
Design of a Programming Library for the implementation of GAs and PGAs
using MPI

Aquiles Jose Manuel Mirón Enríquez, Darnes Vilariño Ayala
Benemerita Universidad Autónoma de Puebla

aquilesjm@gmail.com, darnes@solarium.cs.buap.mx

Abstract

A design for a programming library for implement
sequential and parallel genetic algorithms is
presented. The packages and classes designed are
explained and represented by UML diagrams. This
design is intended to develop flexible and reusable
code that permits evaluate performance of genetic
algorithms varying easily genetic and parallel
parameters.

1. Introduction

All Genetic Algorithms (GAs) are search techniques
that, based on principles of natural selection and
genetics, are applied to solve successfully problems in
many different fields as scientific researching,
engineering design and business [F].

Particularly in this paper we are addressing a type of
GAs, the Parallel Genetic Algorithms (PGAs) which
use parallel computing to improve the performance of
GAs. Genetic Algorithms are by nature easily
paralleled, and because of this a considerable amount
of research has been done on this topic [B].

The goal in this paper is to present the design of a
programming library for implementing PGAs. The
purpose of this library is to abstract the programmer
from the details of the communications, migrations,
and synchronization in the parallel aspect; and from
generations breeding, crossover and selections methods
in the genetic facet of a PGA, allowing at the same
time, enough flexibility to optimize and adjust this
genetic operators. The library design was originally
developed to perform a series of tests of GAs and
PGAs to solve a specific kind of combinatory
optimization problems. Specifically the intention is to
use a series of theoretical advances [A][C][D][E] both
in sequential and parallel GA to propose a PGA (or
GA) to solve this type of problems.

The paper is organized as follows. First, we offer a
brief introduction to genetic algorithms and its main
concepts; the third section explains parallel GAs and
the different models that have been developed of
PGAs. Next, the design of the programming library is
presented, and the basic interactions between its
components are explained. In the fifth section, the
current state of the implementation is discussed along
with the testing method used over the code; the paper
ends with the conclusions and the future work with the
library.

2. Genetic Algorithms

Genetic algorithms are stochastic search algorithms
based on principles of natural selection and genetics. In
this section we give a basic introduction to this
algorithms and its associated terminology.

GAs generally represents the possible solutions to a
search problem by strings of finite length. Such strings,
also called chromosomes are the equivalent of
individuals of a species. Each chromosome or
individual, encode a solution, this is to say, the value in
one given position of the string represent the value of a
variable implied in the potential solution.

A group of chromosomes is called population. In a
genetic algorithm the population or populations are
evaluated to select the best individuals (depending on
the algorithm, random or even worse individuals can be
selected), to mate and reproduce to form other
population. This procedure is repeated through a
number of cycles or generations, with each population
having better individuals (potential solutions) than its
predecessor.

This is very similar to natural evolution, where the
fittest individuals have more probabilities to spread
their genes to the next generation. In genetic
algorithms, or in any method that uses evolution to find
the solution (namely, evolutionary algorithm), is
necessary to define how to measure the fitness a

chromosome. This is accomplished by the definition of
a fitness function, mathematically based (objective
function), or such measure can be given by humans
(subjective function) [I]. This fitness measure, once
attained, is used to guide the evolution, favouring to
bring up good solutions.

This process of selection and reproduction is carried
out applying several functions, called genetic operators.
These functions are basically: selection, crossover and
mutation and are defined according to the type of
chromosome and the characteristics of the problem.

Another important aspect to consider is defining
when the GA is going to stop, in other words, the stop
condition. This can be when a predefined number of
generations are reached; when the best individual (or
the average of the population) give an acceptable
solution to the problem; or when the population has
converged, this is, when all the individuals (or a
percentage of them), are the same.

Defining a GA implies to define these operators,
and the parameters of the GA itself, such as: size of the
population, type of selection, probabilities of crossover
and mutation, stop condition parameters (number of
generations, fitness desirable, etc), type of chromosome
to be used (binary, real, alphabetic, etc). Besides this, a
GA usually require to incorporate problem knowledge,
for example, when solving a combinatory problem, an
individual who does not comply with the restrictions
will never generate an acceptable solution, thus it has
to be discarded or corrected; being required an
additional function to do this.

Although the GAs can find solutions hard or
impossible to obtain with other techniques, the time
required to get such solutions can be an important
constraint when they are applied. For this reason, one
method to improve their performance, and therefore
reducing time, is using parallel computing. In the next
section the different models of parallel genetic
algorithms are discussed.

