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Abstract

In the present paper a morphological approach for seg-
menting orientation fields is proposed. This approach is
based on the concept of the line-segment and orientation
functions. The line-segment function is computed from the
supremum of directional erosions. This function contains
the sizes of the longest lines that can be included in the
structure. To determine the directions of the line segments,
the orientation function which contains the angles of the
line segments it is built when the line-segment function is
computed. Next, by combining both images, permits the
construction of a weighted partition using the watershed
transformation. Finally, the elements of the partition are
merged according to some directional and size criteria for
computing the desired segmentation of the image using a
RAG structure.

1. Introduction

Anisotropic structures are frequently found in many
classes of images (materials, biometry images, biology,
...),however, few works dealing with directional analysis
in morphological image processing have been carried out
[17, 16, 6, 12, 11] among others. It is maybe in the domain
of fingerprint recognition, which is today the most widely
used biometric features for personal identification, where
the study of directional structures based on orientation-
fields detection is an active subject of research [3, 13, 9].
In fact, fingerprints can be considered as a structure com-
posed by a set of line segments (see Fig. 1(a)). However,

orientation-field detection also plays a fundamental role in
other domains [8, 1, 7]. Lee etal [8] propose a method
based on oriented connectivity for segmenting solar loops,
while Kass and Witkin [7] propose a method to analyze ori-
ented patterns in wood grain. Given the interest in orien-
tation pattern models for characterizing structures, thispa-
per investigates the use of the mathematical morphology for
modelling orientation fields. As in the human vision, com-
puter image processing of oriented image structures often
requires a bank of directional filters or template masks, each
of them sensitive to a specific range of orientations [17].
Then, one investigates the use of an approach based on di-
rectional erosions. In the literature there exist several works
to characterize directional structures based on the gradient
computation that can be formalized in terms of mathemat-
ical morphology. See for example the works of [7, 2, 9].
The problem of the gradients is that they work at pixel scale,
they are very sensitives to noise and a final stage to enhance
directional field is required. Then, the main idea in this pa-
per is focused on another approach that permits to take into
account the whole context of the structures contained in the
image. That means, a local approach using the concept of
line-segment function combined with the watershed trans-
formation is used. In our case, the line-segment function is
computed from the supremum of directional erosions. This
function contains the information of the longest line seg-
ments that can be placed inside the structure. In order to
know their orientations, a second image is defined by ob-
serving the construction of the line-segment function and
its evolution. This second image is computed by detect-
ing the orientation of the supremum of directional erosions.
These local descriptors, for the element size and orienta-
tion, enable the identification of the orientation fields based



on the watershed transformation. This paper is organized
as follows. In Section 2, the concepts of morphological fil-
ter and directional morphology are presented. In Section 3
the notions of line-segment and orientation functions, de-
rived from the supremum of directional erosions, are intro-
duced. Next, in Section 4 an approach of working with di-
rectional morphology, the watershed transform and a region
adjacency graph (RAG) for segmenting orientation fields is
proposed. Finally, a study of the algorithm to compute the
line-segment and the orientation function is analyzed.
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Figure 1. (a), (b) Fingerprint and Pearlitic im-
ages

2 Some Concepts of Morphological Filtering

Mathematical morphology is based principally on so-
called increasing transformations [14, 5]. In fact, one calls
morphological filter all increasing and idempotent transfor-
mation. The basic morphological filters are the morpholog-
ical openingγµB and the morphological closingϕµB with
a given structuring element. Here,B represents the ele-
mentary structuring element containing its origin (for ex-
ample a square of3 × 3 pixels), B̌ is the transposed set
(B̌ = {−x : x ∈ B}) andµ is an homothetic parameter.
Then, the morphological opening and closing are given:

γµB(f) = δµB̌(εµB(f)) and

ϕµB(f) = εµB̌(δµB(f)) (1)

where the morphological erosionεµB and dilation δµB

are expressed byεµB(f)(x) = ∧{f(y) : y ∈
µB̌x} and δµB(f)(x) = ∨{f(y) : y ∈ µB̌x}. ∧ is
the inf operator and∨ is the sup operator.

