozzle decreases 
this relationship leading to flattening of the graph which is greatest for a 100mm long 
nozzle. On the bases of those results the optimum abrasive flow rate was established to 
be not less than 70g/s. 
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4.4 Impact of Nozzle Length and Diameter on Cutting Depth. 

In the case of the shortest length nozzle l=50mm the cutting depth is almost 
independent of the diameter (Fig. 8a.) in the whole range of abrasive flow. 

For l=75mm (Fig. 8b.) we can observe a definite relationship between the depth of 
cut and diameter of the nozzle for the whole range of the abrasive flow rates.  

Depth of cut increases with the increase of nozzle diameter. For the longest nozzle 
l=100mm (Fig. 8c.) this relationship is even stronger. 

Observing relationship between the nozzle’s length and diameter and depth of cut 
(Fig. 8, 9 &10.) we observe that the optimum length is 100mm for the whole range of 
abrasive flow rates. This is least noticeable for low flow rates to the extent that for the 
lowest values it approximates shorter nozzles. 

In the whole range of this analyses maximizing the nozzle diameter resulted in 
cutting depth increase and for this reason the optimum diameter is φ=2.75. 

  
a) 50mm b) 75mm 

 
c) 100mm 

Fig. 8. Simulation of influence abrasive flow rate and nozzle diameter about variable 
length onto depth of cutting. 
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a) 50g/s b) 60g/s 

  
c) 70g/s d)80g/s 

 
e) 90g/ 

Fig. 9. Simulation of influence diameter and length of nozzle onto depth of cutting for 
variable abrasive flow rate. 
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a) 2.00mm b) 2.25mm 

 
c) 2.50mm d) 2.75mm 

Fig. 10. Simulation of influence nozzle length and abrasive flow rate onto depth of 
cutting for variable nozzle diameter. 

5   Summary 

On the bases of analyses using neural networks we can conclude that the optimum 
cutting parameters from the perspective of maximizing cutting depth are as follows: 
 

• Pressure p=28MPa, 
• Traverse Speed V=1mm/s, 
• Abrasive Flow Rate not less than 70g/s, 
• Length of nozzle l=100mm, 
• Diameter of nozzle  φ=2.75mm 

 
Neural networks are a very good tool for simulating abrasive cutting jet. The next step 
will be a comparison of results obtained from the simulation with actual cutting. 
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Abstract: A bayesian network is a directed acyclic graph in which each 
node represents a variable and each arc a probabilistic dependency, they 
are used to provide: a compact form to represent the knowledge, and 
flexible methods of reasoning. Obtaining a bayesian network from data 
is a learning process that is divided in two steps: structural learning and 
parametric learning. In this paper, we define an automatic learning 
method that optimizes the bayesian networks applied to classification, 
using a hybrid method of learning that combines the advantages of the 
induction techniques of the decision trees (TDIDT - C4.5) with those of 
the bayesian networks. the resulting method is applied to prediction in 
health domain.  