3. Parallel Genetic Algorithms

The basic idea in parallel computing is to divide a
task in subtasks in such way, that all or most of the
subtasks are performed at the same time using multiple
processors. In the case of GAs such division can be
easily performed conceptually speaking. As GAs
manages groups of individuals, and all of them have to
be evaluated in the same way (by the fitness function),
parallelizing a GA can consists on dividing the
population in smaller groups, assigning each one of
them to one processor and make them evolve
independently (distributed); or sending the subgroups

to different processor only for their fitness evaluation
(centralized).

Depending upon the way the population is
structured, the parallels GAs can be classified in three
main types [B]: global population, master-slave
communications; single population fine-grained and
multiple populations coarse-grained.

There are two aspects of PGAs to consider in this
classification: the internal structure of the populations
(how individuals are related to each other) and the
nature of communications between processors in the
algorithm.

In a GA with global population, a chromosome can
potentially mate with any other in the population, and
because of this characteristic, this type of algorithms
are called panmictic PGAs [AAA]. In such design,
there is one processor (master) that controls the global
population, selects, mates and mutates chromosomes,
sending them to other processors (slaves) for their
fitness evaluation.

The second type of PGAs, are those that have also a
single population, but there is an structure between the
individuals, that restricts the mating between them.
Typically, the selection and crossover are restricted by
“neighbourhoods”, this is to say, chromosomes are
logically organized by locations, and a chromosome
can only mate with chromosomes in the same location
o neighbourhood. To permit the interaction among all
the individual, these neighbourhoods overlaps between
them. These PGAs are appropriate in massive parallel
computers, with an individual by processing unit. Such
model is called cellular or fine-grained PGA.

Next, we have the algorithms that consist of several
populations that evolve independently, exchanging
individuals from time to time. This exchange of
chromosomes, called migration, makes this model
sophisticated, because it’s needed to specify the source
and destination, frequency, size and type of the
migration, among other parameters. This type of
algorithms, also called model island PGAs, are popular
because they can be implemented using a computer
network, without need of special hardware. But they
are the most difficult to understand, because the effects
of varying the migration parameters are not well
understood yet. Furthermore, each one of the
processors in the PGA can have subpopulations and
migrations between them, making the algorithm even
more complex. These algorithms are called distributed
or coarse-grained PGAs.

This work is focused on the third model, proposing
a system that allows sequential and distributed PGAs.

4. System Design

The goal of this paper is to present the design of a
programming library useful to implement genetic
algorithms both sequential and parallel. This system
was originally planned to test several models of GAs,
with the intention of proposing a PGA design suited to
solve a specific type of combinatory optimization
problem.

A main problem when distributed PGAs are
designed is to set the parameters that control the
migration between processors. This parameter selection
constitutes a complex problem by itself, reason why it
is needed a system that permits to change such
parameters without much difficulty to the programmer,
and to reuse generic components to build a specific
PGA. The system designed is intended to obtain such
flexibility and reusability.

4.1 System characteristics

As said before, the origin of this design was to solve
a specific kind of problem, but in order to achieve that,
it is necessary to have a way to perform variations in
the genetic and parallel parameters of the algorithm,
without rewriting the code. Thus, the purpose of the
library to be developed can be extended to include
other types of problems, as long as they require
sequential or distributed parallel GAs. To achieve that,
a set of desirable characteristics of the system can be
stated as follows:

Allows to change the fitness function easily,
capability by the programmer to add and change
mechanisms that integrate problem knowledge, and
permits to set easily the genetic (and parallel if
appropriate) parameters of the GA.

4.2 UML design

The library classes are organized in four main
packages, according to their functionality. In the
following UML diagram, these packages and their
relationships are shown.

 The main classes of the library and their
relationships are represented in the following UML
diagram.

Figure 1. Library packages

The classes and relationships contained in each one
of these packages are shown and explained below.

GENETIC PROCESSING: The classes contained in
the package and their relationships are shown in the
following class diagram:

Figure 2. GENETIC PROCCESING classes

As figure 2 represents, the classes in this package
abstract the different levels in a population: first we
have the CGALGORTHM class, an object of this class
represents a genetic algorithm running in a processor, a
CGALGORITHM object will have a CPOPULATION,
class which manages the population o populations
evolving in the algorithm. There can be subpopulations
or demes in a GA, and they are represented by objects

of the CDEME class. Every CDEME object will have a
CGRUPOCROM object, which controls directly the
individuals evolving. Such individuals will be objects
instanced from the CCROMOSOMA class.
CCROMOSOMA class inherits from the CGABitString
and CGENOMA classes. CGENOMA has the methods
and attributes genetic related, and CGABitString the bit
string management functionality. CGAPARAMS and
CMIGRAPARAMS are two auxiliary classes that
encapsulate the parameters genetic and parallel
respectively.

