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Abstract 
 

We introduce two theorems which permit to obtain 
a fractal signal from the product superposition of 
periodic signals. These periodic components are band-
limited functions and therefore, we can consider the 
conditions for the application of the Shannon-
Whittaker theorem for the reconstruction of the fractal 
signal. Also, we relate such theorem with the order of 
the signal that is under study. We use an expression of 
the sampling theorem for periodic (band-limited) 
functions.  
 
1. Introduction 
 

In the last decade diverse works related with the 
processing of complex signals, and particularly with 
fractal structure [1-3] were developed, due to the 
variety of applications, for example in audio [4], 
communications [5, 6] and biomedicine [7, 8]. In this 
context the multiplication of basic signals and their 
obtained complexity can be important for their 
transmission, study or parameters determination. In 
such applications  the word “prefractal” (as defined by 
Mandelbrot [9]) should be used strictly, when referring 
to a self-similar object with certain limitations. 
However, it is clear that the difference between 
“fractal” and “prefractal” exists only from the 
mathematical point of view. 

Any signal, before being processed, should be 
measured or sampled. This means that a complex or 
fractal signal should have certain conditions on the 
sampling interval, different to the ones found in the 
periodic signal (for example). Just recently this aspect 
has become of interest for the reconstruction of certain 
signals or functions. The Shannon-Whittaker theorem 
(or sampling theorem) [10-13] relates the measured 
points of a certain signal and the possibility of its 
complete reconstruction, based on such measurement. 

In previous works [14-16], it has been demonstrated 
that some fractal structures can be obtained starting 
from periodic distributions (with a scaling factor 
between them). This fact is important for applications 
in the processing of different types of signals, where a 
particular geometry can be required in the final signal. 
As an extension of these results, in this work we first 
include a development of a feasible and simple method 
for constructing complex structures with the 
superposition of domains distributed in a periodic way. 
Then, with two theorems we can observe that the 
results obtained for the cases of binary structures, for 
which digital signals are an example, can be extended 
for the case of structures with continuous variation, 
such as analog signals for example. The 
demonstrations for these theorems are related with the 
theory of IFS (Iterated Function System) [17-19] 

Here, we deal mainly with a direct problem; that is 
to say, the characteristics of the original signal are 
known and we want to establish a way to reconstruct 
it. First, we demonstrate that the product superposition 
of functions or signals can give as a result a signal with 
fractal characteristics. Furthermore, we use a 
consequence, expressed for the case of periodic band-
limited functions [20]. Then, our interest is the 
inclusion of this formulation for the case of fractal 
signals, obtained through a product superposition of 
periodic functions and consider if the Shannon-
Whittaker theorem must be modified or adapted for 
such signals. This way, we want to show a 
consequence of the sampling theorem for the 
reconstruction of signals with complex geometry. 
 
2. Mathematical foundations 
 

There are three basic transformations for building 
fractal objects: change of scale, translation and 
rotation. In several works these transformations were 
used for the construction of fractal structures [14, 21, 
22]. For these cases, we used periodic domains which 



are defined through the distribution of disjoined sets 
included in a 1D or 2D Euclidean space. The 
mathematical expression to obtain such fractal 
structures is: 
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where P is a periodic function and s is the scaling 
function. Fig. 1 shows graphically the product of Eq. 
(1), and Fig. 2 shows an example for the construction 
of a triadic Cantor function, with periodic distribution, 
using Eq. (1). 
 
2.1. Simple functions 
 

A function RXf →:  is called simple if [22]: 
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is the characteristic function [23] of each set Ii. In this 
way, functions can be approximated from the obtained 
values in certain points. Clearly, Ri from Eq. (2) may be 
referred to the measured points for the function f(x), 
which are taken into account according with the value 
of the characteristic function. 
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Figure 1. Graphic method to obtain a fractal signal 
using periodic components. 
 

 
 
Figure 2. An example for the construction of 
periodic Cantor functions with fractal dimension 
D≈0.6309. 
 
 
2.2. Fractal signals with periodic components 
 

Now, we show a general case, and exemplify it 
graphically with cos2 functions. For this, it is important 
to keep in mind the following theorems. 

Theorem 1. If we have an iterative function, 
defined through: 
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where s is an integer value, T is a periodic function and 
k refers to each iteration. Then, gk(x) defines 
contractions in the Haussdorf space H(X) and each gk(x) 
allows to define a non-linear IFS given by 
{f¹,…,fP;P=P(s)}. 
 

Proof. This theorem can be demonstrated when 
observing Fig. 3, and considering a sequence of sets, 
defined in the metric space (X,d), whose boundary is 
the function gk(x) and the line for y=0. From Fig. 3 it is 
clear that for each k-component we have s periods in 
the region [-L,L]. Also, the total set for each iteration 
Fk (denoted with different grey levels, for F0 F¹ F²…) 
is defined as: 
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which can be divided in subsets defined, as shown in 
Fig.3, with the following expression: 
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this is, xi(k),xi+1(k) are two successive zeros of gk(x), 
where i is a function of the sequence [pk…p1] which 
are related with the successive iterations and with the 
scaling factor. For each k-iteration, this means that a 
new set is obtained, which is included (but not equal) 
in the previous one. Then, given two points x1, x2 we 
have: 
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and so, each component fp

k defines contractions on the 
metric space (X,d) and {f¹,…,fP;P=P(s)} is an IFS on 
(H(X),h(d)), originated from the boundary defined by 
Eq. (2). Finally, it can be seen that F is an attractor of 
the sequence Fk, that is the result shown in Eq. (4): 
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Figure 3. The product of periodic functions 
C=cos², where F0F¹F²… are the sets obtained in 
each iteration and xi (k) are the points for gk(x)=0 
(L=1). 
 

