LeGESD with a Process Algebra Approach for the Specification of Distributed
Systems

Jorge Cortes Galicia and Felipe Rolando Menchaca Garcia
Centro de Investigacion en Computacion
Instituto Politecnico Nacional
Av. Juan de Dios Batiz s/n Esq. Miguel Othon de Mendizabal, Mexico
jeortes @sagitario.cic.ipn.mx, fmenchac @ipn.mx

Abstract

Actually, significant progress has been made in the devel-
opment of process algebras for the specification and anal-
ysis of distributed systems. This paper describes a pro-
cess algebraic approach for LeGESD, a graphical spec-
ification language for distributed systems. LeGESD is a
formal language for the specification and analysis of dis-
tributed systems including their functional and communi-
cation requirements. The process algebraic approach of
LeGESD is called Analysis and Design of Distributed Sys-
tems (ADSD), an algebraic specification with operational
semantic. ADSD is the semantic base of LeGESD and pro-
vides behavioral equivalence relations which can be used
to verify the correctness of a LeGESD specification.

1. Introduction

The development of distributed systems uses techniques
and tools for specification, design and code generation. We
have presented LeGESD [3] for the specification of such
systems, a graphical language used to specify easily dis-
tributed systems. Behind of any specification language is
convenient that exist a formalism that support to the lan-
guage. This formal base is useful to support reasoning about
specifications and designs [9]. Although some formal meth-
ods for distributed systems have been developed using tex-
tual or graphical notations, such as Macedon [11], P2 [12],
statecharts, TLA [8], IOA [4], LfP [7, 10] and PEDS [13].
However, some of them not present a formalims that sup-
port to the method.

This has motivated to development a process algebra
[2, 5] approach for LeGESD such as alternative solution to
the specification and analysis of distributed systems using
an algebraic method. LeGESD’s algebra process has two
motivation: first motivation is to provide a formalism which

helps to fast verification of distributed systems, this formal-
ism should be consistent and well-defined.

The second motivation is to provide a solid operational
semantics [6]. This operational semantics is defined by
the Analysis and Design of Distributed Systems (ADSD),
ADSD is a specification in algebraic level. In addition,
ADSD has defined an operational semantics and equiva-
lence translations. ADSD allows to specify an equivalence
translation between a graphical notation in LeGESD to a
textual notation in ADSD. This equivalence translation is
used in the design of a distributed system and it will be use-
ful in stages of model verification and source code genera-
tion.

2. LeGESD

The LeGESD language is based on the view that a dis-
tributed system consists of two levels of components: com-
munication components, called medio, that use a finite set of
serially communicated resources for communication execu-
tion and that synchronize with one another; behavior com-
ponents, called jobs, that use a finite set of serial states for
behavior execution. The description of a job is represented
by behavior diagrams which use a set of graphical elements
[3]. Exist two several graphical elements: states and links.
The execution of a state is assumed to take a set of pre-
conditions, and can generate a set of post-conditions once
finished the execution. The execution of a state is subject to
verification of the preconditions that it uses. On the other
hand, the description of a medio is represented by commu-
nication diagrams which use a set of graphical elements [3].
This set is divided into two subsets: initialization and exe-
cution. Initialization subset refers to initial communication
activities such as open, bind and begin that are common ac-
tivities in all distributed communication technologies. Ex-
ecution subset refers to communication internal behavior.
These subsets use same several graphical elements like a

job (states and links), but define other symbols to represent
states.

2.1. LeGESD jobs and medio

A LeGESD job is a tuple (S, I, L, Pr, Po, M, R) where
Pr is a set of preconditions, Po is a set of post-conditions,
M is a set of messages, and R is a set of medio references.
(S, L) is a directed graph with initial node I C S. The set
of labeled links L C (S x [x S) is defined over the set of
labels | C {e} U(N x Pr)U (N x Po)U (M x R) where
e denotes an empty label. Since LeGESD jobs is hierarchi-
cal, the set of states S is defined together with a hierarchy
function ¥ which defines for each state the set of LeGESD
jobs it contains inside. That is, ¥(s) = {Jy,- -, Ji } if the
LeGESD jobs Ji, - - -, Jj, are contained immediately inside
the state s. Given the hierarchy function ¥, a state s is ei-
ther a begin, internal, communication, access point, end, or
transition state, if ¥(s) = 0; and a state s is a compound
state, if U(s) = {Jy,- -+, Ji}.