Morphological directional transformations are character-
ized by two parameters. A structuring element L depends on
its length (sizeµ) and on its the slope (angleα). Thus, the
set of points of a line segmentL(α, µ) is computed by two
sets of points forα ∈ [0, 90]. The sets of points{(xi, yi)}
defined by the following expressions: if0 ≤ α ≤ 45 then

yi = xitan(α) for xi = 0, 1, · · · , (µ/2)cos(α)

and if90 ≥ α > 45 then,

xi = yicot(α) for yi = 0, 1, · · · , (µ/2)cos(α)

and the set of points{(−xi,−yi)}. This means, the
structuring element is a symmetric setL(α, µ)=L̂(α, µ).
Similar expressions can be expressed forα ∈ (90, 180].
Then, the morphological opening and closing are given by:

γL(α,µ)(f) = δL(α,µ)(εL(α,µ)(f)) and

ϕL(α,µ)(f) = εL(α,µ)(δL(α,µ)(f)) (2)

where the morphological erosion and dilation are given
by: εL(α,µ)(f)(x) = min{f(y) : y ∈ L(α, µ)(x)} and
δL(α,µ)(f)(x) = max{f(y) : y ∈ L(α, µ)(x)}
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 Figure 2. (a) Original image, (b), (c) Direc-
tional openings at direction 30 degrees with
size 20 and 30, respectively, (d) Directional
opening at direction 50 degrees size 30, (e),
(f) and (g) Morphological closings size 10 of
images in 2 (b), (c) and (d), respectively.

3 Size and Orientation Codification Based on
Directional Erosions

In this section and in the following ones we will look for
an approach where the connectivity notion plays a funda-
mental role for segmenting the orientation fields. In fact,
it is well-known that the notion of connectivity is linked to
the intuitive idea of the segmentation task, where the ob-
jective is to split the connected components into a set of
elementary shapes that will be processed separately. Then,
the problem lies in determining what a connected compo-
nent is for an image such as those illustrated in Fig. 1. One
can take different ways for introducing such a concept. For
example, in Fig. 2 some orientation structures are extracted



using directional openings. Then, the orientation fields are
determined by a clustering process computed in this case
by a morphological closing. Figures 2 (b) and (c) show the
directional openings at direction 30 degrees with sizes of
the structuring elements of 20 and 30, respectively. To de-
termine the orientation fields, the directional granulometry
and a connectivity introduced by means of closings (or di-
lation) for extracting some clustering enable us to compute
the orientation fields as illustrated in Figs. 2 (e) and (f).
Nevertheless, the computing of the orientation fields by this
approach can become very complex. For instance, in Figs.
2 (d) and (g) the orientation fields were determined for an
angle of 50 degrees and a scale of 30. Some regions of the
orientation fields of the images in Figs. 2 (c) and (f) are
the same than those of the images in Figs. 2 (d) and (g)
(i.e., the intersection between these images is not empty).
Given that deficiency, we look for another approach where
the scale and direction of the structures can be easily acces-
sible. Two functions that codify the size and the orientation
are introduced below. Let us now to define the following
function:

Definition 1 The line-segment functionDmX(x) is a
transformation that associates with each pixel x of a set X
the length of the longest line segment placed at point x and
completely included in X.

