
An Extension of the System cc⊤ for Testing Relativised Uniform Equivalence

under Answer-Set Projection∗

Johannes Oetsch

Institut für Informationssysteme 184/3,

Technische Universität Wien,

Favoritenstraße 9-11,

A-1040 Vienna, Austria

oetsch@kr.tuwien.ac.at

Martina Seidl

Institut für Softwaretechnik 188/3,

Technische Universität Wien,

Favoritenstraße 9-11,

A-1040 Vienna, Austria

seidl@big.tuwien.ac.at

Hans Tompits

Institut für Informationssysteme 184/3,

Technische Universität Wien,

Favoritenstraße 9-11,

A-1040 Vienna, Austria

tompits@kr.tuwien.ac.at

Stefan Woltran

Institut für Informationssysteme 184/2,

Technische Universität Wien,

Favoritenstraße 9-11,

A-1040 Vienna, Austria

woltran@dbai.tuwien.ac.at

Abstract

The system cc⊤ is a tool for testing correspondence be-

tween nonmonotonic logic programs under the answer-set

semantics with respect to different refined notions of pro-

gram correspondence. The basic architecture of cc⊤ is

to reduce a given correspondence problem into the satis-

fiability problem for quantified propositional logic and to

employ off-the-shelf solvers for the latter language as back-

end inference engines. In a previous incarnation of cc⊤,

the system was designed to test correspondence between

logic programs based on relativised strong equivalence un-

der answer-set projection. Such a setting generalises the

usual notion of strong equivalence by taking the alphabet of

the context programs as well as the projection of the com-

pared answer sets to a set of designated output atoms into

account. In this paper, we describe an extension of cc⊤
for testing similarly parameterised correspondence prob-

lems but generalising uniform equivalence, which have re-

cently been introduced in previous work. Besides reviewing

the formal underpinnings of the new component of cc⊤, we

discuss an alternative encoding as well as optimisations for

special problem classes. Furthermore, we give a prelimi-

∗The authors of this work were partially supported by the Austrian

Science Fund (FWF) under grant P18019; the second author was also

supported by the Austrian Federal Ministry of Transport, Innovation,

and Technology (BMVIT) and the Austrian Research Promotion Agency

(FFG) under grant FIT-IT-810806.

nary performance evaluation of the new component.

1. Introduction

In this paper, we deal with a system for testing vari-

ous refined notions of program correspondence for non-

monotonic logic programs under the answer-set semantics.

The latter formalism has been proven useful in a vari-

ety of domains including planning, diagnosis, information

integration, and Semantic-Web reasoning, and represents

the canonical instance of the general answer-set program-

ming (ASP) paradigm, an important approach for declara-

tive problem solving.

The system discussed here, called cc⊤ (standing for

“correspondence-checking tool”) [12], belongs to a current

line of research in ASP about questions of program equiv-

alence relevant for different software engineering tasks like

modular programming and debugging. This research was

for the most part initiated by the seminal work of Lifschitz,

Pearce, and Valverde [11] about strong equivalence. Al-

beit the latter notion circumvents a shortcoming of ordi-

nary equivalence between logic programs (viz., that ordi-

nary equivalence does not yield a replacement property sim-

ilar to the one of classical logic), it is however too restric-

tive for certain applications. This led to the investigation of

more liberal notions, chiefly among them uniform equiva-

lence [6]. In any case, both strong and uniform equivalence

do not take standard programming techniques like the use



ccT

program P

program Q

context set A

projection set B

non-normal form

QBF-solver

normal form 

QBF-solver
qst

non-normal form 

QBF

normal form

QBF

input files

Figure 1. Overall architecture of cc⊤.

of local (auxiliary) variables into account, which may oc-

cur in some subprograms but which are ignored in the final

computation. In other words, these notions do not admit the

projection of answer sets to a set of dedicated output atoms.

To accommodate issues like the above, Eiter et al. [7] in-

troduced a general framework for specifying parameterised

notions of program correspondence, allowing both answer-

set projection as well as the specification which kind of

context class should be used for the program comparison.

This framework thus generalises not only strong and uni-

form equivalence but also relativised versions thereof [18]

(where “relativised” means that the alphabet of the context

class is an additional parameter).

The system cc⊤ was developed as a checker for the

type of correspondence problems which were the main fo-

cus of the analysis of Eiter et al. [7], viz. for correspondence

problems generalising strong equivalence. The main ap-

proach of cc⊤ to verify these kinds of problems is to reduce

them to the satisfiability problem of quantified propositional

logic.1 Such a reduction approach is motivated by two as-

pects: (i) the high complexity of the considered problems—

lying on the fourth level of the polynomial hierarchy—

makes it in general presumably infeasible to compute them

by means of answer-set solvers, yet efficient encodings to

quantified propositional logic are possible, and (ii) the ex-

istence of sophisticated solvers for quantified propositional

logic.

In this paper, we discuss an extension of cc⊤ for check-

ing further classes of correspondence problems from the

framework of Eiter et al. [7], viz. problems generalising

uniform equivalence. These kinds of problems were re-

cently analysed in previous work [14] and are called propo-

sitional query equivalence problems (PQEPs) and proposi-

tional query inclusion problems (PQIPs) (the names stem

from taking a database point of view in which programs are

1Recall that quantified propositional logic is an extension of ordinary

propositional logic allowing quantifications over atomic formulas. Fol-

lowing custom, we refer to formulas of quantified propositional logic as

quantified Boolean formulas (QBFs).

considered as queries over databases). Like for their strong

pendants, checking PQEPs and PQIPs is computationally

hard, lying on the third level of the polynomial hierarchy,

therefore a similar reduction approach to QBFs is viable.