1 Introduction  

The learning can be defined as “any process through as a system improves its 
efficiency”. The ability to learn is considered as a central characteristic of the 
“intelligent systems” [Fritz et al., 1989; García-Martínez & Borrajo, 2000], and for 
this a lot of effort and dedication was invested in the investigation and the 
development of this area. The development of the knowledge based systems motivated 
the investigation in the area of the learning with the purpose of automating the process 
of knowledge acquisition which considers one of the main problems in the 
construction of these systems. 
The data mining [Perichinsky & García-Martínez, 2000; Perichinsky et al., 2000; 
Perichinsky et al., 2001; Perichinsky et al., 2003] are the set of techniques and tools 
applied to the non-trivial process of extract and present/display implicit knowledge, 
previously unknown, potentially useful and humanly comprehensible, from large data 
sets, with object to predict of automated form tendencies and behaviors; and to 
describe of automated form models previously unknown, [Chen et al., 1996; Mannila, 
1997; Piatetski-Shapiro et al., 1991]. The term Intelligent data mining, [Evangelos & 
Han, 1996; Michalski et al., 1998] is the application of automatic learning methods, 
[Michalski et al., 1983; Holsheimer & Siebes, 1991], to discover and enumerate 
present  patterns  in  the  data.  For   these,  they  were  developed  a  great  number   of 
methods of analysis of data based on  the statistic [Michalski et al., 1982].  In the  time 
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in which the amount of information stored in the databases was increased, these 
methods began to face problems of efficiency and scalability and is here where 
appears the concept of data mining. One of the differences between a traditional 
analysis of data and the data mining are that first it supposes that the hypotheses 
already are constructed and validated against the data, whereas the second supposes 
that the patterns and hypotheses automatically are extracted of the data. 
The tasks of the data mining can be classified in two categories: descriptive data 
mining and predictive data mining [Piatetsky-Shapiro et al., 1996; Han, 1999]; some 
of the most common techniques of data mining are the decision trees (TDIDT), the 
production rules and neuronal networks. On the other hand, an important aspect in the 
inductive learning, is the one to obtain a model that represents the knowledge domain 
and that is accessible for the user, in particular, is important to obtain the dependency 
data between the variables involved in the phenomenon, in the systems where it is 
desired to predict the behavior of some unknown variables based on certain known 
variables, a representation of the knowledge that is able to capture this information on 
the dependencies between the variables is the bayesian networks [Cowell et al., 1990; 
Ramoni & Sebastiani, 1999]. 
A bayesian network is a directed acyclic graph in which each node represents a 
variable and each arc a probabilistic dependency, in which specifies the conditional 
probability of each variable given its parents; the variable at which it points the arc is 
dependent (cause-effect) of the variable in the origin of this one. The topology or 
structures of the network gives information on the probabilistic dependencies between 
the variables but also on conditional independences of a variable (or set of variables) 
given another or other variables, these independences simplify the representation of 
the knowledge (less parameters) and the reasoning (propagation of the probabilities). 
Obtaining a bayesian network from data is a learning process that is divided in two 
phases: the structural learning and the parametric learning [Pearl, 1988]. First of them, 
consists of obtaining the structure of the bayesian network, that means, the relations 
of dependency and independence between the involved variables. The second phase 
has the purpose of obtain the a priori and conditional probabilities from a given 
structure.
The bayesian networks [Pearl, 1988] are used in diverse areas of application like 
medicine [Beinlich et al., 1989], sciences [Bickmore & Timothy, 1994; Breese & 
Blake, 1995], and economy [Ezawa et al., 1995]. They provide a compact form to 
represent the knowledge and flexible methods of reasoning -based on the probabilistic 
theories- able to predict the value of non-observed variables and to explain the 
observed ones. Some characteristics of the bayesian networks are that they allow to 
learn dependency and causality relations, they allow to combine knowledge with data 
[Heckerman et al., 1995; Diaz & Corchado, 1999] and they can handle incomplete 
databases [Heckerman, 1995; Heckerman & Chickering, 1996; Ramoni & Sebastiani, 
1996]. 
The bayesian networks are designed to find the dependence and independence 
relations between all the variables that conform the study domain, this allows to make 
predictions on the behavior of anyone of the unknown variables based on the values 
of the well-known variables; this estimates that any variable of the database can 
behave as incognito or as evidence according to the case. 
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Many practical tasks can be reduced to classification problems: medical diagnosis and 
pattern recognition are only two examples. 
The bayesian networks can make the classification task -a particular case of 
prediction- that it is characterized to have a single variable of the database (class) that 
is desired to predict, whereas all the others are the data evidence of the case that is 
desired to classify. A great amount of variables in the database can exist; some of 
them directly related to the class variable but also other variables that have not direct 
influence on the class. 
In this work, a method of automatic learning is defined that helps in the pre-selection 
of variables, optimizing the configuration of the bayesian networks in classification 
problems. 