The goal of building this function consists in codify-
ing the size information in such a way that local direc-
tional information can be accessed from each point of the
function. The line-segment functionDmX , is computed
by using the supremum of directional erosions. To stock
the size information for allλ values, a gray-level image
DmX is used. Let X be a given set, one begins with a
small structuring element by taking into account all ori-
entations to compute the setSupα∈[0,180]{εL(λ,α)(X)}.
One takes all points of the image that are not removed
by at least one of the directional erosions. Then one in-
creasesDmX by one at all points x belonging to the set
Supα∈[0,180]{εL(λ,α)(X)}, and one continues the proce-
dure by increasing the size of the structuring element until
the structure (the image) is completely removed. In other
words, the procedure continues until one has aλmax value
such thatSupα∈[0,180]{εL(λmax,α)(X)} = ∅. Figures 3(b)
and (c) show the output images computed from the original
image in Fig. 3(a) for the size values 40 and 60, respec-
tively. As expressed before, the gray-levels of the function
DmX , are the sizes of the longest lines that can be included
in the structure. Whereas, for the structures that can be
considered as composed as a set of lines, as those in Figs.
1(a) and (b), we assume that the the maxima of the function
DmX play a main role since they codifies the longest lines
that take the whole context of the image. Thus, one knows
the position of the largest structuring elements that can be

included completely in the structure. However, the angles
of these structuring elements (line segments) are not acces-
sible from the imageDmX . Then, let us introduce a second
function associated to the line-segment function.

Definition 2 The orientation functionOmX(x) is a trans-
formation that associates with each pixel x of a set X the
angle of the longest line segment placed at point x and com-
pletely included in X.

Therefore, one stocks the directions of the line segments
in a second imageOmX , called orientation function, when
the line-segment function is computed. A real example
(pearlitic phase micrograph) is shown in Fig. 4. The images
in Fig. 4(b)-(c) illustrate the line-segment functionDmX

image and the image containing the orientationOmX , re-
spectively, computed from the binary image in Fig. 4(a).
These functions serve to suggest a method for segmenting
images of orientation fields.
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Figure 3. (a)Original image, (b) and (c) Supre-
mum of directional erosions size 40 and 60.

4 Image Segmentation Using the Watershed
Transformation and a RAG

Image segmentation is one of the most interesting prob-
lems in image processing and analysis. The main goal in
image segmentation consists in extracting the regions of
greatest interest in the image [4, 10]. In mathematical mor-
phology, the watershed-plus-marker approach is the tradi-
tional image segmentation method [10]. Here, an alterna-
tive approach for segmenting images with orientation fields
is applied. Instead of looking for a set of markers signaling
the regions, the watershed will be applied directly to obtain
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Figure 4. (a) Original image, (b) and (c) Line-
segment and orientation functions, (d) Water-
shed, (e) Weighted catchment basins, (f) Seg-
mented image, (g) and (h) Connected compo-
nents of (f)

a fine partition. Then a systematic merging process will be
applied to obtain the final segmentation. Figure 4(d) shows
the the watershed computed from the inverse image of im-
ageDmX in Fig. 4(b). To carry out the merging process it
is preferable to work with the catchment basins associated
with the watershed image. Figure 4(e) shows the catchment
basins weighted by the values of the angles of the regional
maxima of theOmX image in Fig. 4(c). Now, by analyz-
ing a region of the image in Fig.4(e), one can identify the
neighboring regions with more-or-less similar orientations.
In order to take into account their neighborhood relation-
ships, a region adjacency graph (RAG) must be computed.
In fact, the RAG simplifies the merging process. We have
chosen the method proposed in [15] for the merging pro-
cess. Each vertexvi of the RAG corresponds a regionRi

with orientation values (for example, the mean value−→µ i

and variance value−→σ i of the region) representative of the
orientation distribution of this region. Each edgeeij repre-
sents a pair of adjacent regions{Ri, Rj} with a correspond-
ing orientation distanced(Ri, Rj), which can be used to
compare the orientation distributions of these two regions.
In our case, the computation of the RAG, using the angles
of the regions, guides the subsequent merging of regions
and provides a complete description of the neighborhoods.
The RAG graph is constructed by the use of the catchment
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Figure 5. (a) Original image, (b) Mask image,
(c) Weighted partition, (d) filtered image by
size criterion, (e) Segmented image, (f), (g)
and (h) Three connected components of the
segmented image.