Indeed, such reductions are described in previous work [14],

and the new component of cc⊤ is based on these reduc-

tions, which we review in this paper.

The overall architecture of cc⊤ is depicted in Figure 1.

It takes as input two programs, P and Q, as well as the con-

text set A and the projection set B. This input is then trans-

formed into a QBF which can then handed to QBF solvers.

Validity of the resulting QBF reflects the outcome of the

original problem, which holds when, for any set R ⊆ A
of facts, the answer sets of P ∪ R and Q ∪ R projected to

B coincide (in case of a PQEP) or when the answer sets

of P ∪ R projected to B are included in the answer sets of

Q ∪R projected to B (in case of a PQIP).2 Since the QBFs

generated by cc⊤ are not in a particular normal form, for

solvers requiring normal-form QBFs, a corresponding nor-

maliser, qst [19], is needed.

In complementing the reductions given by Oetsch et

al. [14], we provide refined reductions for PQEPs and

PQIPs which use less variables than the original ones. Fur-

thermore, we discuss simplified transformations for special

problem classes. All these transformations have been im-

plemented in an extension of cc⊤. We round off our dis-

cussion by reporting about a preliminary experimental eval-

uation of the extension of cc⊤ using different state-of-the-

art QBF solvers.

2. Preliminaries

Answer-set semantics. We are concerned with proposi-

tional disjunctive logic programs (DLPs) which are finite

sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

2In the notions generalising strong equivalence, R would be a program

over A.



where n≥m≥ l≥ 0, all ai are propositional atoms from

some fixed universe U , and “not” denotes default negation.

Rules of form a ← are facts and are usually written with-

out the symbol “←”. We denote by At(P ) the set of all

atoms occurring in a program P , and say that P is over A
if At(P ) ⊆ A. PA refers to the set of all programs over A,

and 2A to the set of all facts over A. By an interpretation we

understand a set of atoms, and, as usual, an interpretation is

a model of a rule r iff it satisfies the head of r whenever it

satisfies the body of r. The notion of a model extends to

programs in the usual way and is denoted by I |= P . Fol-

lowing Gelfond and Lifschitz [8], an interpretation I is an

answer set of a program P iff it is a minimal model of the

reduct P I , resulting from P by (i) deleting all rules con-

taining a default negated atom not a such that a ∈ I , and

(ii) deleting all default negated atoms in the remaining rules.

The collection of all answer sets of a program P is denoted

by AS(P ).

Program correspondence. We use the following nota-

tions in the sequel: For an interpretation I and a set S of

interpretations, S|I is defined as {Y ∩ I | Y ∈ S}. For a

singleton set S = {Y }, we also write Y |I instead of S|I .

Furthermore, for sets S,S ′ of interpretations, an interpreta-

tion B, and⊙ ∈ {⊆,=}, we define S⊙B S
′ as S|B⊙S

′|B .

Some basic equivalence notions are defined as follows:

Two programs P and Q are (i) ordinarily equivalent iff

AS (P ) = AS (Q); (ii) uniformly equivalent [6] iff, for each

set F of facts, AS (P ∪F ) = AS (Q∪F ); and (iii) strongly

equivalent [11] iff, for each program R, AS (P ∪ R) =
AS (Q ∪R).

In abstracting from these notions, Eiter et al. [7] in-

troduced the notion of a correspondence problem which

allows to specify (i) a context, i.e., a class of programs

used to be added to the programs under consideration, and

(ii) the relation that has to hold between the answer sets

of the extended programs. The concrete formal realisa-

tion is as follows. A correspondence problem (over U) is

a quadruple Π = (P,Q, C, ρ), where P,Q ∈ PU are pro-

grams, C ⊆ PU is a class of programs (the context class

of Π), and ρ ⊆ 22
U

× 22
U

is a binary relation over sets

of interpretations. Π is said to hold iff, for each program

R ∈ C, (AS (P ∪ R),AS (Q ∪ R)) ∈ ρ. By instantiating

C and ρ, different equivalence notions from the literature

can be expressed. In particular, P and Q are (i) strongly

equivalent iff (P,Q,PU ,=U ) holds, (ii) uniformly equiva-

lent iff (P,Q, 2U ,=U ) holds, (iii) strongly equivalent rela-

tive to A [18], for A ⊆ U , iff (P,Q,PA,=U ) holds, and

(iv) uniformly equivalent relative to A [18], for A ⊆ U , iff

(P,Q, 2A,=U ) holds.

Some important further kinds of correspondence prob-

lems that generalise the above ones are those of form

(P,Q,PA,⊙B) and of form (P,Q, 2A,⊙B), respectively,

for ⊙ ∈ {⊆,=}, taking projection to a dedicated set B of

output atoms into account. The former kinds of problems

were analysed by Eiter et al. [7] while the latter ones by

Oetsch et al. [14]. Here, we are interested in those latter

kinds of problems and, like in previous work [14], we call

problems of form (P,Q, 2A,⊆B) propositional query in-

clusion problems, or PQIPs for short, and problems of form

(P,Q, 2A,=B) propositional query equivalence problems

or PQEPs.

