
VLSI Implementation of Basic Fuzzy t -norms 
 
 Antonio Hernandez, Oscar Camacho, 

                Ildar Batyrshin, Luis Villa and 
                               Oswaldo Espinosa Sosa, CIC-IPN/IMP

 
 

 
 

Abstract 
 

Fuzzy theory applications have been explored and 
analyzed on different fields such as pattern recognition 
control, data classification, signal processing, expert 
systems, among others. To accomplish this, more 
complex calculations and faster processing speed are 
required. Fuzzy hardware implementation has turned 
to be the choice to implement it. Fuzzy operations t-
norms and t-conorms are used in fuzzy systems as 
disjunction and conjunction operations respectively. 
Commonly used t-norms for hardware implementation 
are minimum and algebraic product, first one is 
cheaper to implement; second consumes lots of 
hardware. On this work FPGA technology is used to 
implement basic fuzzy T-norms as minimum, bounded 
product and drastic product which are analyzed and 
compared each other. Results show hardware 
resources consumption and processing time required 
for each operation. These blocks can be used to 
construct more complex t-norms with sufficiently 
simple implementation. 

 
1. Introduction 
 

Fuzzy logic has been widely accepted as a 
reasoning method for process control, automated 
systems [1], pattern recognition [2], pattern 
classification [3] and decision making [4], among 
others. This is because of its capabilities of modeling 
non-linear systems by using knowledge rules. There 
are researchers that have shown all advantages that 
fuzzy logic controllers offer, remarking them as 
universal approximators [5-8]. 

As applications of fuzzy theory have grown to 
different fields, more complex calculations and faster 
processing speed are required in order to satisfy 
application demands. Because of this, fuzzy hardware 

has turned to be the choice to implement faster 
applications that meet previously stated requirements. 

There have been many implementations of fuzzy 
processors [9-13], that can be divided in two main 
categories: Analog and Digital. First category uses 
discrete components to evaluate current or voltage 
levels to operate with them; Second category uses 
basic digital gates such as AND, OR and NOT, to 
create structures that realizes operations required using 
binary values. 

Digital hardware provides better noise immunity 
than analog counterpart does, besides, usage of FPGA 
technology for implementing reconfigurable designs 
allow us to provide great versatility to implemented 
systems. 

Inference procedure is realized with basic 
operations known as t-norms for conjunction, and t-
conorms for disjunction [14-16]. For the case of t-
norms, we can mention simple structures such as 
minimum and algebraic product, which are most 
commonly used on hardware implementations because 
of its simplicity. Other known t-norms are also 
candidates for digital implementations, e.g. drastic 
product and bounded product, the latter is also known 
as Lukasciewicz t-norm. From these basic operations, 
more complex structures can be constructed to adapt to 
a wider variety of fuzzy applications.  

For doing this, blocks of fuzzy t-norm operations 
are required, so that we can interconnect some of them 
on different configurations obtaining more options to 
choose the appropriated for a specific purpose, 
increasing versatility of fuzzy hardware. 

The paper is organized as follows. In Section 2 
basic t-norms are considered and in Section 3 digital 
implementation of membership values used in t-norms 
is discussed. Disadvantages of algebraic product is 
discussed in Section 4. Proposed hardware 
implementation of basic t-norms is discussed in  



Sections 5 and 6. In Section 7-8 results and 
conclusions are commented, including comparisons 
between operations implemented.  

 
  

2. Basic t-norms 
 

Intersection operation for fuzzy sets is usually 
defied in fuzzy set theory by some t-norm (triangular 
norm) [16][21] ]1,0[]1,0[]1,0[: →×T , defined as 
associative, commutative monotonically increasing 
function satisfying boundary condition T(x,1)=1. For a 
given pair of input membership functions X, Y  
intersection operation defined for all elements x, y  of 
input domains as following:  

 
( ) ( )( )xxTx YXYX µµµ ,)( =∩        (1) 

 
The following t-norm operators are candidates for 

hardware realization: Minimum (2), Algebraic Product 
(3), Bounded Product or Lukaasiewicz (4) and Drastic 
Product (5) [16][21].  
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3. Digital Considerations of t-norms 
 

Values of truth space for fuzzy numbers are 
commonly expressed as floating point number whose 
truth value can be infinite between [0, 1], where 0 
means non-membership and 1 means complete 
membership. Unfortunately it is not so easy for a 
computer to do calculations by using this 
representation, instead of this we can work with 
integers between [0, 2n-1], where n is the number of 
bits used to represent truth space and gives resolution, 
0 means non-membership, and 2n-1 is the complete 
membership value. Taking into account these 
considerations, equations (4) and (5) on section 2 can 
be rewritten using x, y as integers, and 12 −= nd  
instead of 1 as maximum value [17]. 
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4. Disadvantages of Algebraic Product 
 

This operation is much more complex because of its 
nature, if real numbers less than one are used to 
represent truth values, every product realized will be 
less than 1, but using integers, overflow will occur and 
more bits are used at output as twice input bits reason. 
There are some other reasons listed next: 

1. It requires at least n-1 iterations on a sequential 
multiplier [18]. 

2. For the case of a combinatorial array circuit n-1 
levels of adders are required for each pair of n bits 
used for input length [19]. 

