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Abstract 
 

  Alternative splicing is a ubiquitous 
mechanism that generates complexity in higher 
eukaryotes, generating several transcripts and proteins 
from a single gene. Although several alternative 
splicing databases exist, they do provide neither 
visualization nor standardized classification of 
alternative splicing events. We have used a splicing 
graph approach to represent all transcripts from a 
single gene pattern approach, providing compact 
visualization as well as automated rule-based event 
classification. To facilitate common subgraph 
identification and the ability to search through splicing 
databases using a user-defined pattern, we now 
present the deconvolution of the splicing graph and 
splicing events into a minimum splicing pattern set, 
composed of four classes. An application of the 
proposed algorithm for graph matching in alternative 
splicing graph analysis in human tumour marker genes 
is presented. 
 
1. Introduction 
 
All Alternative splicing (AS) is a ubiquitous 
mechanism that generates transcript diversity in higher 
eukaryotes. In a eukaryotic genome, a gene comprises 
coding regions called exons, separated by non-coding 
regions called introns. A single gene can therefore 
generate a number of unique transcripts by combining 
exons and introns in different ways, leading to the 
phenomenon of AS. The realization that alternative 
splicing is an important way of controlling gene 
regulation has spawned several large-scale efforts to 
create bioinformatics resources on alternate transcripts 
and protein isoforms [1-5]. AS databases provide 
information on alternative splicing on a gene-by-gene   

basis but they lack visual representation and the 
systematic classification of AS events.  
 
A graph G = (V,E) in its basic form is composed of 
vertices and edges. V is the set of vertices (also called 
nodes or points) and E is the set of edges (also known 
as arcs, connections, paths or lines) of graph G. Graph 
vertices and edges containing information as simple 
labels (i.e. a name or number) are found in labelled 
graphs. When the vertices and edges contain additional 
information, called vertex and edge attributes, the 
resultant is an attributed graph [6-8].  This concept can 
be further distinguished as vertex-attributed (or 
weighted graphs) and edge-attributed graphs. 
While dealing with graphs, some of the questions that 
are relevant are: How can we align them and extract 
common or shared segments? How can we search 
through a dataset, to look for a specific segment? This 
is a fundamental question in many areas of 
computational biology from matching models of 
objects to microarray image analysis, to searching for 
clusters of similar patterns in large databases and 
fusing information held in biological pathways. 
A digraph in which the relationships among vertices 
are asymmetrical [9-10], is representative of gene 
architecture, in the biological context. These 
asymmetrical relationships are indicated by the arrows 
of the digraph.  

 
1.1. Graph theory and bioinformatics 
 
The earliest paper on graph theory [8] dates back to 
1786 by Leonhard Euler. Euler discussed whether or 
not it is possible to stroll around Konigsberg (later 
called Kaliningrad) crossing each of its bridges across 
the river Pregel, exactly once and gave the conditions 
which are necessary to permit such a stroll. Graph 



theory was developed further into directed graphs in 
1856 by Kirkman and Hamilton [8], who studied trips 
for visiting defined sites exactly once. Current 
examples of directed graphs include the World Wide 
Web, where files are the vertices or nodes and a link 
from one file to another is a directed edge. 
 
Many fields such as computer vision, scene analysis, 
chemistry and molecular biology have applications in 
which images have to be processed and some regions 
have to be searched and identified. When this 
processing is performed by a computer automatically 
without the intervention of a human expert, a useful 
way of representing the knowledge is by using graphs 
[6]. When using graphs to represent objects or images, 
vertices usually represent regions (or features) of the 
object or images, and edges between them represent 
the relations between these regions. Similar graphs can 
be used for representing objects or general knowledge, 
and they can be either directed or undirected. When 
edges are undirected, they simply indicate the 
existence of a relation between two vertices. On the 
other hand, directed edges are used when relations 
between vertices are considered in an asymmetric 
manner. One such example is the use of splicing 
graphs [11-14] for the visual representation of 
alternative transcript diversity of a single gene.  
 
1.2 Subgraphs and supergraphs 
 
Definition: A graph whose vertices and edges are 
subsets of another graph. 
 
Formal Definition: Let G = (V,E) be a graph. Let V1 
be a subset of V and E1 be a  subset of E such that G1 
= (V1, E1) is a graph. Then G1 is called a subgraph of 
G. A graph G'=(V', E') is a subgraph of another graph 
G=(V, E), which is the supergraph of G'. 
     
 For a graph G, a subgraph is a graph whose vertices 
and edge sets are subsets of G. A supergraph of G is a 
graph that contains G as its subgraph[9]. In our 
splicing graph analysis, a splicing pattern (shown in 
Figure 1) is a subgraph of the supergraph of splicing 
events (shown in Table 1), which is in turn, a subgraph 
of the splicing graph. In other words, the splicing 
graph is the supergraph of splicing events, which are 
themselves supergraphs of splicing patterns. This 
relationship is shown in Figure 2. 
 