2 Methodology 

In order to solve the problem of the bayesian networks applied to the classification 
task, in this work we use a hybrid learning method that combines the advantages of 
the induction techniques of the decision trees (TDIDT – C4.5) with those of the 
bayesian networks. For it, we integrate to the process of structural and parametric 
learning of the bayesian networks, a previous process of pre-selection of variables. In 
this process, it is chosen from all the variables of the domain, a subgroup with the 
purpose of generating the bayesian network for the particular task of classification 
and this way, optimizing the performance and improving the predictive capacity of 
the network. 
The method for structural learning of bayesian networks is based on the algorithm 
developed by Chow and Liu (1969) to approximate a probability distribution by a 
product of probabilities of second order, which corresponds to a tree. The joint 
probability of variables can be represented like: 

n
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where )(ijX it is the cause or parent of iX .

Consider the problem like one of optimization and it is desired to obtain the structure 
of the tree that comes near more to the “real” distribution. A measurement of the 
difference of information between the real distribution ( P ) and the approximate one 
( *P ) is used: 
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Then the objective is to minimize I . A function based on the mutual information 
between pairs of variables is defined as: 

x
jijijiji XPXPXXPXXPXXI ))()(/),(log(),(),( (3) 

Chow (1968) demonstrates that the information difference is a function of the 
negative of the sum of the mutual information (weights) of all the pairs of variables 
that constitute the tree. Reason why to find the more similar tree is equivalent to find 
the tree with greater weight. Based on that, the algorithm to determine the optimal 
bayesian network from data is the following one: 

1. Calculate the mutual information between all the pairs of variables (n (n - 1) / 2). 
2. Sort the mutual information in descendent order. 
3. Select the arc of greater value as the initial tree. 
4. Add the next arc while it does not form cycles. If it is thus, reject. 
5. Repeat (4) until all the variables are included (n - 1 arcs). 

Rebane and Pearl (1989) extended the algorithm of Chow and Liu for poly-trees. In 
this case, the joint probability is: 

n
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where },...,,{ )()(2)(1 ijmijij XXX  is the set of parents for the variable iX .

In order to compare the results obtained when applying the complete bayesian 
networks (RB-Complete) and the preprocessed bayesian networks with induction 
algorithms C4.5 (RB-C4.5), we used the databases “Cancer” and “Cardiology” 
obtained at the Irving Repository of Machine Learning databases of the University of 
California [Murphy & Aha] and the database “Dengue” obtained at the University of 
Buenos Aires [Carbajo et al., 2003]. 
Table 1 summarizes these databases in terms of amount of cases, classes, variables 
(excluding the classes), as well as the amount of resulting variables of the 
preprocessing with the induction algorithm C4.5. 
The methodology used to carry out the experiments with each one of the evaluated 
databases, is detailed next. 

1. Divide the database in two. One of control or training (approximately 2/3 of the 
total database) and the another one of validation (with the remaining data) 

2. Process the control database with the induction algorithm C4.5 to obtain the 
subgroup of variables that will conform the RB-C4.5 

3. Repeat for 10%, 20%, …, 100% of the control database 
3.1. Repeat 30 times, by each iteration 
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3.1.1. Take randomly X% from the control database according to the 
percentage that corresponds to the iteration 

3.1.2. With that subgroup of cases of the control database, make the 
structural and parametric learning of RB-Complete and the RB- 
C4.5 

3.1.3. Evaluate the predictive power of both networks using the validation 
database 

3.2. Calculate the average predictive power (from the 30 iterations) 
4. Graph the predictive power of both networks (RB-Complete and RB-C4.5) 