FILES AND STATISTICS MANAGEMENT: This
package contains the classes which are capable to
write/read files, and to do statistics control. The next
figure illustrates them.

Figure 3. FILES AND STATISTICS
MANAGEMENT classes

In the figure above, the classes belonging to this
package are shown. CARCHIVO is the parent class
that defines the basic file functionality, and another five
classes are derived from it. CARCHSTAT writes to
disk the log of the evolutionary process and the
statistics associated. CARCHGA reads from disk the
file containing the genetic parameters to be
implemented. CARCHPAR do the same thing with a
file that contains the parallel parameters. And
CARCHBIN is a class with the purpose to get the
restriction matrix from a file; is a class intended for the
specific case of solving a combinatorial problem.
CSTATSD retrieves and controls the statistics by
subpopulation and CSTATSP do the same with the
total of the population. CARCHGLOB is used to write
the general information of the evolution on disk.

PARALLEL PROCESSING: This package
encapsulates the classes in charge to do the migration
between subpopulation and processors, and therefore of
the communications in the COMMUNICATIONS sub
package. This is presented in the next figure.

Figure 4. PARALLEL PROCESSING classes

CMIGRACION is the parent class of
CMPICOMMS and CINTERMIGRA classes.
CMIGRACION defines the abstract methods to do the
migration. CINTERMIGRA is the derivate class that is
responsible for the migration among subpopulation.
CMPICOMMS is the class that makes the
communication and migration between different
processors possible. That is the reason because
CMPICOMMS is contained in the sub package
COMMUNICATIONS. Both CINTERMIGRA and
CMPICOMMS inherited from CMIGRACION its
relationship with the class CREDMIGRA. An object
CREDMIGRA contains a representation of the
migration network between demes or populations. The
sub package COMMUNICATIONS contains all the
classes that manages the MPI communications, being
CCROMMPI and CMPICROM the classes that convert
from MPI data to genetic objects and vice versa.

GENERAL PURPOSE: This package contains two
classes used for general purpose by several other
classes.

Figure 5. GENERAL PURPOSE classes

CLISTAINT is a class that manages integers in a
bounded list, and CNODOINT is the container of the
integer, and the elements from that list.

5. Implementation

Currently the development of the library is being
implemented as part of a Master degree thesis. The
progress of the library is estimated in 60 %, being the
GENETIC PROCCESSING the package with more
progress with a 90 % of implementation.

6. Conclusions and future work

 A design for a programming library for PGAs
development is proposed, focusing in sequential and
parallel island model PGAs. It is intended to test this
library with a series of combinatorial optimization
problems, applying several theoretical advances in the
field.

Further work is test this library to resolve specific
problems, in particular a multidimensional knapsack
problem is intended to be solved by this library,
developing both a secuential and parallel version.

7. References

[AAA]Alba E., Tomassini M. (2002). Parallelism and
Genetic Algorithms. IEEE Transactions on Evolutionary
Computation 6 (5), pp. 443-462.

[A] Cantú-Paz, E., & Goldberg, D.E. (1997a) “Modeling
idealized bounding cases of parallel genetic algorithms”. In
Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba,
H., & Riolo, R. (Eds.), Genetic Programming 1997:
Proceedings of the Second Annual Conference (pp. 353-
361). San Francisco, CA: Morgan Kaufmann Publishers.

[B] Cantu-Paz, E. (1998). A survey of parallel genetic
algorithms. Calculateurs Paralleles, Reseaux et Systems
Repartis. Vol. 10, No. 2. pp. 141-171. Paris: Hermes.

[C] Cantú-Paz, E. and Goldberg, D.E. (1999). “On the
scalability of parallel genetic algorithms”. Evolutionary
Computation. 7(4), 429-449.

[D] Cantú-Paz, E. (1999b). “Designing Efficient and
Accurate Parallel Genetic Algorithms”. PhD thesis.
University of Illinois at Urbana-Champaign.

[E] Cantu-Paz, E. (2001). “Migration policies, selection
pressure, and parallel evolutionary algorithms” Journal of
Heuristics. 7(4), 311-334

[F] Goldberg D. E. (1994). "Genetic and evolutionary
algorithms come of age". Communications of the ACM, vol.
37, no 3, p. 113–119.

[G] Goldberg, D. E., (1989b) “Genetic Algorithms in Search
Optimization and Machine Learning”, Addison-Wesley,
Reading, MA.

[H] Holland, J. H., (1975) “Adaptation in Natural and
Artificial Systems”, University of Michigan Press, Ann
Arbor, MI.

[I] Sastry, K., Goldberg, D.E., Kendall, G. (2005). In Burke,
E. and Kendall, G. (Eds), Introductory Tutorials in
Optimization, Search and Decision Support Methodologies.
Berlin: Springer.

