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Abstract

A design for a programming library for implement 
sequential and parallel genetic algorithms is 
presented. The packages and classes designed are 
explained and represented by UML diagrams. This 
design is intended to develop flexible and reusable 
code that permits evaluate performance of genetic 
algorithms varying easily genetic and parallel 
parameters.

1. Introduction

All Genetic Algorithms (GAs) are search techniques 
that, based on principles of natural selection and 
genetics, are applied to solve successfully problems in 
many different fields as scientific researching, 
engineering design and business [F].

Particularly in this paper we are addressing a type of 
GAs, the Parallel Genetic Algorithms (PGAs) which 
use parallel computing to improve the performance of 
GAs. Genetic Algorithms are by nature easily 
paralleled, and because of this a considerable amount 
of research has been done on this topic [B].

The goal in this paper is to present the design of a 
programming library for implementing PGAs. The 
purpose of this library  is to abstract the programmer 
from the details of the communications, migrations, 
and synchronization in the parallel aspect; and from 
generations breeding, crossover and selections methods 
in the genetic facet of a PGA, allowing at the same 
time, enough flexibility to optimize and adjust this 
genetic operators. The library design was originally 
developed to perform a series of tests of GAs and 
PGAs to solve a specific kind of combinatory 
optimization problems. Specifically the intention is to 
use a series of theoretical advances [A][C][D][E] both 
in sequential and parallel GA to propose a PGA (or 
GA) to solve this type of problems.

The paper is organized as follows. First, we offer a 
brief introduction to genetic algorithms and its main 
concepts; the third section explains parallel GAs and 
the different models that have been developed of 
PGAs. Next, the design of the programming library is 
presented, and the basic interactions between its 
components are explained. In the fifth section, the 
current state of the implementation is discussed along 
with the testing method used over the code; the paper 
ends with the conclusions and the future work with the 
library.

2. Genetic Algorithms

Genetic algorithms are stochastic search algorithms 
based on principles of natural selection and genetics. In 
this section we give a basic introduction to this 
algorithms and its associated terminology. 

GAs generally represents the possible solutions to a 
search problem by strings of finite length. Such strings, 
also called chromosomes are the equivalent of 
individuals of a species. Each chromosome or 
individual, encode a solution, this is to say, the value in 
one given position of the string represent the value of a 
variable implied in the potential solution.

A group of chromosomes is called population. In a 
genetic algorithm the population or populations are 
evaluated to select the best individuals (depending on 
the algorithm, random or even worse individuals can be 
selected), to mate and reproduce to form other 
population. This procedure is repeated through a 
number of cycles or generations, with each population 
having better individuals (potential solutions) than its 
predecessor.

This is very similar to natural evolution, where the 
fittest individuals have more probabilities to spread 
their genes to the next generation. In genetic 
algorithms, or in any method that uses evolution to find 
the solution (namely, evolutionary algorithm), is 
necessary to define how to measure the fitness a 



chromosome. This is accomplished by the definition of 
a fitness function, mathematically based (objective 
function), or such measure can be given by humans 
(subjective function) [I]. This fitness measure, once 
attained, is used to guide the evolution, favouring to 
bring up good solutions.

This process of selection and reproduction is carried 
out applying several functions, called genetic operators. 
These functions are basically: selection, crossover and 
mutation and are defined according to the type of
chromosome and the characteristics of the problem.

Another important aspect to consider is defining 
when the GA is going to stop, in other words, the stop 
condition. This can be when a predefined number of 
generations are reached; when the best individual (or 
the average of the population) give an acceptable 
solution to the problem; or when the population has 
converged, this is, when all the individuals (or a 
percentage of them), are the same.

Defining a GA implies to define these operators, 
and the parameters of the GA itself, such as: size of the 
population, type of selection, probabilities of crossover 
and mutation, stop condition parameters (number of 
generations, fitness desirable, etc), type of chromosome 
to be used (binary, real, alphabetic, etc). Besides this, a 
GA usually require to incorporate problem knowledge, 
for example, when solving a combinatory problem, an 
individual who does not comply with the restrictions 
will never generate an acceptable solution, thus it has 
to be discarded or corrected; being required an 
additional function to do this.