based on the cases of training 

The step (1) of the algorithm makes reference to the division of the database in the 
control and the validation ones. In most cases, the databases obtained from the 
mentioned repositories were already divided. 
For the pre-selection of variables by the induction algorithms C4.5 of the step (2), we 
introduced each one of the control databases in a decision trees TDIDT generating 
system. From there, we obtained the decision trees that represent each one of the 
analyzed domains. The variables that integrate this representation conform the 
subgroup that were considered for the learning of the preprocessed bayesian 
networks. 
Next (3) a ten iteration process begins, in each one of these iterations processed 10%, 
20%, 100% of the control database for the networks structural and parametric 
learning. This way, could be analyzed not only the difference in the predictive 
capacity of the networks, but also how evolved this capacity when we learn with 
greater amount of cases. 
The objective of the repetitive structure of the step (3.1) is to minimize the accidental 
results that do not correspond with the reality of the model in study. It is managed to 
minimize this effect, taking different data samples and average the obtained values. 
In the steps (3.1.x) it is made the structural and parametric learning of the RB-
Complete and the RB-C4.5 from the subgroup of the control database (both networks 
are obtained from the same subgroup of data). Once obtained the network, it is come 
to evaluate the predictive capacity with the validation databases. This database is scan 
and for each row, all the evidence variables are instantiated and it is analyzed if the 
inferred class by the network corresponds with the indicated one in the file. Since the 
bayesian network does not make excluding classifications (it means that it predicts for 
each value of the class the probability of occurrence), is considered like the inferred 
class, the class with the greater probability. The predictive capacity corresponds to the 
percentage of cases classified correctly respect to the total evaluated cases. 
In the point (3.2) it is calculated the predictive power of the network, dividing the 
obtained values through all the made iterations. 
Finally, in the step (4) it is come to graph the predictive power average of both 
bayesian networks based on the amount of training cases. 

Database Variables Variables 
C4.5 Classes Control 

cases
Validation 

cases
Total 
cases

Cancer 9 6 2 500 199 699 
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Cardiology 6 4 2 64 31 95 

Dengue 11 5 4 1.414 707 2.121 

Table 1 – Databases description 

3 Results 

The experimental results were obtained by the application of the methodology 
previously mentioned to each one of the test databases. 
As it can be observed in Figure 1 (“Cancer” domain), the predictive power of the RB-
C4.5 is superior to the one of RB-Complete throughout all its points. Also, it is 
possible to observe how this predictive capacity is increased, almost always, when it 
takes more cases of training to generate the networks. Finally, it is observed that from 
the 350 cases of training the predictive power of the networks become stabilized 
reaching its maximum level. 
When analyzing the graph of Figure 2 corresponding to the database “Cardiology”, 
also an improvement on the RB-C4.5 can be observed respect to RB-Complete. 
Although the differences between the values obtained with both networks are smaller 
that in the previous case, the hybrid algorithm presents a better approach to the reality 
that the other one. It is important to emphasize that in this case, the improvement level 
is minimize when the set of cases used for the learning process is increased. 
For the database “Degue” corresponding to Figure 3, an improvement in the 
predictive power of the proposed network is observed. The RB-C4.5 makes the 
classification with a 10% better precision than the other network. 
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Figure 1 - Graph of the predictive power for the database “Cancer” 
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Figure 2 - Graph of the predictive power for the database “Cardiology” 
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Figure 3 - Graph of the predictive power for the database “Dengue” 

4 Discussion and Conclusions 

As it is possible to observe, all the graphs that represent the predictive power based on 
the amount of cases of training are increasing. This phenomenon occurs 
independently of the domain of data used and the evaluated method (RB-Complete or 
RB-C4.5). Of the analysis of the results obtained in the experimentation, we can 
(experimentally) conclude that the learning hybrid method used (RB-C4.5) generates 
an improvement in the predictive power of the network with respect to the obtained 
one without making the preprocessing of the variables (RB-Complete). 
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In another aspect, the RB-C4.5 has a lesser amount of variables (or at the most equal) 
that RB-Complete, this reduction of the amount of involved variables produces a 
simplification of the analyzed domain, which carry out two important advantages; 
first, they facilitate the representation and interpretation of the knowledge removing 
parameters that do not concern on a direct way to the objective (classification task). 
Second, it simplifies and optimizes the reasoning task (propagation of the 
probabilities) which originates the improvement of the processing speed. 
In conclusion, from the obtained experimental results, we concluded that the hybrid 
learning method proposed in this paper optimizes the configurations of the bayesian 
networks in classification tasks. 
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