On the other hand, the set of elements R is defined by
a compound function A which defines for each medium the
two LeGESD medio it contains inside. That is, A(r) =
{In, En} if the initialization LeGESD medio I,,, and the
execution LeGESD medio F,, are contained in the medio
r. Given the compound function A, a not valid medio r is if
A(r)=0. An I,,, isatuple (S, B, L, Pr, Po, N) where Pr
is a set of preconditions, Po is a set of post-conditions, and
N is a set of medio names. (S, L) is a directed graph with
initial node B C S. The set of labeled links L C (S x[xS)
is defined over the set of labels | C {e} U (N x Pr)U (N x
Po)U{N} where e denotes an empty label. The set of states
S is defined by a begin, open, bind, initial, end, access point,
or transition state.

An E,, is defined in similar way to a job. FE,, is a
tuple (S, B, L, Pr, Po, M, N) where Pr is a set of pre-
conditions, Po is a set of post-conditions, M is a set of
messages, and N is a set of medio names. (S, L) is a di-
rected graph with initial node B C S. The set of labeled
links L C (S x I x S) is defined over the set of labels
I C{e}UWN x Pr)U(N x Po)U(M x N) where € denotes
an empty label. Since FE), is hierarchical, the set of states
S is defined together with a hierarchy function €) which de-
fines for each state the set of execution LeGESD medio it
contains inside. Thatis, Q(s) = {E1, - -, En } if the ex-
ecution LeGESD medio F,,1," -, ', are contained im-
mediately inside the state s. Given the hierarchy function
Q, a state s is either a begin, simple, access point, end, or
transition state, if Q(s) = 0; and a state s is a compound
state, if Q(s) = {Em1, -, Fmk }-

To assign precise semantics to LeGESD specification we
next describe rules that restrict how LeGESD states and
links can be combined to form a valid LeGESD specifica-

tion.
Definition 1. A valid LeGESD job has links and states that
satisfy the following restrictions:

Links.-

Each link connects states only at the same job.

For every link (s,1, k), and for every compound state s,
U(s) ={Ji, -+, Jx}, sis astate of J; if and only if k is a
state of J;, fori =1,--- k.

States.-

Each begin state must have only labeled or unlabeled
simple out-links and nothing else.

Each internal state can have only unlabeled or labeled
simple out-links or in-links. It can have multiple unlabeled
or labeled simple out-links or in-links.

Each communication state must have one labeled incom-
ing or out-coming message link, also can have unlabeled or
labeled simple out-links or in-links. A communication state
has compound state characteristics, i.e., it describes the de-
tails of communication activities.

Each compound state can have unlabeled or labeled sim-
ple in-links, also can have labeled incoming or out-coming
message link. It can have multiple unlabeled or labeled sim-
ple in-links.

Each end state is a sink state, i.e., a state with no out-
links.

Each transition state can have only unlabeled or labeled
simple out-links or in-links, and it can not be a sink state.
If labeled simple in-links are presented will be necessary to
verify the label (preconditions) to advance next state.

Each access point state must have only one labeled in-
coming or out-coming message link.

Definition 2. A valid initialization LeGESD medio has
links and states that satisfy the following restrictions:

Links.-

Each link connects states only at the same initialization
medio.

States.-

Each begin state must have only labeled or unlabeled
simple out-links and nothing else.

Each open state can have only unlabeled or labeled sim-
ple out-links or in-links.

Each bind state can have only unlabeled or labeled sim-
ple out-links or in-links.

Each initial state must have labeled incoming or out-
coming message links, also can have unlabeled or labeled
simple in-links. It can have multiple labeled incoming or
out-coming message links.

Each end state is a sink state, i.e., a state with no out-
links.