Although the GAs can find solutions hard or 
impossible to obtain with other techniques, the time 
required to get such solutions can be an important 
constraint when they are applied. For this reason, one 
method to improve their performance, and therefore 
reducing time, is using parallel computing. In the next 
section the different models of parallel genetic 
algorithms are discussed.

3. Parallel Genetic Algorithms

The basic idea in parallel computing is to divide a 
task in subtasks in such way, that all or most of the 
subtasks are performed at the same time using multiple 
processors. In the case of GAs such division can be 
easily performed conceptually speaking. As GAs 
manages groups of individuals, and all of them have to 
be evaluated in the same way (by the fitness function), 
parallelizing a GA can consists on dividing the 
population in smaller groups, assigning each one of 
them to one processor and make them evolve 
independently (distributed); or sending the subgroups 

to different processor only for their fitness evaluation 
(centralized).

Depending upon the way the population is 
structured, the parallels GAs can be classified in three 
main types [B]: global population, master-slave 
communications; single population fine-grained and 
multiple populations coarse-grained.

There are two aspects of PGAs to consider in this 
classification: the internal structure of the populations 
(how individuals are related to each other) and the 
nature of communications between processors in the 
algorithm. 

In a GA with global population, a chromosome can 
potentially mate with any other in the population, and 
because of this characteristic, this type of algorithms 
are called panmictic PGAs [AAA]. In such design, 
there is one processor (master) that controls the global 
population, selects, mates and mutates chromosomes, 
sending them to other processors (slaves) for their 
fitness evaluation.

The second type of PGAs, are those that have also a 
single population, but there is an structure between the 
individuals, that restricts the mating between them. 
Typically, the selection and crossover are restricted by 
“neighbourhoods”, this is to say, chromosomes are 
logically organized by locations, and a chromosome 
can only mate with chromosomes in the same location 
o neighbourhood. To permit the interaction among all 
the individual, these neighbourhoods overlaps between 
them. These PGAs are appropriate in massive parallel 
computers, with an individual by processing unit. Such 
model is called cellular or fine-grained PGA.

Next, we have the algorithms that consist of several 
populations that evolve independently, exchanging 
individuals from time to time. This exchange of 
chromosomes, called migration, makes this model 
sophisticated, because it’s needed to specify the source 
and destination, frequency, size and type of the 
migration, among other parameters. This type of 
algorithms, also called model island PGAs, are popular 
because they can be implemented using a computer 
network, without need of special hardware. But they 
are the most difficult to understand, because the effects 
of varying the migration parameters are not well 
understood yet. Furthermore, each one of the 
processors in the PGA can have subpopulations and 
migrations between them, making the algorithm even 
more complex. These algorithms are called distributed
or coarse-grained PGAs.

This work is focused on the third model, proposing 
a system that allows sequential and distributed PGAs.



4. System Design

The goal of this paper is to present the design of a 
programming library useful to implement genetic 
algorithms both sequential and parallel. This system 
was originally planned to test several models of GAs, 
with the intention of proposing a PGA design suited to 
solve a specific type of combinatory optimization 
problem.

A main problem when distributed PGAs are 
designed is to set the parameters that control the 
migration between processors. This parameter selection 
constitutes a complex problem by itself, reason why it 
is needed a system that permits to change such 
parameters without much difficulty to the programmer, 
and to reuse generic components to build a specific 
PGA.  The system designed is intended to obtain such 
flexibility and reusability.

4.1 System characteristics

As said before, the origin of this design was to solve 
a specific kind of problem, but in order to achieve that, 
it is necessary to have a way to perform variations in 
the genetic and parallel parameters of the algorithm, 
without rewriting the code. Thus, the purpose of the 
library to be developed can be extended to include 
other types of problems, as long as they require 
sequential or distributed parallel GAs. To achieve that, 
a set of desirable characteristics of the system can be 
stated as follows:

Allows to change the fitness function easily, 
capability by the programmer to add and change 
mechanisms that integrate problem knowledge, and 
permits to set easily the genetic (and parallel if 
appropriate) parameters of the GA.

4.2 UML design

The library classes are organized in four main 
packages, according to their functionality. In the 
following UML diagram, these packages and their 
relationships are shown.

