
VLSI Implementation of Basic Fuzzy t -norms

 Antonio Hernandez, Oscar Camacho,

 Ildar Batyrshin, Luis Villa and
 Oswaldo Espinosa Sosa, CIC-IPN/IMP

Abstract

Fuzzy theory applications have been explored and
analyzed on different fields such as pattern recognition
control, data classification, signal processing, expert
systems, among others. To accomplish this, more
complex calculations and faster processing speed are
required. Fuzzy hardware implementation has turned
to be the choice to implement it. Fuzzy operations t-
norms and t-conorms are used in fuzzy systems as
disjunction and conjunction operations respectively.
Commonly used t-norms for hardware implementation
are minimum and algebraic product, first one is
cheaper to implement; second consumes lots of
hardware. On this work FPGA technology is used to
implement basic fuzzy T-norms as minimum, bounded
product and drastic product which are analyzed and
compared each other. Results show hardware
resources consumption and processing time required
for each operation. These blocks can be used to
construct more complex t-norms with sufficiently
simple implementation.

1. Introduction

Fuzzy logic has been widely accepted as a
reasoning method for process control, automated
systems [1], pattern recognition [2], pattern
classification [3] and decision making [4], among
others. This is because of its capabilities of modeling
non-linear systems by using knowledge rules. There
are researchers that have shown all advantages that
fuzzy logic controllers offer, remarking them as
universal approximators [5-8].

As applications of fuzzy theory have grown to
different fields, more complex calculations and faster
processing speed are required in order to satisfy
application demands. Because of this, fuzzy hardware

has turned to be the choice to implement faster
applications that meet previously stated requirements.

There have been many implementations of fuzzy
processors [9-13], that can be divided in two main
categories: Analog and Digital. First category uses
discrete components to evaluate current or voltage
levels to operate with them; Second category uses
basic digital gates such as AND, OR and NOT, to
create structures that realizes operations required using
binary values.

Digital hardware provides better noise immunity
than analog counterpart does, besides, usage of FPGA
technology for implementing reconfigurable designs
allow us to provide great versatility to implemented
systems.

Inference procedure is realized with basic
operations known as t-norms for conjunction, and t-
conorms for disjunction [14-16]. For the case of t-
norms, we can mention simple structures such as
minimum and algebraic product, which are most
commonly used on hardware implementations because
of its simplicity. Other known t-norms are also
candidates for digital implementations, e.g. drastic
product and bounded product, the latter is also known
as Lukasciewicz t-norm. From these basic operations,
more complex structures can be constructed to adapt to
a wider variety of fuzzy applications.

For doing this, blocks of fuzzy t-norm operations
are required, so that we can interconnect some of them
on different configurations obtaining more options to
choose the appropriated for a specific purpose,
increasing versatility of fuzzy hardware.

The paper is organized as follows. In Section 2
basic t-norms are considered and in Section 3 digital
implementation of membership values used in t-norms
is discussed. Disadvantages of algebraic product is
discussed in Section 4. Proposed hardware
implementation of basic t-norms is discussed in

Sections 5 and 6. In Section 7-8 results and
conclusions are commented, including comparisons
between operations implemented.

2. Basic t-norms

Intersection operation for fuzzy sets is usually
defied in fuzzy set theory by some t-norm (triangular
norm) [16][21]]1,0[]1,0[]1,0[: →×T , defined as
associative, commutative monotonically increasing
function satisfying boundary condition T(x,1)=1. For a
given pair of input membership functions X, Y
intersection operation defined for all elements x, y of
input domains as following:

() ()()xxTx YXYX µµµ ,)(=∩ (1)

The following t-norm operators are candidates for

hardware realization: Minimum (2), Algebraic Product
(3), Bounded Product or Lukaasiewicz (4) and Drastic
Product (5) [16][21].

{ }yxyxTM ,min),(= (2)

xyyxTP =),((3)

{ }1,0max),(−+= yxyxTL (4)

<
=
=

=
1,,0

1,
1,

),(
yxif

xify
yifx

yxTD (5)

3. Digital Considerations of t-norms

Values of truth space for fuzzy numbers are
commonly expressed as floating point number whose
truth value can be infinite between [0, 1], where 0
means non-membership and 1 means complete
membership. Unfortunately it is not so easy for a
computer to do calculations by using this
representation, instead of this we can work with
integers between [0, 2n-1], where n is the number of
bits used to represent truth space and gives resolution,
0 means non-membership, and 2n-1 is the complete
membership value. Taking into account these
considerations, equations (4) and (5) on section 2 can
be rewritten using x, y as integers, and 12 −= nd
instead of 1 as maximum value [17].