Each transition state can have only unlabeled or labeled
simple out-links or in-links, and it can not be a sink state.
If labeled simple in-links are presented will be necessary to
verify the label (preconditions) to advance next state.

Each access point state must have only one labeled in-
coming or out-coming message link.

Definition 3. A valid execution LeGESD medio has links
and states that satisfy the following restrictions:

Links.-

Each link connects states only at the same execution
medio.

For every link (m, 1, q), and for every compound state m,
Q(m) = {Em1, -, Emx}, m is a state of Ey,; if and only
if q is a state of Ey;, fori=1,--- k.

States.-

Each begin state must have only labeled or unlabeled
simple out-links and nothing else.

Each simple state can have labeled incoming or out-
coming message link, also can have unlabeled or labeled
simple out-links or in-links. It can have multiple unlabeled
or labeled simple out-links or in-links.

Each compound state can have unlabeled or labeled sim-
ple in-links, also can have labeled incoming or out-coming
message link. It can have multiple unlabeled or labeled sim-
ple in-links.

Each end state is a sink state, i.e., a state with no out-
links.

Each transition state can have only unlabeled or labeled
simple out-links or in-links, and it can not be a sink state.
If labeled simple in-links are presented will be necessary to
verify the label (preconditions) to advance next state.

Each access point state must have only one labeled in-
coming or out-coming message link.

The underlying semantics of LeGESD is the Analysis
and Design of Distributed Systems (ADSD).

3 LeGESD semantics

As we mentioned in the introduction, the underlying se-
mantics of LeGESD is the Analysis and Design of Dis-
tributed Systems (ADSD). We will define the semantics of
LeGESD in two steps. Before covering the details of the
formal semantics of LeGESD, we first describe it infor-
mally. We then review ADSD and present some translations
from LeGESD to ADSD. We finally describe the analysis
techniques that are supported in the LeGESD formalism.

3.1 Informal semantics

Intuitively, a set of LeGESD jobs and medio represents a
system. A system can execute executions and communica-
tion events. In LeGESD, this is described through the LeG-
ESD job states and LeGESD medio states, respectively. In
addition to this basic notion of execution, several jobs and
medio can be combined through compound states (both me-
dia and jobs) in LeGESD to describe a larger system where
jobs execute in sequence.

3.2 ADSD formal semantics

The underlying semantics of LeGESD is the Analysis
and Design of Distributed Systems (ADSD). We define the
semantics of LeGESD in two steps. The first step is to iden-
tify basic LeGESD elements, a subset of LeGESD (jobs or
media), with an obvious correspondence with ADSD. The
second step is to define a set of transformations from basic
LeGESD elements to LeGESD and viceversa. Thus, every
valid LeGESD job or medio can be translated into an ADSD
job or medio by first converting it to a basic LeGESD job or
medio and then mapping the simple LeGESD job or medio
to a corresponding ADSD job or medio.

ADSD augments CCS [5] with discrete time execution
actions. ADSD has one type of actions: execution actions,
called events. An event in ADSD consists of one element
(e) where e is a label. Let P range over the domain of terms,
e range over the domain of event labels or #, F range over
the set of event labels, and let X range over the domain of
term variables. ADSD’s syntax is given by the following
grammar:

P = NIL | (e).P | Pr+Py | Py || Po | PAY(Py) | PIF
| rec X.P| X

The semantics of ADSD processes is defined in terms
of labeled transition system together with a notion of
prioritized transition. A transition is denoted as P —* P’
for processes P and P’ and an action « that P can execute.
Due to space limitation, we only informally describe the
ADSD semantics.

NIL is a process that executes no action, e.g, it is initially
deadlocked. There are one prefix operator that correspond
to the one type of action. (e).P, executes the event ¢ and
proceeds to P. The Choice operator P, +P5 represents pos-
sibilities - either of the processes may be chosen to execute,
subject to the event offerings and resource limitations of the
environment. The operator Py || P is the concurrent exe-
cution of P and Ps.

The Scope construct PA®(P;) binds the process P by a
event scope. The scope may be exited in one way. If P
successfully terminates by executing an event labeled with
b, then control proceeds to the “success-handler” P (here,
b may be any label other than 7).