A pair (X,Y ) with X ⊆ A and Y ⊆ U is called a coun-

terexample3 for a PQIP (P,Q, 2A,⊆B) iff Y ∈ AS (P∪X)
and no Y ′ with Y ′|B = Y |B is contained in AS (Q ∪ X).
Hence, a PQIP Π has a counterexample iff Π does not

hold [14].

Example 1 Consider P = {a ∨ b ←; a ← c}, Q =
{a ← not b; b ← not a; c ← a}, and B = {a, b}. Since

AS (P ) = {{a}, {b}} and AS (Q) = {{a, c}, {b}}, we get

AS (P )|B = AS (Q)|B = {{a}, {b}}. Now, for A = B,

(P,Q, 2A,⊆B) holds, while for A′ = {a, b, c} the PQIP

Π = (P,Q, 2A′

,⊆B) does not hold. This is witnessed by

({b, c}, {a, b, c}) which is the unique counterexample (over

{a, b, c}) for Π. ♦

For a PQEP Π = (P,Q, 2A,=B), the PQIPs Π→ =
(P,Q, 2A,⊆B) and Π← = (Q,P, 2A,⊆B) are called as-

sociated with Π. Obviously, a PQEP Π holds iff both Π→

and Π← hold. We extend the definition of a counterexam-

ple to PQEPs and call a pair (X,Y ) a counterexample for a

PQEP Π if (X,Y ) is a counterexample for Π→ or Π←.

Concerning complexity, as shown previously [14], given

programs P,Q ∈ PU , sets A,B ⊆ U of atoms, and

⊙ ∈ {⊆,=}, deciding whether (P,Q, 2A,⊙B) holds is

ΠP
3 -complete. Moreover, the problem is ΠP

2 -complete in

case B = U . Both hardness results hold even for arbitrary

but fixed A.

Quantified propositional logic. The complexity results

above show that PQIPs and PQEPs can be efficiently re-

duced to quantified propositional logic, an extension of

classical propositional logic in which formulas are permit-

ted to contain quantifications over propositional variables.

Similar to predicate logic, ∃ and ∀ are used as symbols

for existential and universal quantification, respectively.

Such formulas are also called quantified Boolean formulas

(QBFs); we denote them by upper-case Greek letters.

For an interpretation I and a QBF Φ, the relation I |= Φ
is defined analogously as in classical propositional logic,

with the additional conditions that I |= ∃pΨ iff I |=
Ψ[p/⊤] or I |= Ψ[p/⊥], and I |= ∀pΨ iff I |= Ψ[p/⊤]
and I |= Ψ[p/⊥], for Φ = QpΨ with Q ∈ {∃,∀}, where

3Note that in our previous work [14] we used “explicit counterexample”

instead of “counterexample”.



Ψ[p/φ] denotes the QBF resulting from Ψ by replacing each

free occurrence of p in Ψ by φ (an occurrence of an atom

p is free in a QBF Φ if it does not occur in the scope of a

quantifier Qp in Φ). A QBF Φ is true under I iff I |= Φ,

otherwise Φ is false under I . A QBF is satisfiable iff it is

true under at least one interpretation. A QBF is valid iff it is

true under any interpretation. Note that a closed QBF, i.e., a

QBF without free variable occurrences, is either true under

any interpretation or false under any interpretation.

Given a finite set P of atoms, QP Ψ stands for any QBF

Qp1Qp2 . . . QpnΨ such that P = {p1, . . . , pn}. A QBF Φ
is said to be in prenex normal form (PNF) iff it is closed

and of the form QnPn . . . Q1P1 φ, where n ≥ 0, φ is a

propositional formula, and Qi ∈ {∃,∀} such that Qi 6=
Qi+1 for 1 ≤ i ≤ n − 1. Moreover, if φ is in conjunctive

normal form, then Φ is in prenex conjunctive normal form

(PCNF), and if φ is in disjunctive normal form, then Φ is

in prenex disjunctive normal form (PDNF). A QBF Φ =
QnPn . . . Q1P1 φ is also referred to as an (n, Qn)-QBF.

Any closed QBF Φ is easily transformed into an equiv-

alent QBF in prenex normal form such that each quantifier

occurrence from Φ corresponds to a quantifier occurrence

in the prenex normal form. In general, there are differ-

ent ways to obtain an equivalent prenex QBF (cf. Egly et

al. [4] for more details on this issue). Well-known complex-

ity results for the evaluation problem of QBFs [16] indicate

that PQIPs and PQEPs can be efficiently reduced to (3,∀)-
QBFs. These reductions are the central theoretical basis for

our system and are discussed in detail in the next section.

3. System specifics

We now discuss details of the new extension of cc⊤ for

verifying PQIPs and PQEPs. The overall architecture of

cc⊤ was already outlined in the introduction and depicted

in Figure 1. Originally, cc⊤ was developed as an imple-

mentation for verifying correspondence problems of form

(P,Q,PA,⊙B), for ⊙ ∈ {⊆,=} [12]. The syntax to spec-

ify programs in cc⊤ corresponds to the basic DLV syntax.4

Furthermore, the tool is entirely developed in ANSI C, us-

ing LEX and YACC for the parser, and publicly available

(including the source code); it can be downloaded from the

Web at

http://www.kr.tuwien.ac.at/research/ccT.