 The main classes of the library and their 
relationships are represented in the following UML 
diagram.

Figure 1. Library packages

The classes and relationships contained in each one 
of these packages are shown and explained below.

GENETIC PROCESSING: The classes contained in 
the package and their relationships are shown in the 
following class diagram:

Figure 2. GENETIC PROCCESING classes

As figure 2 represents, the classes in this package 
abstract the different levels in a population: first we 
have the CGALGORTHM class, an object of this class 
represents a genetic algorithm running in a processor, a 
CGALGORITHM object will have a CPOPULATION, 
class which manages the population o populations 
evolving in the algorithm. There can be subpopulations 
or demes in a GA, and they are represented by objects 



of the CDEME class. Every CDEME object will have a 
CGRUPOCROM object, which controls directly the 
individuals evolving. Such individuals will be objects 
instanced from the CCROMOSOMA class. 
CCROMOSOMA class inherits from the CGABitString 
and CGENOMA classes. CGENOMA has the methods 
and attributes genetic related, and CGABitString the bit 
string management functionality. CGAPARAMS and 
CMIGRAPARAMS are two auxiliary classes that 
encapsulate the parameters genetic and parallel 
respectively.

FILES AND STATISTICS MANAGEMENT: This 
package contains the classes which are capable to 
write/read files, and to do statistics control. The next 
figure illustrates them.

Figure 3. FILES AND STATISTICS 
MANAGEMENT classes

In the figure above, the classes belonging to this 
package are shown. CARCHIVO is the parent class 
that defines the basic file functionality, and another five 
classes are derived from it. CARCHSTAT writes to 
disk the log of the evolutionary process and the 
statistics associated. CARCHGA reads from disk the 
file containing the genetic parameters to be 
implemented. CARCHPAR do the same thing with a 
file that contains the parallel parameters. And 
CARCHBIN is a class with the purpose to get the 
restriction matrix from a file; is a class intended for the 
specific case of solving a combinatorial problem. 
CSTATSD retrieves and controls the statistics by 
subpopulation and CSTATSP do the same with the 
total of the population. CARCHGLOB is used to write 
the general information of the evolution on disk.

PARALLEL PROCESSING: This package 
encapsulates the classes in charge to do the migration 
between subpopulation and processors, and therefore of 
the communications in the COMMUNICATIONS sub 
package. This is presented in the next figure.

Figure 4. PARALLEL PROCESSING classes

CMIGRACION is the parent class of 
CMPICOMMS and CINTERMIGRA classes. 
CMIGRACION defines the abstract methods to do the 
migration. CINTERMIGRA is the derivate class that is 
responsible for the migration among subpopulation. 
CMPICOMMS is the class that makes the 
communication and migration between different 
processors possible. That is the reason because 
CMPICOMMS is contained in the sub package 
COMMUNICATIONS. Both CINTERMIGRA and 
CMPICOMMS inherited from CMIGRACION its 
relationship with the class CREDMIGRA. An object 
CREDMIGRA contains a representation of the 
migration network between demes or populations. The 
sub package COMMUNICATIONS contains all the 
classes that manages the MPI communications, being 
CCROMMPI and CMPICROM the classes that convert 
from MPI data to genetic objects and vice versa.

GENERAL PURPOSE: This package contains two 
classes used for general purpose by several other 
classes.

Figure 5. GENERAL PURPOSE classes

CLISTAINT is a class that manages integers in a 
bounded list, and CNODOINT is the container of the 
integer, and the elements from that list.



5. Implementation

Currently the development of the library is being 
implemented as part of a Master degree thesis. The 
progress of the library is estimated in 60 %, being the 
GENETIC PROCCESSING the package with more 
progress with a 90 % of implementation.

6. Conclusions and future work

 A design for a programming library for PGAs 
development is proposed, focusing in sequential and 
parallel island model PGAs. It is intended to test this 
library with a series of combinatorial optimization 
problems, applying several theoretical advances in the 
field.

Further work is test this library to resolve specific 
problems, in particular a multidimensional knapsack 
problem is intended to be solved by this library, 
developing both a secuential and parallel version.
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