{ }dyxyxTL −+= ,0max),((6)

<
=
=

=
dyxif

dxify
dyifx

yxTD

,,0
,
,

),((7)

4. Disadvantages of Algebraic Product

This operation is much more complex because of its
nature, if real numbers less than one are used to
represent truth values, every product realized will be
less than 1, but using integers, overflow will occur and
more bits are used at output as twice input bits reason.
There are some other reasons listed next:

1. It requires at least n-1 iterations on a sequential
multiplier [18].

2. For the case of a combinatorial array circuit n-1
levels of adders are required for each pair of n bits
used for input length [19].

3. Shifting operation can be realized but only for
multiplying a number by a power of two [18].

5. Hardware implementation of t-norms

5.1. Minimum

For the case of min operation (2), a comparator
circuit makes a comparison between two input values
A and B and activate flags that let us know if A is
greater than B (GT) or A is less than B (LT). This flags
are used as input to a second block where selection of
bus output is realized through SEL according to: If A
greater than B is true (GT=1), it selects data on bus B
as output; if it is false (GT=0), data bus A is selected as
output. This way the minimum 8 bit value passes to the
output as on Fig. 1.

Figure 1. Harware Realized for Minimum Operator

5.2. Bounded Product

Bounded product, also known as Lukasiewicz t-
norm, is presented on (6) where d is the maximum
point over the truth space, this implementation has
already been presented on [20] using a complex
structure. Circuit presented in Fig. 2, corresponds to
bounded product operation with 8-bit resolution,
according to considerations on section 3. On first block
from left down (ADD8), there is an 8 bit adder to
implement x+y, if the sum of this values is greater than
8 bit maximum count, there is a carry output (CO) flag
to indicate that data is not valid. Next block left top
(ADSU8) is an 8 bit subtractor, it subtracts d from
result of previous block; there is also a carry output
flag to identify when data is not valid.

In order to obtain a valid data up to this part it is
necessary to have two valid conditions on two
previous blocks, this corresponds to CO=0 on the
addition block and CO=1 on the subtraction block, this
is realized by an OR gate between carry flags,
managing any undesired condition. Next two blocks
COMPM8 and BusSelector correspond to the
maximum operation between 0 and valid result from
previous stage, AND gate between both blocks is on
charge to decide if there is no valid data, let 0 be the
output value.

Figure 2. Digital hardware for bounded product operation

5.3. Drastic Product

Drastic product presented on (7) where d is the
maximum point over the truth space, is a set of
conditions that determine the output. Referring to Fig.
3 where circuit implementation is shown, and starting
from left, two comparisons are required to satisfy
conditions given in equation: first condition is among x

and d (COMPM8 up); second condition is with y and d
(COMPM8 down), result of comparisons is evaluated
through AND gates, which give the necessary signals
to enable one of three 8-bit outputs, from top down, x
= d; x, y < d, and y = d, respectively.

AND2_8B are blocks that use SEL signal to let an
8-bit data number go to the output, when SEL = 1, or
make output equal to zero, when SEL = 0. OR3_8B is
an OR gate for three 8-bit data buses with bit to bit
evaluation, output is the result of drastic product
operation with x, y and d as input data.

Figure 3. Digital circuitry for drastic product

6. Evaluation Tools

For this project realization a Xilinx Spartan3
XC3S50-5PQ208 FPGA was used to implement
circuits. For design purpose, XilinxISE Webpack tools
were used on schematic mode to allow direct gate level
designs. Simulation is performed on ModelSim XE
which is designed to work with files generated by
XilinxISE.

7. Results

7.1. Simulation Results

Numerical data were introduced as inputs to the
circuits for x, y and d, for different cases as on Fig. 4,
where last three rows correspond to the result of
operations minimum, bounded product and drastic
product on that order from top.

Figure 4. Simulation of operations with input data

7.1. Numerical Results

After file compilation with XST tool we have
numerical results that reflect the hardware resources
consumed by each circuit, this is shown in Table 1,
where drastic product has the lower number of logic
levels, but minimum is the one who uses lower cell
number, this is because drastic product uses more
parallel elements. IO’s are less on minimum which has
2 8-bit inputs and one 8-bit output, for the case of
bounded and drastic products numbers are alike this is
because they have three 8-bit inputs and one 8-bit
output.

Table 2 shows timing results for each
implementation, where total delay is the time required
to obtain a result on the output and is expressed on
nanoseconds; middle column corresponds to the time
consumed on logical gates, while last column
correspond to the time required to connect logical
elements. As can be seen drastic product is the one
which consumes less processing time, analog to
bounded product, which is the most time consuming
operation. This result is graphically expressed in Fig.
5, where can be easily seen that drastic product is the
faster application.