The section is organised as follows. First, we review the

basic encodings for mapping PQIPs and PQEPs into QBFs,

as developed in previous work [14]. Afterwards, we pro-

vide an alternative reduction and discuss its outcome on

special instances of correspondence problems. Finally, we

give some details on how to apply the system.

4See http://www.dlvsystem.com/ for more information about

DLV.

3.1. Translating query problems

In what follows, we make use of sets of globally new

atoms in order to refer to different assignments of the same

atoms within a single formula. More formally, given a set V
of atoms, we assume (pairwise) disjoint copies V i = {vi |
v ∈ V }, for every i ≥ 1. Furthermore, we introduce the

following abbreviations:

1. (V i ≤ V j) =
∧

v∈V (vi → vj);

2. (V i < V j) = (V i ≤ V j) ∧ ¬(V j ≤ V i); and

3. (V i = V j) = (V i ≤ V j) ∧ (V j ≤ V i).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
These operators allow to compare different subsets of

atoms from a common set V under subset inclusion, proper-

subset inclusion, and equality, respectively. Formally, we

have that, given X,Y ⊆ V , an interpretation I with I|V i =
Xi and I|V j = Y j is (i) a model of V i ≤ V j iff X ⊆ Y ,

(ii) a model of V i < V j iff X ⊂ Y , and (iii) a model of

V i = V j iff X = Y .

We use superscripts as a general renaming schema for

formulas and rules. That is, for each i ≥ 1, αi expresses the

result of replacing each occurrence of an atom v in α by vi,

where α is any formula or rule. For a rule r of form (1), we

define H(r) = a1 ∨ · · · ∨ al, B+(r) = al+1 ∧ · · · ∧ am,

and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty

disjunctions with ⊥ and empty conjunctions with ⊤.

Proposition 1 ([17]) Let P be a program with At(P ) =
V , I an interpretation, and X,Y ⊆ V such that, for some

i, j ≥ 0, I|V i = Xi and I|V j = Y j . Then, X |= PY iff

I |= P 〈i,j〉, where

P 〈i,j〉 =
∧

r∈P

(

(B+(ri) ∧B−(rj))→ H(ri)
)

.

Example 2 Consider the program Q = {a ← not b; b ←
not a}. Then, for instance, Q〈1,2〉 is given by (¬b2 → a1)∧
(¬a2 → b1), and we have that {a2, b2} ∪X1 is a model of

Q〈1,2〉, for each X1 ⊆ {a1, b1}, reflecting the fact that any

interpretation X is a model of the reduct Q{a,b}. ♦

With these building blocks at hand, we can state the fol-

lowing encoding, as introduced by Oetsch et al. [14].

Definition 1 Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪
Q) = V , and A,B ⊆ V . Then,

S[Π] = ΦΠ ∧ ∀V
4
(

(B4 = B1)→ ΨΠ

)

, where

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ∧ ∀V 3

(

(

(A2 ≤ A3)∧

(V 3 < V 1)
)

→ ¬P 〈3,1〉
)

and

ΨΠ =
(

(

Q〈4,4〉 ∧ (A2 ≤ A4)
)

→ ∃V 5
((

(A2 ≤ A5)∧

(V 5 < V 4)
)

∧Q〈5,4〉
)

)

.



Table 1. Outcome of the different encodings of Π = (P, Q, 2A, ⊆B) from Example 1.

S[Π] T [Π]

ΦΠ ∧ ∀a
4
b
4
c
4
`

(a4
↔ a

1) ∧ (b4
↔ b

1) → ΦΠ ∧ ∀c
4

(((¬b
4
→ a

4) ∧ (¬a
4
→ b

4) ∧ (a4
→ c

4)∧ (((¬b
1
→ a

1) ∧ (¬a
1
→ b

1) ∧ (a1
→ c

4)∧
(a2

→ a
4) ∧ (b2

→ b
4)) → ∃a

5
b
5
c
5 (a2

→ a
1) ∧ (b2

→ b
1)) → ∃a

5
b
5
c
5

((a2
→ a

5) ∧ (b2
→ b

5)∧ ((a2
→ a

5) ∧ (b2
→ b

5)∧
(a5

→ a
4) ∧ (b5

→ b
4) ∧ (c5

→ c
4)∧ (a5

→ a
1) ∧ (b5

→ b
1) ∧ (c5

→ c
4)∧

¬((a4
→ a

5) ∧ (b4
→ b

5) ∧ (c4
→ c

5))∧ ¬((a1
→ a

5) ∧ (b1
→ b

5) ∧ (c4
→ c

5))∧
(¬b

4
→ a

5) ∧ (¬a
4
→ b

5) ∧ (a5
→ c

5)))
´

(¬b
1
→ a

5) ∧ (¬a
1
→ b

5) ∧ (a5
→ c

5)))

Observe that the free variables of S[Π] are given by V 1∪
A2. Assignments to V 1 ∪A2 yield the counterexamples for

Π, in case S[Π] is satisfied by those assignments.

Proposition 2 ([14]) Let Π = (P,Q, 2A,⊆B) be a PQIP,

At(P ∪ Q) = V , A,B ⊆ V , X ⊆ A, and Y ⊆ V .