Theorem 2. In each iteration of Eq. (3) fixed points 
on the boundary and on the x-axis are obtained, which 
will tend to complete the total boundary of the set Fk as 

shown in Fig. 4, because for ∞→k  we will have 
infinite fixed points. Then, these points belong to the 
final set F, which is a fixed point of H(X) and the 
attractor of the IFS defined in Theorem 1. 
 

Proof. According to Eq. (3) we have: 
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Given k=M≤N, every new fixed point xF, for the M-

iteration (M≥1), implies: 
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Then, from Eq. (3) and using the result of Eq. (5) 

we have that, for the complete fractal (with N>M): 
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and we finally obtain that gM-1(x) is a fixed point of the 
transformation defined by Eq. (7). In the case s=3, for 
k=M the corresponding periodic component has 3M 
fixed points on the boundary.  

The fixed points on the boundary and how they are 
obtained for each iteration, from the product with 
periodic components, is also shown in Fig. 4. For this 
case, in the figure on the top we can see the three first 
periodic components (s=3) and the points where the 
crests of the function are equal to one. 
 

 
 
Figure 4. Fixed points for each k-iteration, 
introduced from the periodic components. 



 
For the two first components only the central point 

is fixed (see Fig. 4) and, when the third component is 
included, we obtain other two fixed points. 
Furthermore, we must consider that there are fixed 
points on the axis x, for: 
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which are important in order to assure the existence of 
mappings fp (p=1,…,P(s)), as was demonstrated in 
Theorem 1. 

With the results obtained in the previous theorems, 
it is demonstrated that there is an IFS which permits 
the generation of a sequence Fk. Also, this sequence of 
sets has an attractor and the way in which the points of 
this attractor are obtained are shown in the second 
theorem. So, we have presented the superposition of 
periodic signals to obtain  a fractal signal. 
 
2.2. Measurement of complex signals 
 

When the previous results are implemented, for the 
recording of complex signals, infinite number of points 
of the fractal objects are never obtained. In the 
measurement of a certain signal only discrete points 
are obtained. Then, we can relate these points with the 
representation as a simple function. For example, the 
functions in Fig. 5 are built with finite number of 
points, with a scaling factor between each periodic 
component. So, we want to obtain, from this finite 
number of points of the signal, the corresponding 
expression for the sampling theorem. 
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Figure 5. Complex signal obtained the product 
superposition of cos2 components. 
 

3. Simple functions and Shannon-
Whittaker sampling theorem 
 

Until now we have shown how to obtain structures 
from fractals by using periodic band-limited functions. 
The Shannon-Whittaker sampling theorem assures us 
that we have a good representation of a function which 
has an experimental base, since the function is 
represented by discrete points. We will use another 
version of the sampling theorem for the case of 
periodic functions. In [20] the expression for the 
sampling theorem was obtained, which is given by: 
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being Λx the sampling frequency, and L+M=K are 
arbitrary integers (see Ref. [20]). 

So, the sampling theorem is applied for the product 
superposition of periodic functions, which initially can 
be independently obtained. The set of points gn can be 
represented through a simple function, as defined by 
Eq. (2). Then, using the product of functions (see Eq. 
(7)), the Shannon-Whittaker theorem can be expressed 
as: 
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where χ[In;x] is the characteristic function for each 
periodic component, the interval In is related with the 
width of the corresponding sampling interval and the 
supra-index k indicates each periodic component. 

This means (from the linear systems theory) that if 
there is a system with several inputs (one for each 
periodic component), a signal described by Eq. (7) at 
the output then, the sampling for each component and 
for the output signal is related through Eq. (12), as 
shown Fig. 6. The sampling interval will be given by 
the corresponding interval of the component with the 
smallest period. 
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Figure 6. Simple function and the sampling 
theorem applied for an arbitrary signal. 
 
 
4. Conclusions 
 

We extend the method which uses periodic 
components to build digital fractal functions, for the 
case of analog fractal functions. We used the well-
known results for fractal binary functions, for which 
the construction is made through  a product of periodic 
functions (with values 0 and 1). As an example, cosine 
functions (cos2) are used and the analog fractal signals 
are obtained. Then, we conclude that the results for 
discrete signals can be extrapolated for continuous 
functions. The fractal characteristics of such signals 
are based in two theorems that we included in this 
paper, which assure that there are attractors and fixed 
points for our method, in a similar way to the theory of 
dynamical systems. 

Since the function has a periodic envelope, we use a 
version of the sampling theorem which permits us to 
represent it (and their scaled periodic components) 
from finite number of points. The sampling interval 

that must be used is the one corresponding to the 
component with the smallest period. 
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