basins of the image in Fig.4(e). One takes a point from
each minimum of the inverse line-segment function for rep-
resenting each catchment basin. Each edge is assigned a
value given by the absolute value of the difference between
the angles of two neighboring regions, computed from the
orientations image. The neighborhood graph of the max-
ima of the line-segment functionDmX and the orientation
OmX function synthesize the directional field of the im-
age. Two vertices of the graph are linked by an edge if the
catchment basins are neighbors, and the value of the edge
represents the directional similarity. Once the regions are
codified on a graph, we can compute the orientation fields
based on the valued graph. The following method (see [15])
for reducing the numbers of regions may be carried out: a)
Each border has assigned an orientation distance between
the two regions it separates, b) The borders are sorted in
increasing order, c) Two regions separated by the smallest
distance are merged, d) The step (b) is repeated until the
criterion can not be satisfied. We illustrate the method by
identifying the adjacent regions with more-or-less similar
orientation by considering the image in Fig. 1(b), a mi-
crograph of the pearlite structure in steel. To achieve such
a goal, one merges the vertices (catchment basins) with a
difference of angles smaller than or equal to a given angle
valued(Ri, Rj) = |angle(Ri) − angle(Rj)| ≤ θ. Fig-



ure 4(f) shows the segmented image of the image in Fig. 4
(e), while Figs. 4 (g) and (h) show some connected com-
ponents of the segmented image. Once the grains of the
perlitic structure are separated, it is now possible to com-
pute some measures (for example, a granulometric study).
It is clear that, when the regions of the image are codified
under the form of a graph, many criteria can be easily intro-
duced to segment the image. Figure 5 shows this advantage
of using a RAG structure for the merging process since the
introduction of other criteria can improve the final segmen-
tation. However, in this example, instead of computing the
catchment basins on the whole image, one can do better by
computing the weighted partition in a geodesic way. The
mask where the catchment basins transform will be applied
is given by the image in Fig. 5 (b). This is the output image
obtained by the morphological closing size 6 of the original
image in Fig. 5 (a). Then, the image in Fig. 5(c) is com-
puted by the catchment basins inside the mask. Since thin
connections exist between the directional structures of the
orientation fields, one observes in Fig. 5 (c) small regions
that are not representative of the structure (from a segmen-
tation point of view). A size criterion was introduced to
remove these regions as illustrated in Fig. 5 (d). Once the
small regions are removed, two other criteria can be applied
for obtaining the final segmentation. Let−→µ i and−→σ i be the
mean and the variance values in the regionRi. Then, two
regionsRi andRj can be merged if the orientation distance
d−→µ (Ri, Rj) = |−→µ (i) − −→µ (j)| ≤ θ. This means, after the
merging process between regions is carried out, the mean
value is used to describe the new region and a new vari-
ance value is computed. However, even if the mean differ-
ence criterion is satisfied, if one of the regions has a great
variance (−→σ i > τ or −→σ j > τ ) , these regions will not be
merged. Figure 5 (e) shows the segmented image using a
mean orientation difference criterionθ = 15 degrees and
using a variance criterionτ = 5.5. Under our approach
the images in Figs. 5 (f), (g) and (h) show three connected
components of the original image in Fig.5 (a), according to
the image in Fig. 5(e). Compare these images, and in par-
ticular the images in Figs. 5 (f) and(h), with those of Fig.
2. From the point of view of fingerprint recognition, the
connected components illustrate the existence of a singular
point (core). The largest component (third connected one)
describes a separation with the topmost curving that enables
to classify this fingerprint. The image in 5 (e) shows clearly
the existence of the core.

5 Non-Parametric Algorithm to Build the
Line-Segment and Orientation Functions

Let us illustrate an algorithm to build the line-segment
and the orientation functions that does not require any pa-
rameter and that is not expensive in computation time. First,

concerning the size parameter (largest structuring element),
it was fixed to the size of the image diagonal that is the
size of the largest structure that can be include in the image.
Let Sx and Sy be the dimension of the images, horizon-
tal and vertical axis, respectively. For example, for a VGA