Then, (X,Y ) is a counterexample for Π iff Y 1 ∪ X2 |=
S[Π]. Moreover, Π holds iff the closed QBF S[Π] =
∀V 1∀A2¬S[Π] is valid.

The extension of the encodings to PQEPs is done by

means of the associated PQIPs.

Proposition 3 ([14]) Let Π = (P,Q, 2A,=B) be a PQEP,

At(P ∪ Q) = V , A,B ⊆ V , X ⊆ A, and Y ⊆ V . Then,

(X,Y ) is a counterexample for Π iff Y 1 ∪X2 |= S[Π→] ∨
S[Π←]. Moreover, Π holds iff S[Π] = ∀V 1∀A2(¬S[Π→] ∧
¬S[Π←]) is valid.

3.2. An alternative encoding and special
cases

We now introduce an adaption of the above encodings.

The benefit of the refined encodings is that the number of

universally quantified variables is reduced—in fact, in some

specific cases, one quantifier block even vanishes. This

guarantees adequacy (in the sense of Besnard et al. [1]) also

for special cases of query problems without projection.

The key observation for the subsequent adaption is that

we use a fixed assignment for atoms, in view of the subfor-

mula B4 = B1 of Definition 1. Hence, for the quantifier

block ∀V 4, it is sufficient to take only atoms from V 4 \B4

into account and replace all occurrences of atoms v4 ∈ B4

by v1 within the remaining part of the formula. The modi-

fied translation is given as follows.

Definition 2 Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪
Q) = V , and A,B ⊆ V . Then,

T [Π] = ΦΠ ∧ ∀(V
4 \B4)ΨΠ[B4/B1],

where ΦΠ and ΨΠ are defined as in Definition 1 and

ΨΠ[B4/B1] denotes the QBF resulting from ΨΠ by replac-

ing all occurrences of atoms v4 ∈ B4 by v1.

For illustration, Table 1 depicts the different outcomes of

the two encodings for the PQIP Π = (P,Q, 2A,⊆B) from

Example 1 with A = B = {a, b}.

Lemma 1 For any PQIP Π, the QBFs S[Π] and T [Π] are

logically equivalent.

As an immediate consequence, we thus obtain the fol-

lowing results.

Theorem 1 Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪
Q) = V , A,B ⊆ V , X ⊆ A, and Y ⊆ V . Then, (X,Y ) is

a counterexample for Π iff Y 1 ∪X2 |= T [Π]. Moreover, Π
holds iff the closed QBF T[Π] = ∀V 1∀A2¬T [Π] is valid.

Theorem 2 Let Π = (P,Q, 2A,=B) be a PQEP, At(P ∪
Q) = V , A,B ⊆ V , X ⊆ A, and Y ⊆ V . Then,

(X,Y ) is a counterexample for Π iff Y 1 ∪X2 |= T [Π→]∨
T [Π←]. Moreover, Π holds iff T[Π] = ∀V 1∀A2(¬T [Π→]∧
¬T [Π←]) is valid.

Obviously, these encodings, as well as the ones from the

previous section, are (i) always linear in the size of P , Q, A,

and B, and (ii) possess at most two quantifier alternations

in any branch of the formula tree. The latter shows that any

such encoding is easily translated into a (3,∀)-QBF. Thus,

the complexity of evaluating these QBFs is not harder than

the complexity of the encoded decision problems, which

shows adequacy in the sense of Besnard et al. [1].

We proceed with a discussion how our new reduction can

be simplified for special cases. Recall that by a proper pa-

rameterisation of a PQIP (resp., PQEP) also some important

special cases of correspondence checking can be realised.

All simplifications outlined below have been implemented

in our extension of cc⊤.

Ordinary inclusion with projection. For problems of

form (P,Q, 2A,⊆B) with A = ∅ we get that all terms

(Ai ≤ Aj) are trivially true and can therefore be elimi-

nated. Also, the free variables of T [Π] reduce to V 1. We



obtain that T [Π] is equivalent to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧

∀(V 4 \B4)
(

Q〈4,4〉 → ∃V 5((V 5 < V 4) ∧

Q〈5,4〉)
)

[B4/B1].

Still, on each branch of the formula tree there are at most

two quantifier alternations witnessing the ΠP
3 -complexity

of this special case.

Relativised uniform inclusion. Next, we analyse spe-

cial settings without projection, i.e., problems of form

(P,Q, 2A,⊆B) with B = U . Further special cases are then

obtained by setting A = ∅ and A = U , respectively. In

view of of the ΠP
2 -complexity result for problems without

projection, we expect that the number of quantifier alterna-

tions in the resulting QBFs decreases by one. In fact, T [Π]
simplifies to

ΦΠ ∧
(

Q〈1,1〉 → ∃V 5
(

(A2 ≤ A5)∧

(V 5 < V 1) ∧Q〈5,1〉
)

)

.
(2)

Observe that the quantifier block ∀(V 4 \B4) vanishes since

V \ B = ∅. Thus, all atoms v4 in the encoding are re-

placed by v1. The structure of the formula now matches the

ΠP
2 -complexity result for relativised uniform inclusion. In-

terestingly, QBF (2) is satisfiability equivalent to the even

simpler formula

T ◦[Π] = ΦΠ ∧ (Q〈1,1〉 → ((V 2 < V 1) ∧Q〈2,1〉),

where the quantifier block ∃V 5 is removed as well. Ob-

serve that satisfiability equivalence of the two formulas en-

tails that T ◦[Π] does no longer encode all counterexamples.