Table 1. Hardware resources consumed

Operatio
n

Logic
Levels

Used
cells

IO
Used

Minimum 13 89 24
Bounded
Product

25 177 34

Drastic
Product

12 149 35

Table 2. Circuits Delay

Operation Total
Delay

ns

Delay
Logic

ns

Delay
Route

ns
Minimum 18.73 10.41 8.324
Bounded
Product

22.76 13.82 8.940

Drastic
Product

17.55 9.93 7.620

0

5

10

15

20

25

Minimum Bounded Product Drastic Product

ns

Figure 5. Time required to give a result on output

8. Conclusions

From this work we can conclude that drastic
product is the fastest application given its parallel
elements, because of this it requires the major quantity
of logical gates. If application demands few hardware
elements, minimum is the best choice. If there is no
restrictions on resources or speed, bounded product is
a good choice.

Implementations presented here can be used to
expand application fields of fuzzy logic systems,
because they can be chained to form more complex
structures as parametric forms.

9. References

[1] R. Isermann, “On fuzzy logic applications for automatic
control, supervision, and fault diagnosis”, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 28, Issue 2, 1998, pp.
221-235.

[2] J. C. Bezdek, “Fuzzy models & algorithms for pattern
recognition & image processing”, Handbook of fuzzy sets,
Vol. 4, Lavoisier, 2005.

[3] N.B. Karayiannis, G. Purushothaman, “Fuzzy pattern
classification using feedforward neural networks with
multilevel hidden neurons”, IEEE International Conference
on Neural Networks and Computational Intelligence, Vol.
3, 1994, pp. 1577-1582.

[4] Chen, S.-M. “A new approach to handling fuzzy
decision-making problems”, IEEE Transactions on Systems,
Man and Cybernetics, Vol. 18, Issue: 6, Nov/Dec 1988, pp.
1012-1016.

[5] B. Kosko, “Fuzzy systems as universal aproximators”,
IEEE International Conference on Fuzzy systems, Vol. 43
No. 11, 1992, pp. 1329-1333.
[6] L. X. Wang, “Fuzzy systems are universal
approximators”, IEEE Transactions on Systems Man and
Cybernetics, 1992, pp. 1163-1170.

[7] J. J. Buckley, “Sugeno type controllers are universal
controllers”, Fuzzy sets and systems, Vol. 53 No. 3, 1993, pp.
299-303.

[8] J. L. Castro, “Fuzzy logic controllers are universal
aproximators”, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 25 No. 4, 1995, pp. 629-635.

[9] M. Togai. “Expert system on a chip: an engine for real-
time approximate reasoning”, Proceedings of the ACM
SIGART international symposium on Methodologies for
intelligent systems, 1986, pp. 147-154.

[10] H. Watanabe, “RISC approach to design of fuzzy
processor architecture”, Proceedings First IEEE
International Conference on Fuzzy Systems, San Diego, CA.
1992. pp. 431–441.

[11] G.C. Cardarilli, M. Re, R. Lojacono, “VLSI
Implementation of a Real Time Fuzzy Processor”, Journal of
Intelligent & Fuzzy Systems, Vol. 6 No. 3, 1998, pp. 389-401.

[12] A. Gabrielli, E. Gandolfi, “A Fast Digital Fuzzy
Processor”, IEEE Micro, Vol. 19, Issue 1, 1999, pp. 68-79.

[13] G. Ascia, V. Catania, and M. Russo, “VLSI Hardware
Architecture for Complex Fuzzy Systems”, IEEE
Transactions on Fuzzy Systems, Vol.7 No.5, 1999, pp. 553-
570.

[14] L. A. Zadeh, “Fuzzy logic, Neural Networks, and Soft
Computing”, Communications of the ACM, Vol. 37, Issue 3,
March 1994, pp. 77-84.

[15] C.C. Lee, “Fuzzy logic in control systems: fuzzy logic
controller. Part II”, IEEE Transactions on Systems, Man and
Cybernetics, Volume 20, Issue 2, March-April 1990, pp.
419-435.

[16] Jang, J.S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning
and Machine Intelligence, Prentice Hall, 1996.

[17] Tocci, R. J., N. S. Widmer, G. L. Moss, Digital
Systems: Principles and Applications, 9th edition Prentice
Hall, 2003.

[18] Patterson, D. A., and J. L. Hennessy, Computer
Organization and Design: The Hardware/Software Interface,
Second edition, Morgan Kaufmann Publishers, 1998.

[19] Zargham, Mehdi R., Computer architecture: Single and
Parallel Systems, Prentice Hall, 1996.

[20] L. de Salvador Carrasco, J. Gutiérrez Ríos, “Serial
Architecture for Efficient Digital Fuzzy Hardware
Processing”, On, Fuzzy Hardware Architectures and
applications, A. Kandel and G. Langholz, eds., Kluwer
Academic Publishers, 1998, Chap. 6, pp. 117-157.

[21] Klement E.P., Mesiar R., Pap E. Triangular Norms.
Dordrecht, Kluwer, 2000.