The Restriction operator, P/F, limits the behavior of P:
events with labels in F are permitted to execute only if they
synchronize and become the internal event . The process
rec X.P denotes standard recursion, allowing the specifica-
tion of infinite behaviors. The term X, without a ”rec” bind-
ing, is a free variable that belongs to an infinite set of free
term variables.

ADSD offers two basic notions of behavioral equiva-
lence that are defined over the prioritized labeled transition

system. The first equivalence relation is based on strong
bisimulation [13], 7, which ensures that equivalent pro-
cesses match each other’s labeled transitions. The second is
based on weak bisimulation, II, which ensures that equiva-
lent processes match each other’s transitions that are labeled
with non-7 events but allows one process to make transitions
on ¢ that an equivalent process does not match.

3.3 LeGESD to ADSD translation

In this section, we define the semantics of a subset of
valid LeGESD, called basic LeGESD. Basic LeGESD cor-
responds to ADSD; that is, there is a translation between
basic LeGESD to ADSD and vice versa. Due to space lim-
itation, we only describe the first translation.

To define the semantics of LeGESD, we connect basic
LeGESD with LeGESD via a set of graphical transforma-
tions that are sound with respect to the prioritized strong
equivalence, m, of ADSD. The graphical transformations
basically eliminate or add links and states to convert a LeG-
ESD job to a basic LeGESD job or vice versa. In addition
to connecting LeGESD with basic LeGESD, the graphi-
cal transformations allow to minimize a LeGESD specifica-
tion by removing unnecessary states and links and produc-
ing a more succinct or simple LeGESD specification that is
equivalent to the original one.

A basic LeGESD job is a valid LeGESD such that:

1. Any transition state has either one simple labeled out
link, or one/two simple unlabeled/labeled out link;

2. Any compound state is a sink state;

3. Any compound state, s, has either one or two nested
components, i.e., p(s) = G or p(s) = G1, G2; and

4. Any compound state with out links has one nested
component and one simple unlabeled link.

Each basic LeGESD job corresponds to an ADSD pro-
cess. The translation of a LeGESD job consists of trans-
lating the states and the links. The translation starts from
the initial state and is recursively applied to jobs reachable
from the initial states. The results of the translations are
then combined using an ADSD operator. Figure 1 graphi-
cally describes the eight steps for translating a LeGESD job
to an ADSD process, where T represents a translation from
LeGESD specification to ADSD processes. Theses steps
are resuming below:

Step 1 binds the translation of the LeGESD job to the
process variable name P. In step 2, an event prefix process
is created from the event that labels the simple link out of
the transition state. In step 3, each job that starts at the target
state of the unlabeled link is translated and the result is com-
bined through the Choice operator. In step 4, the end state

P=T(G)
2 .—rﬁ\—\- eT(G)

T(GL) + T(G2)

—————————

[T(G) ! e]lm

[T(G1) | T(G2))/ elm

h [T(G) / e]lm A (T(GL))

Figure 1. Basic LeGESD to ADSD translation

is translated to the NIL process. In step 5, the compound
state is translated to a process variable with the referenced
name. In step 6, the LeGESD job inside the compound state
is translated, and then the Event and Message attributes of
the compound state are used in the Restrict and Close op-
erators; the attributes are ignored if they are the empty sets.
In step 7, the two LeGESD jobs inside the compound state
are translated and combined through the Parallel operator.
The Event and Message attributes of the compound state
are used in the Restrict and Close operators. In step 8, the
LeGESD job inside the compound state is translated and
used as the main process in the Scope operator. The trans-
lation of the LeGESD job that starts at the target state of the
unlabeled link produces the interrupt process.

We can use structural induction to prove that for every
basic LeGESD job G, T(G) is an ADSD process and that
for every ADSD process P, there is a basic LeGESD job
G such that 7(G) is P. Furthermore, we can establish the
uniqueness of the correspondence between basic LeGESD
and ADSD. We omit the details due to space limitation.