However, the simplification in T ◦[Π] does not influence the

number of quantifier alternations.

Uniform inclusion. For the case of (plain) uniform in-

clusion, i.e., problems of the form (P,Q, 2A,⊆B) with

A = B = U , no further simplification is obtained com-

pared to (2), except that each occurrence of Ai is now given

by V i. As uniform inclusion is a special case of relativised

uniform inclusion, also this QBF is satisfiability equivalent

to T ◦[Π].

Ordinary inclusion. Finally, concerning ordinary inclu-

sion, i.e., problems of the form (P,Q, 2A,⊆B) with A = ∅
and B = U , we observe similar effects as in the encod-

ing for ordinary inclusion with projection. In particular, all

terms (Ai ≤ Aj) can be eliminated because A = ∅. Also,

the free variables of T [Π] reduce to V 1. Hence, T [Π] is

equivalent to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧
(

Q〈1,1〉 → ∃V 5((V 5 < V 1) ∧Q〈5,1〉)
)

.

The QBF is true under interpretation Y 1 if Y ∈ AS (P ) but

Y 6∈ AS (Q). Note that the structure of the closed QBF

T[Π], given by ∀V 1(¬T [Π→] ∧ ¬T [Π←]), then witnesses

the ΠP
2 -membership of ordinary equivalence.

As ordinary equivalence is a special case of relativised

uniform equivalence, we can obtain a further simplification

in terms of T ◦[Π]. Indeed, T ◦[Π] reduces here to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧
(

Q〈1,1〉 → ((V 2 < V 1) ∧Q〈2,1〉)
)

.

Hence, we have shown that all special cases with B = U
have in common that the encodings T[·] simplify to QBFs

with at most one quantifier alternation in each branch of the

formula, witnessing the ΠP
2 -membership of those problems.

4. Experiments

In this section, we present a preliminary experimental

evaluation of our implementation. The goal of the exper-

iments is to clarify the interplay of different QBF solvers,

different encodings, and different problem settings in terms

of run-time performance. In the spirit of previous exper-

iments with cc⊤ [12], we use the reduction from QBFs

to PQIPs given by the ΠP
3 -hardness proof for deciding

PQIPs [14]. This provides us with a class of random bench-

mark problems for cc⊤ which captures the inherent hard-

ness of the problem. More precisely, the method is as fol-

lows:

1. generate a random (3,∀)-QBF Φ in PDNF;

2. reduce Φ to a PQIP Π = (P,Q, 2A,⊆B) such that Π
holds iff Φ is valid [14];

3. apply cc⊤ to derive the corresponding encoding Ψ for

Π.

Our benchmark set consists of 1000 instances. The ran-

domly generated QBFs of Step 1 contain 24 different atoms

each. From those 24 atoms, each quantifier block bounds

8 of them. Each term in the PDNF contains 4 atoms which

are selected by random from the 24 atoms and are negated

with probability 0.5. The whole formula consists of 38

terms. From the 1000 instances, 506 evaluate to true and

494 evaluate to false. Thus, the ratio between true and false

instances is close to 1. Therefore, having easy-hard-easy



10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

qproquantorsempropqube-bj

s
e

c
o

n
d

s

S-empty
T-empty

S-half-full
T-half-full

S-full
T-full

Figure 2. Median running times for different

solvers, encodings, and problem settings.

patterns in mind, we suppose the benchmark set to be lo-

cated in a rather hard region. From each Φ, we construct a

PQIP Π = (P,Q, 2A,⊆B) such that Φ is true iff Π holds.

It is important to notice that P , Q, and B are determined by

the reduction but the context A can be chosen arbitrarily.

For our experiments, we use three different settings,

namely the empty context A = ∅, the full context A = U ,

and an in-between setting ∅ ⊆ A ⊆ U . For the last setting,

each atom occurring in one of the two programs P and Q
is in A with probability 0.5. We consider both encodings

from PQIPs to QBFs, S[·] and T[·], together with the three

settings for the context. The QBFs stemming from S[·] pos-

sess 197 atoms each for the empty context; 221 atoms (on

average) for the half-full context; and 246 atoms for the full

context. For QBFs from T[·], the respective numbers are

189, 213, and 238.

We compare the QBF solvers semprop [10] (release

24/02/02), qube-bj [9] (v1.2), quantor [2] (release

25/01/04), and qpro [5]. We selected these solvers be-

cause they proved to be competitive in previous QBF eval-

uations and yielded only correct results on our benchmarks.

The solvers qpro, qube-bj, and semprop are based on

the standard DPLL decision procedure extended by special

learning techniques whereas quantor implements a com-

bination of resolution and variable expansion. All solvers

except qpro require the input to be in prenex conjunc-

tive normal form. Thus, for those solvers, an intermediate

prenexing step is necessary. In general, this prenexing step

is not deterministic and different prenexing strategies [4]

are possible. However, for our instances, the structure of the

prenex is fixed in such a way that avoiding an increase of the

number of quantifier alternations during the transformation

to PNF can only be accomplished by placing each quanti-

fier into a uniquely determined quantifier block of the target

(3,∀)-QBF. It is worth mentioning that for both translations

cc⊤ encodes the complementary problem, i.e., generates

QBFs of form ¬S[·] or ¬T[·] if projection is used. The rea-

son is to avoid an additional quantifier alternation after the

transformation to PCNF—details are discussed in previous

work [13].