1.3 Bioinformatics analysis of alternative 
splicing using graphs   

As eukaryotic genomes are sequenced and annotated, 
several databases dedicated to AS are now available 
[11-15], leading to genome-wide computational 
analysis, reviewed by Lee and Wang [16]. Although 
AS databases give an insight into the amount of 
alternative splicing, they do not provide any visual 
representation and classification of the types of 
alternative splicing events occurring [17].  As the 
number of transcripts per gene increases, it has become 
increasingly difficult to identify branch points and 
systematically analyze and classify AS events.  
Directed acyclic graphs were used by Modrek and Lee 
[18] for EST analysis, with the genomic DNA 
sequence as reference. Pevzner and coworkers [14] 
first used de Bruijn graphs to depict the transcripts 
alone, without referring to the genomic DNA 
sequence, where the maximum common sub-sequences 
between transcripts were condensed into nodes and the 
variable regions connected by edges. Such an approach 
has been used to generate the Alternative Splicing 
Gallery (ASG) resource [11].This representation, 
however, does not have a biological basis and is 
therefore difficult to interpret in terms of biological 
experiments and findings. 
  
Our approach has been to use directed acyclic splicing 
graphs, without a genomic DNA sequence as reference 
and defining exons as nodes, interconnected by introns 
as edges or paths through the splicing graph, 
representing individual transcripts. Such a schema was 
applied to the Drosophila melanogaster genome [12], 
to generate the DEDB data resource. Here, the first 
transcript served as a reference sequence to generate 
splicing graphs, with automatic rule-based 
classification of splicing events.  The use of exons and 
introns as nodes and edges, respectively, has the 
intuitive advantage of biological interpretation. We 
have now standardized the classification of exons into 
distinct and variable, based on their conservation or 
otherwise, in a set of transcripts. Further, we 
developed a robust, java-based method to depict a set 
of transcripts as a compact splicing graph, which is 
available freely through the Alternative Splicing Graph 
server (ASGS) [19], supplemented by automatic ruled-
based classification of AS events, to facilitate 
transcriptome analysis.  
 
In this study, we have extended our earlier method to 
classify component subgraphs as splicing patterns, 
using which we can generate AS events as 
supergraphs. An ensemble of AS events constitutes the 
complete splicing graph. Splicing patterns are a novel 
deconvolution approach to the graph bases analysis of 
alternative splicing, enabling both pattern-based 



searching through AS data resources as well as 
detecting subgraphs across genomes for comparative 
transcriptome analysis. 
 
2   Splicing patterns 
 
The splicing graph representation provides an intuitive 
approach to alternative splicing pattern analysis, where 
gene architecture can be classified using a maximum 
of four novel splicing patterns, from which the nine 
commonly-occurring AS events can be generated. 
 
 

Figure. 1. Classification of inter-exonic connections as 
splicing patterns.  
 
2.1   Decomposition of splicing graphs into a 
set of novel splicing patterns  
 
Through the analysis of splicing graphs, we can find 
distinct reference and associated variant exons. The 
relationship of each exon to its successor is designated 
as a splicing pattern. The minimum number of splicing 
patterns required to exhaustively recreate each AS 
event and splicing graph is four. These inter-exonic 
categories are labeled as class I (Distinct-Distinct), 
class II (Distinct-Variant), class III (Variant-Distinct) 
and class IV (Variant-Variant), shown in Figure 1. 
Using the unique set of splicing patterns (Fig. 1), we 
can depict all commonly occurring alternative splicing 
events as combination of classes I-IV.   
 
2.2 Algorithm for systematic splicing pattern 

detection  
 
Given a set of transcripts for any eukaryotic gene, in 
terms of the genomic coordinates of the introns and 
exons of each transcript, their step-wise processing to 
generate the minimum set of component splicing 
patterns, is set out below.  
 
1. For each transcript or isoform of a given gene, 

extract the genomic coordinates of exons and 
introns. 

2. Place all exons into a new list and sort of 
genomic position and size. Note that all exons are 

represented in the standardized sense direction (+ 
or 5’ to 3’), even if the original transcripts are 
antisense (- or 3’ to 5’).  

3. For each pair of overlapping exons, the one with 
well-determined boundaries, occurring in several 
transcripts, is retained as a distinct exon, while 
the other is classified as variable exon. 

4. If an exon contains two or more exons 
completely, retain the smaller separate exons as 
distinct, with the large one classified as variable. 
This is because the large exon contains intronic 
regions and cannot be called an “exon” in the true 
sense. 

5. Repeat steps 3 and 4 above till exons are sorted 
into distinct and variable, after which they are 
sequentially numbered. 