4. A simple translation example

This section illustrates on a short example the transla-
tion between LeGESD and ADSD. The example is triv-
ial but useful to illustrate the translation basis. We just
present a few parts of this translation. The distributed sys-
tem to specify is presented in Figure 2, it is a distributed
calculator where four basic arithmetic operations are dis-
tributed. Figure 2 presents both the System view and the
Deployment view of LeGESD. System view presents sev-
eral compound states of LeGESD job (Calculator, Add,
Sub, Div, Mult) and LeGESD medio (Calculator_medio,
Add_medio, Sub_medio, Div_medio, Mult_medio). De-
ployment view presents constraint and deployment condi-
tions with global specifications about initial constructions
requirements (management information and formal decla-
rations). Both System and Deployment view represent the
highest specification level of LeGESD about the system to
specify. Different compound states in the System view have
to be represented with a respective LeGESD job. Mean-
while communication states have to be represented with a
respective LeGESD medio if the corresponding access point
exist.

NOM_MODEL O Calrulabr;

2 VeCalewlator= 0000 L. !

AUTOR: Jorge Coriés G.; i i A Frent [] ! Al 1!
VERSION: L% ST Message: [\ - onon - O
TIPO CONST{ini NCALYVALOR 5; i . :
TIPO CONST s NSUM) VALOR1; | Event[] Bl .
TIPO CONST fint NES) VAL OR 1 | Mg [ﬁ'mwll:'”i Ml | |
TIPO CONST i NMUL) VAL CR 1; Prmeeeeeen o Lo !
TIPO CONSTfint NDIV) VALOR I; Py <Die !
TIPOVARfnt varl) RANGO 7, Bt] <Caleulaior_medios | !
TIPOVAR@owevarl} RANCO x5 ! , |
’ Hamgxll !
! 1

INSTANCIAS CLASES: Inicio . |)) .
Caleubator U5A IDC[Caleubto) VALORNCAL; | || “Add_medio= <Sth_medio=] !
Ad1 USAIDC(AA) VAL OR NSUM; | :
b USA IDC5h) VALOR NRES; ! !
Mubt USA IDC{Muby VAL OR NMUL; ; :Mtllt_mml'lp‘ <Dir_mediv- || |
Dy USA DCDR) VALORNDYY; Byenty[] | :

INSTANCIAS_CLASES: Finy Messg [| - -mmmmmmm e eeeemmmnnnaes

Figure 2. System and Deployment view of
LeGESD

In Figure 2, we can view that global compound state
Calculator does not a basic LeGESD job. However inside
of this global compound state exists some basic LeGESD
jobs (Add, Sub, Div, Mult) according to the number 3 ba-
sic LeGESD job condition defined in subsection 3.3. Thus
each basic LeGESD job corresponds to an ADSD process,
the translations are presented for each basic LeGESD job
inside of Calculator compound state in figure 3.

Figure 4 presents a version of LeGESD job for Calcu-
lator compound state. This figure presents the behavior di-
agram of Calculator LeGESD job. It shows the execution
workflow of Calculator job. Communication states (Op-

TR [T¢sub) /-1
Evend: []
:[1
) cAdd- [Tcadd) i -1-
Evend: []
| Div= [T(Div) 1 -1-
Event[]
i <Mub- [Thul / -1-
Event[1]

Figure 3. Translation from basic LeGESD job
to ADSD

eration and Wait) are linked through transitions states and
labeled and unlabeled simple links which connect to the
job states. We have defined two access points (Calcula-
tor_medio and Add_medio) to make an add operation bind-
ing to the medium. These access points are linked to com-
munication states through labeled incoming and out-coming
message links. We specify all necessary labels for each
link with the attributes corresponding to preconditions and
post-conditions. Labeled incoming and out-coming mes-
sage links contain messages to interchange with the medio
through each access point.