After that prenexing step, QBFs from S[·] consist (on av-

erage) of 1035 clauses over 632 atoms (for the empty con-

text), 1203 clauses over 728 atoms (for the half-full con-

text), and 1378 clauses over 828 atoms (for the full context).

For T[·], the numbers are: 1003 clauses over 608 atoms (for

the empty context), 1171 clauses over 704 atoms (for the

half-full context), and 1346 clauses over 802 atoms (for the

full context).

All experiments were carried out on a 3.0 GHz Dual Intel

Xeon workstation, with 4 GB of RAM and Linux version

2.6.8.

Figure 2 summarises the results of the comparison. The

different QBF solvers, encodings (S[·], T[·]), and settings

for the context (empty, half-full, full, respectively) are given

on the abscissa, and the median running times in seconds

are depicted on the ordinate.

A very interesting observation is that the alternative en-

coding T[·] does not achieve faster running times for all

solvers, although it uses less variables. For qpro and

qube-bj, QBFs from T[·] are solved—as one would

expect—faster. This is not the case for semprop and

quantor, where semprop solves QBFs from S[·] slightly

faster and quantor solves such QBFs much faster (the bar

for quantor with full context and encoding T[·] illustrates

that the median value is above 100).

The next interesting point is the connection between run-

ning time and context parameterisation. The non-normal-

form solver qpro achieves best results for the empty

context but rather poor results for the full context. For

qube-bj the contrary is true, however, i.e., it achieves best

results for the full context but poor results for the empty

context—a quite surprising observation. Finally, the most

robust solver in this aspect is semprop. Recall that each

of the derived PQIPs (P,Q, 2A,⊆B) either holds for any A,

or does not hold for any A. The assignments of atoms from

X1 in our encodings which “guess” context-program can-

didates are thus completely irrelevant for the truth value of

the QBFs. Now, as qpro does not implement any heuristics

concerning the selection of atoms, it is no longer surpris-

ing that running times scale exponentially when the context

gets larger. The heuristics realised in semprop seem to

avoid that too much time is spend on finding assignments

for those “decoy” variables. On the other hand, qube-bj

suffers from the absence of those variables.

Figures 3–6 provide some deeper insights concerning

the running-time behaviour of the non-normal-form solver

qpro and the normal-form solvers semprop, qube-bj,

and quantor, respectively. For those figures, the abscissa



0

200

400

600

800

1000

 0.1  1  10  100

in
s
ta

n
c
e

s

seconds

qpro

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 3. Run-time distribution for qpro.

0

200

400

600

800

1000

 0.1  1  10  100

in
s
ta

n
c
e

s

seconds

semprop

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 4. Run-time distribution for semprop.

gives the running time in seconds (scaled logarithmically)

and the ordinate gives the number of solved problem in-

stances. This means that for each running time in the data

we depict how many instances were solved with running

time less or equal to that time. The different curves corre-

spond to the different combinations of the chosen encoding

and context parameterisation. For better legibility, differ-

ent symbols are attached to the curves. Figure 3 is a good

illustration of how qpro benefits from the alternative en-

coding: the respective curves for S[·] and T[·] are running

in parallel. The similarity of the median running times for

semprop in Figure 2 extends to quite similar curves in Fig-

ure 4 for the whole distribution. Note that symmetric curves

(with respect to the median) on a logarithmically scaled axis

imply skewed distribution of the data, i.e., low deviation for

instances with running times below the median and high de-

viation for instances with running times above the median.

Figure 3 provides some insight into the rather odd behaviour

of qube-bj on this set of problem instances. While the

curves for full and half-full context are rather similar, the

curves for the empty context are standing out and illustrate

0

200

400

600

800

1000

 0.1  1  10  100

in
s
ta

n
c
e

s

seconds

qube-bj

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 5. Run-time distribution for qube.

0

200

400

600

800

1000

 0.1  1  10  100

in
s
ta

n
c
e

s

seconds

quantor

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 6. Run-time distribution for quantor.

the higher effort for qube-bj to solve them. The sharp in-

clination of the curves for quantor (Figure 6) implies that

there is not much deviation in the data. Here, the running

times of most instances are close to the median. Moreover,

compared to the other systems, there are no instances with

short running times, more precisely shorter than 11 seconds.

For space reasons, we omit a deeper analysis of the

running times separated by true and false instances. The

tendance is that false instances are solved faster on aver-

age. However, for empty and half-full context, qube-bj

is faster on the true instances.

5. Conclusion

In this paper, we discussed an extension of the sys-

tem cc⊤ for deciding refined versions of uniform equiv-

alence and inclusion for disjunctive logic programs under

the answer-set semantics. Such correspondence problems

allow to restrict the alphabet of the context class and facil-

itate the removal of auxiliary atoms in the comparison—

two important concepts for program comparisons in prac-



tice. The tool is based on an efficient reduction to QBFs,

which itself is motivated by the high complexity of the cor-

respondence problems. While the theoretical basis was es-

tablished in previous work [14], we introduced alternative

encodings for PQIPs and PQEPs, and discussed simplifica-

tions realised within the new extension of cc⊤. We com-

plemented our discussion with an analysis of experiments

with different QBF solvers which reveal interesting differ-

ences of the solvers depending on the particular problem

parameterisation and the choice of the encoding. Moreover,

our encodings also provide an interesting benchmark set for

QBF solvers, for which there are only a few structured prob-

lems with more than one quantifier alternation available.