3. Shifting operation can be realized but only for 
multiplying a number by a power of two [18].  
 
 
5. Hardware implementation of t-norms 
 
5.1. Minimum 
 

For the case of min operation (2), a comparator 
circuit makes a comparison between two input values 
A and B and activate flags that let us know if A is 
greater than B (GT) or A is less than B (LT). This flags 
are used as input to a second block where selection of 
bus output is realized through SEL according to: If A 
greater than B is true (GT=1), it selects data on bus B 
as output; if it is false (GT=0), data bus A is selected as 
output. This way the minimum 8 bit value passes to the 
output as on Fig. 1. 

  

 
Figure 1. Harware Realized for Minimum Operator 



 
5.2. Bounded Product 
 

Bounded product, also known as Lukasiewicz t-
norm, is presented on (6) where d is the maximum 
point over the truth space, this implementation has 
already been presented on [20] using a complex 
structure. Circuit presented in Fig. 2, corresponds to 
bounded product operation with 8-bit resolution, 
according to considerations on section 3. On first block 
from left down (ADD8), there is  an 8 bit adder to 
implement x+y, if the sum of this values is greater than 
8 bit maximum count, there is  a carry output (CO) flag  
to indicate that data is not valid. Next block left top 
(ADSU8) is an 8 bit subtractor, it subtracts d from 
result of previous block; there is also a carry output 
flag to identify when data is not valid.  

In order to obtain a valid data up to this part it is 
necessary to have two valid conditions on two 
previous blocks, this corresponds to CO=0 on the 
addition block and CO=1 on the subtraction block, this 
is realized by an OR gate between carry flags, 
managing any undesired condition. Next two blocks 
COMPM8 and BusSelector correspond to the 
maximum operation between 0 and valid result from 
previous stage, AND gate between both blocks is on 
charge to decide if there is no valid data, let 0 be the 
output value. 
 

 
Figure 2. Digital hardware for bounded product operation 

5.3. Drastic Product 
 

Drastic product presented on (7) where d is the 
maximum point over the truth space, is a set of 
conditions that determine the output. Referring to Fig. 
3 where circuit implementation is shown, and starting 
from left, two comparisons are required to satisfy 
conditions given in equation: first condition is among x 

and d (COMPM8 up); second condition is with y and d 
(COMPM8 down), result of comparisons is evaluated 
through AND gates, which give the necessary signals 
to enable one of three 8-bit outputs, from top down, x 
= d; x, y < d, and y = d, respectively. 

AND2_8B are blocks that use SEL signal to let an 
8-bit data number go to the output, when SEL = 1, or 
make output equal to zero, when SEL = 0. OR3_8B is 
an OR gate for three 8-bit data buses with bit to bit 
evaluation, output is the result of drastic product 
operation with x, y and d as input data. 
 

 
Figure 3. Digital circuitry for drastic product 

 
 
6. Evaluation Tools 
 

For this project realization a Xilinx Spartan3 
XC3S50-5PQ208 FPGA was used to implement 
circuits. For design purpose, XilinxISE Webpack tools 
were used on schematic mode to allow direct gate level 
designs. Simulation is performed on ModelSim XE 
which is designed to work with files generated by 
XilinxISE. 
 
 
7. Results 
 
7.1. Simulation Results 
 

Numerical data were introduced as inputs to the 
circuits for x, y and d, for different cases as on Fig. 4, 
where last three rows correspond to the result of 
operations minimum, bounded product and drastic 
product on that order from top. 

 

 
Figure 4. Simulation of operations with input data 

 



 
7.1. Numerical Results 
 

After file compilation with XST tool we have 
numerical results that reflect the hardware resources 
consumed by each circuit, this is shown in Table 1, 
where drastic product has the lower number of logic 
levels, but minimum is the one who uses lower cell 
number, this is because drastic product uses more 
parallel elements. IO’s are less on minimum which has 
2 8-bit inputs and one 8-bit output,  for the case of 
bounded and drastic products numbers are alike this is 
because they have three 8-bit inputs and one 8-bit 
output. 

Table 2 shows timing results for each 
implementation, where total delay is the time required 
to obtain a result on the output and is expressed on 
nanoseconds; middle column corresponds to the time 
consumed on logical gates, while last column 
correspond to the time required to connect logical 
elements. As can be seen drastic product is the one 
which consumes less processing time, analog to 
bounded product, which is the most time consuming 
operation. This result is graphically expressed in Fig. 
5, where can be easily seen that drastic product is the 
faster application. 

  

Table 1. Hardware resources consumed 

Operatio
n 

Logic 
Levels 

 

Used 
cells 

IO 
Used 

Minimum 13 89 24 
Bounded 
Product 

25 177 34 

Drastic 
Product 

12 149 35 

 

Table 2. Circuits Delay 

Operation Total 
Delay 

ns 

Delay 
Logic 

ns 

Delay 
Route

ns 
Minimum 18.73 10.41 8.324 
Bounded 
Product 

22.76 13.82 8.940 

Drastic 
Product 

17.55 9.93 7.620 
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Figure 5. Time required to give a result on output 

 
8. Conclusions 
 

From this work we can conclude that drastic 
product is the fastest application given its parallel 
elements, because of this it requires the major quantity 
of logical gates. If application demands few hardware 
elements, minimum is the best choice. If there is no 
restrictions on resources or speed, bounded product is 
a good choice. 

Implementations presented here can be used to 
expand application fields of fuzzy logic systems, 
because they can be chained to form more complex 
structures as parametric forms. 
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