image640 × 480, one hasL =
√

S2
x + S2

y = 800, then

the largest structuring element has a size of 400 since one
uses symmetrical structuring elements. It is clear that few
cases of images, containing such structural characteristics,
can be found in real images. Next, one requires to fixe the
step in degrees to compute the line segments. In practice,
a step between 5 and 10 degrees is sufficiently, but let us
fix it to a smaller value (one degree) in order to show the
limiting case in computation time. Then, one computes 180
structuring elements of size L, and they are stocked in a
structure data (list of lists). Since symmetrical structuring
elements are used, only half of the straight lines is stocked
and centered at origin(0, 0). In fact, only the Freeman
codes are stocked. Let{Lsi} with i ∈ {0, 1, 2, ..., 179}
be the lists containing the Freeman codes required to build
a half of the structuring elements and letLsj be a given
list. The structuring element is built using the listLsj =
{ck} with ck ∈ {0, 1, 2, 3, ..., 7} and its symmetrical data
Ľsj = {čk} with čk = (ck + 4) mod 8. Consider the ex-
ample in Fig. 6(a) where an erosion by a line segment is
applied to the structure in gray color. The structuring ele-
ment is obtained from the listLsj = {0, 1, 0, 1, 0, 1, 0, 1, 0}
and Ľsj = {4, 5, 4, 5, 4, 5, 4, 5, 4}. Now, to compute the
erosion at point (x,y) of an imagef marked by a white
dot, one begins by computing the smallest value between
the points (x-1,y), (x,y) and (x+1,y). Then, the erosion
size one is given by the infimum (the intersection for sets)
ε1(f)(x, y) = f(x − 1, y)

∧

f(x, y)
∧

f(x + 1, y). Next,
one computes the erosion size 2 with the following two
points of the structuring element (x-2,y+1) and (x+2,y+1)
and the erosion size oneε1(f)(x, y), thus,ε2(f)(x, y) =
f(x − 2, y − 1)

∧

ε1(f)(x, y)
∧

f(x + 2, y + 1). The pro-
cedure continues until the last pair of points of the struc-
turing element is taken into account. In this example, a
longer structuring element to remove the point (x,y) of the
image is required. Nevertheless, in the example in Fig.
6(b), when the third erosion is applied, the point is re-
moved by the erosion; i.e.,ε3(f)(x, y) = f(x − 3, y −
2)

∧

ε2(f)(x, y)
∧

f(x+3, y+3) = 0, then, the procedure
is stopped. This procedure is applied at each point of the
image. It is clear that the fact of using the infimum (AND
operation in a computer) to compute the erosion and to stop
the procedure when it is no longer required, permits to com-
pute the erosion of the image faster. Then, instead of cal-
culating theSupα∈[0,180]{εL(λ,α)}, one computes at each
point x of the image, the longest structuring element that
can not remove this point. Next, the length of this struc-
turing element is used to affect the functionDmX at point



x. For instance, in the example in Fig. 4(a), an image of
size512 × 512 pixels, 5 seconds are required to compute
the line-segment and orientation images using an angle step
of one degree, whereas working with a step of 5 degrees in
the interval [0,180] a second is only required. For the im-
age in Fig. 5(a) (300x300 pixels) one requires less than two
seconds using an angle step of one degree. The computer,
that has been used for the experiments, is a laptop with 1.59
Ghz processor and 256 MB in RAM.

 

(a)      (b) 

Figure 6. (a) and (b) Directional erosions.

6 Conclusion

This paper has shown the possibilities for application of
morphological directional transformations to segment im-
ages with orientation fields. A local approach that involves
a local analysis using the concepts of the line-segment and
orientation functions is proposed in this paper. The maxima
of the line-segment function were used for computing the
loci of maximal structuring elements, and the orientation
function was used to obtain the angles of the line segments.
Then, a partition of the image may be computed by means
of the catchment basins associated with the watershed trans-
form. This enables us to realize a neighborhood analysis,
using a RAG structure, in order to merge adjacent regions
of the partition according to appropriate criteria, thus seg-
menting the images into orientation fields. The results based
on the algorithms presented in this paper show the good per-
formance of the approach.
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