As related work, we mention the system DLPEQ [15]

for deciding ordinary equivalence, which is based on a re-

duction to logic programs, and the system SELP [3] for

checking strong equivalence, which is based on a reduc-

tion to classical logic quite in the spirit of our implemen-

tation approach. An open topic for future work is, on the

one hand, the extension of our work to more general classes

of programs and, on the other hand, research concerning

the equivalence of nonground programs. Also, we plan to

conduct experiments with more real-world oriented bench-

marks, like ones stemming from planning, diagnosis, and

scheduling domains. In fact, we are currently running an

extensive suite of experiments using different programs rep-

resenting specific diagnosing problems. These programs are

obtained from student data of a laboratory course on logic

programming at our university.

References

[1] P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Rep-

resenting Paraconsistent Reasoning via Quantified Proposi-

tional Logic. In Inconsistency Tolerance, volume 3300 of

LNCS, pages 84–118. Springer, 2005.

[2] A. Biere. Resolve and Expand. In 7th International Con-

ference on Theory and Applications of Satisfiability Testing

(SAT 2004), volume 3542 of LNCS. Springer, 2005.

[3] Y. Chen, F. Lin, and L. Li. SELP - A System for Studying

Strong Equivalence Between Logic Programs. In Proceed-

ings of the 8th International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR 2005), volume

3552 of LNAI, pages 442–446. Springer, 2005.

[4] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda.

Comparing Different Prenexing Strategies for Quantified

Boolean Formulas. In Proceedings of the 6th International

Conference on the Theory and Applications of Satisfiability

Testing (SAT 2003). Selected Revised Papers, volume 2919

of LNCS, pages 214–228, 2004.

[5] U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in

Nonprenex Form. In Proceedings of the 17th European Con-

ference on Artificial Intelligence (ECAI 2006), 2006.

[6] T. Eiter and M. Fink. Uniform Equivalence of Logic Pro-

grams under the Stable Model Semantics. In Proceedings

of the 19th International Conference on Logic Program-

ming (ICLP 2003), volume 2916 of LNCS, pages 224–238.

Springer, 2003.

[7] T. Eiter, H. Tompits, and S. Woltran. On Solution Corre-

spondences in Answer Set Programming. In Proceedings of

the 19th International Joint Conference on Artificial Intelli-

gence (IJCAI 2005), pages 97–102, 2005.

[8] M. Gelfond and V. Lifschitz. Classical Negation in Logic

Programs and Disjunctive Databases. New Generation Com-

puting, 9:365–385, 1991.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjump-

ing for Quantified Boolean Logic Satisfiability. Artificial

Intelligence, 145:99–120, 2003.

[10] R. Letz. Lemma and Model Caching in Decision Proce-

dures for Quantified Boolean Formulas. In Proceedings of

the 11th International Conference on Automated Reasoning

with Analytic Tableaux and Related Methods (TABLEAUX

2002), volume 2381 of LNCS, pages 160–175, 2002.

[11] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equiva-

lent Logic Programs. ACM Transactions on Computational

Logic, 2(4):526–541, 2001.

[12] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. cc⊤: A

Tool for Checking Advanced Correspondence Problems in

Answer-Set Programming. In Proceedings of the 15th Inter-

national Conference on Computing (CIC 2006), pages 3–10.

IEEE Computer Society Press, 2006.

[13] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. A

Tool for Advanced Correspondence Checking in Answer-

Set Programming. In Proceedings of the 11th International

Workshop on Nonmonotonic Reasoning (NMR 2006). TU

Clausthal IfI Technical Report Series, 2006.

[14] J. Oetsch, H. Tompits, and S. Woltran. Facts do not Cease

to Exist Because They are Ignored: Relativised Uniform

Equivalence with Answer-Set Projection. In Proceedings

of the 22nd National Conference on Artificial Intelligence

(AAAI 2007), pages 458–464. AAAI Press, 2007.

[15] E. Oikarinen and T. Janhunen. Verifying the Equivalence

of Logic Programs in the Disjunctive Case. In Proceedings

of the 7th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2004), volume 2923

of LNCS, pages 180–193. Springer, 2004.

[16] L. J. Stockmeyer. The Polynomial-Time Hierarchy. Theo-

retical Computer Science, 3(1):1–22, 1976.

[17] H. Tompits and S. Woltran. Towards Implementations for

Advanced Equivalence Checking in Answer-Set Program-

ming. In Proceedings of the 21st International Conference

on Logic Programming (ICLP 2005), volume 3668 of LNCS,

pages 189–203. Springer, 2005.

[18] S. Woltran. Characterizations for Relativized Notions of

Equivalence in Answer Set Programming. In Proceedings of

the 9th European Conference on Logics in Artificial Intelli-

gence (JELIA 2004), volume 3229 of LNCS, pages 161–173.

Springer, 2004.

[19] M. Zolda. Comparing Different Prenexing Strategies for

Quantified Boolean Formulas, 2004. Master’s Thesis, Vi-

enna University of Technology.