=BCak lllainl@‘
=1, (operator!=nullM(operand 1 =null &
(operand_2 =null)=

= Cakultor_medio= =2, operator = 0=

< Op eration:
Zmsg . men,
MSZ . Oper=operator,
msg .operand_l1 = operand _1,
msg . operand 2 = operand 2,
Cakulior medio=-
= Add_medio=

Mg .Men,

Add medio= =ECalculator=

=], resuli! =NULL=

Cak ultor = {T(Op eration) + T(BCakuhtor), T(Wait), T(ECaklator),
[T(Operation)/ -Imsg A' (T(Cakulator_medio)),
[TCWaif)/ -lmsg & (T(4dd_medio))}

Figure 4. Calculator LeGESD job diagram

The behavior diagram shows a basic LeGESD job ac-
cording to the number 1 and 2 basic LeGESD job condition
defined in subsection 3.3. Thus basic LeGESD job corre-
sponds to an ADSD process, the translations are presented
in the figure. The first translation uses Choice operator. We

also show translation from LeGESD medio state to ADSD
using step 8 for Scope operator, msg represents the message
send or receive to or from media.

5. Conclusion

We presented the semantic behind LeGESD language
(ADSD) for the specification of distributed systems. ADSD
is offering a process algebra approach to have a precise se-
mantic suitable for the description of interaction between
LeGESD jobs and LeGESD medio in a distributed system.
Based on the study presented in this paper, ADSD has some
capabilities for verification of distributed systems models
built with LeGESD. ADSD also allows the verification of
complex systems supporting the modular and hierarchical
fashion of LeGESD, it allows the integration of the com-
munication requirements of a system with its behavior re-
quirements; ADSD has a precise process algebraic seman-
tics which can support analysis through execution and for-
mal verification of the specification. We note that ADSD
is compatible with the notion of modularity in LeGESD al-
lows designers to specify and to verify a system through its
components incrementally.

Acknowledgement: We thanks to the “Instituto Politec-
nico Nacional”, ”’Centro de Investigacion en Computacion”
and “Escuela Superior de Computo” for their support in this

paper.
References

[1] M. Bravetti and M. Bernardo. Compositional asymmetric
cooperations for process algebras with probabilities, prior-
ities and time. [Ist International Workshop on Models for
Time Critical Systems, 39, 2000.

[2] J. Cortes and F. R. Menchaca. Algebra de procesos aplicada
ala especificacion formal de sistemas distribuidos. /er. Con-
greso Internacional en Sistemas Computacionales y Electr-
nicos (CISCE 06), pages 30-38, 2006.

[3] J. Cortes and F. R. Menchaca. Graphical specification lan-
guage for distributed systems. Proceeding IEEE on 15th
International Conference on Computing, pages 120-126,
2006.

[4] S. J. Garland and N. A. Lynch. The I0A language
and toolset: Support for designing, analyzing, and build-
ing distributed systems. MIT Press. Technical Report
MIT/LCS/TR-762, Cambridge, MA, 1998.

[5] H. Hermanns and U. Herzog. Process algebra for perfor-
mance evaluation. Theoretical Computer Science, 2001.

[6] K. Honda and K. Tokoro. On asynchronous communication
semantics. Object-Based Concurrent Computing, 612:21—
51, 1992.

[7] F. Kordon and I. Mounier. Formal verification of embedded
distributed systems in a prototyping approach. Workshop
on Engineering Automation for Software Intensive System
Integration, 2001.

(8]
(9]

(10]

(11]

[12]

(13]

L. Lamport. Introduction to TLA. Digital SRC Technical
Note, 1994.

D. C. Luckham. Specification and analysis of system ar-
chitecture. [EEE Transactions on Software Engineering,
(21):336-355, 1995.

D. Regep and F. Kordon. Lfp: A specification language for
rapid prototyping of concurrent systems. Proceedings of the
12th International IEEE Workshop on Rapid System Proto-
typing, pages 90-97, 2001.

A. Rodriguez and C. Killian. Macedon: Methodology for
automatically creating, evaluating, and designing overlay
networks. Proceedings of the NSDI, 2004.

B. Thau Loo and T. Condle. Implementing declarative over-
lays. Proceedings of the 20th ACM Symposium on Operating
Systems Principles, 2005.

D. Zhang and K. Zhang. A visual programming environ-
ment for distributed systems. Proceedings of the 11th In-
ternational IEEE Symposium on Visual Languages, pages
310-317, 1995.