6. Connect distinct and variant exons, using the 
intervening intronic regions. 

7. Classify each sequential exon pair of every 
transcript using the splicing patterns defined in 
section 2.1 above. 

8. Each original transcript of the gene should 
comprise distinct and variable exons from the list 
in step 2. This checking step ensures 
completeness of data. 

9. Generate the exon table, the splicing pattern table 
and the splicing event table for each alternatively 
spliced gene.  

 
2.3   Subgraph-supergraph relationships in AS 
 
The splicing graph provides a new dimension to the 
analysis of AS, with splicing patterns as the elements 
of splicing events, and splicing events as components 
of the splicing graph. In an analytical sense, splicing 
patterns are subgraphs of splicing events, which are 
themselves subgraphs of the splicing graph. In an 
integrative sense, the splicing graph is the supergraph 
of splicing events, which are supergraphs of splicing 
patterns.This interplay between splicing patterns, 
splicing events and splicing graphs is shown in Figure. 
2.  

 
Figure. 2. Classification of inter-exonic connections as 
splicing patterns. 
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3 Comprehensive AS analysis of a tumor 
marker gene 

The splicing graph representation provides an intuitive 
approach to alternative splicing pattern analysis, where 
gene architecture can be classified using a maximum 
of four novel splicing patterns, from which the nine 
commonly-occurring AS events can be generated. 
 
Table 1. Analysis of splicing events in the human gene HE4 
(shown in Figure 3). 
 
Transcripts diversity as common exon-list 
Transcript no. Component nodes (or exons) 
1. 1+2+7 
1. 1+2+6+3+4 
3 1+3+4 
4 8+4 
5 5+2+3+9 
 
 

 

 

 

 

 
 

Figure. 3. Splicing graph analysis of the transctipts of HE4 
gene using the splicing pattern approach. A) Transcript 
summary. B) Splicing Graph for HE4. Distinct exons are 
shown in black and varable exons in blue.  All exons (nodes 
in the splicing graph) are numbered sequentially, starting 
with distinct exons and genomic positions, followed by 
variable exons and their genomic locations. 

Table 2. Splicing pattern summary for HE4 (shown in Figure 
3). 

 
Class Number Nodes 
Class I 6 1+2; 1+2; 3+4; 1+3; 3+4; 

2+3; 
Class II 3 2+7; 2+6; 3+9; 
Class III 3 6+3; 8+4; 5+2; 
Class IV 0  
 
 
Table 3. Splicing events for HE4, in terms of nodes. 
 

 
Alternative Splicing Nodes involved 

1. (1,5)+2 Alternative Transcriptional 
Start Site 

2. (3,8)+4 

1. 2+(7;4); 
2. 3+4; 

Alternative Transcriptional 
Termination Site 

3. 3+(4,9); 
Cassette exon 1. 1+{2+6}+3 

4 Discussions  

In our earlier approach, the first transcript served as a 
reference sequence to generate splicing graphs, with 
automatic rule-based classification of splicing events.  
The use of exons and introns as nodes and edges, 
respectively, has the intuitive advantage of biological 
interpretation. Such a schema was applied to the 
Drosophila melanogaster genome [12], to the DEDB 
data resource. Further we developed java based robust 
method to ease of representing a set of transcripts as a 
compact graphic is provided by the Alternative 
Splicing Graph server (ASGS), a web service for 
generating the splicing graph[19], with automatic 
ruled-based classification of AS events, to facilitate 
transcriptome analysis. However to do the comparative 
analysis of same splicing graph (gene itself)  or with 
respect other splicing graphs(gene to gene) , what we 
need deconvolution of splicing graph into splicing 
patterns. 

 We have enhanced our earlier method as systematic 
graph-pattern detection-analysis approach, to identify 
the splicing pattern and subgraph to enable automated 
splicing pattern based splicing event search across 
different genomes. For example, In HE4 [20-21], if we 
search for cassette exon, follow by splicing pattern 
class I, will result in to 1+{2+6}+3 and 3+4. Using this 
novel approach user can search for splicing pattern and 
splicing events in splicing graphs of different genomes. 

6. Conclusions 

This novel way of decomposing and representing the 
transcript diversity is adding  visual knowledge to  
alternative splicing pattern  analysis as splicing graph, 
sub-graphs and super graphs. the first is on novel sub-
graph identification as splice pattern for specific 
splicing events like intron retention, and the second on 
connection subgraphs. For the latter, the goal is to find 
the splicing path, given a set of nodes and connections 

 



as directed graph. Nodes that capture specific 
relationship between them are responsible for most of 
the splicing path is the best ones to report as biological 
markers. A systematic graph-pattern detection 
algorithm is applied to alternative splicing analysis in 
human tumour marker genes is presented. 
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