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Abstract 
 

This study evaluates intracranial 
electroencephalographic (EEG) recordings with the 
intent to detect epileptic seizures. It provides a 
complete evaluation (inter and intra patient) of several 
parameters in order to perform a retrospective 
analysis of the attributes of such parameters in their 
accuracy to detect seizures. As a corollary of this 
retrospective, is the appreciation of the complexity of 
their general behavior, and in understanding the 
difficulties engendered in the attempts of researchers 
to generalize their use for seizure detection, and for 
seizure prediction. The analysis conducted involves 
both intra and inter patient studies and provides a 
performance evaluation of the most relevant 
parameters in both frequency and time domains, which 
are deemed extremely useful in determining those 
patterns that signify the existence of an epileptic 
seizure. 
 
1. Introduction 
 

In this study a variety of parameters were initially 
investigated, so that reliable measurements could be 
used to detect a seizure. The merits of the algorithm 
are: (a) in providing an analysis of the parameters in 
terms of their significance to detect a seizure based on 
Receiver Operating Characteristics (ROC) standards 
and using the time and frequency domain; (b) in 
providing a similar analysis of the relevance of the 
same parameters based on an intra and inter patient 
analysis.  

Given several important studies in the past decade, 
on epilepsy, a definite consensus was reached about the 
chaotic nature of EEG signals and how limited is the 
collective knowledge we have gathered over the years 
[1, 2, 3]. Correlation integral is currently the most 
common basis on which the claim of chaotic dynamics 
has been made in biological systems [4, 5, and 6]. 
Correlation dimension oriented analysis applied to raw 
EEG and some variations including autocorrelation and 
entropy [7] are being directed with encouraging results, 

especially in the elusive problem of seizure detection 
and prediction, where promising results are claimed to 
be obtained [8]. Based on our experience, we have 
denoted that each patient has a different behavior of its 
EEG signal. Having a method that adapts to every 
patient would be very helpful for the precise location 
of an epileptic focus. The detection process is designed 
such as to allow physicians to make evaluative 
assessments of epileptic seizures, which in turn will 
enable targeted treatment. Methods for the automated 
detection of seizures can be very useful, especially 
during long-term EEG monitoring sessions, and may 
serve as a support mechanism to the decisions made by 
EEG experts. 

 
2. Methods 
 
2.1. Data collection 
 

Subdural EEG recordings of eight epileptic children 
were considered. A total of twenty six different 
seizures were studied. Recordings were performed 
during pre-surgical monitoring at the Miami’s Children 
Hospital (MCH) using XLTEK Neuroworks Ver.3.0.5, 
equipment manufactured by Excel Tech Ltd. Ontario, 
Canada. This data was collected at 500 Hz sampling 
frequency and filtered to remove DC and high 
frequency components using a 0.1-70 Hz band-pass 
filter.  

The patients involved were about to undergo surgery 
interventions in response to intractable seizures. The 
number of electrodes implanted differed from patient 
to patient.  Up to 88 subdural electrodes were 
implanted on the surface of the cerebral cortex of each 
patient to record seizure activity.  Intracranial 
recordings of eight patients were performed by using 
subdural strips or grid electrodes. In some cases, 4 
contact depth electrodes were implanted.   

 
2.2. Data analysis 
 
2.2.1. Data preprocessing. The objective was to 
analyze the entire array of electrodes, and depending 



 

on the size of the file, up to sixty minutes preceding a 
seizure and two minutes after seizure onset was 
analyzed. Data sets used are obtained from 8 patients 
(six males, two females with the age range of 3–17 
years).  Each patient had a different number of EEG 
files. The time interval for the other 4 patients was 
much longer with 60 minutes prior to seizure onset and 
2 minutes after.  
 
2.2.2. Parameter extraction. Due to the high volume 
of information contained in the pre-filtered EEG data 
files, size reduction was necessary.  Data files were 
segmented in one second time windows and parameters 
were extracted for all windows and for each electrode.  
The size of the set was thus reduced to a small number 
of parameters that are representative of the EEG. This 
set of parameters was then used for the study. A 
comparison of all of them was conducted in order to 
analyze and determine among all these parameters 
which ones were the most suitable to use in seizure 
detection.  Confusion matrices were generated with the 
purpose of eliciting a better understanding of the 
performance attributes of each of the following 12 
parameters: 
F1: activity 
F2: mobility 
F3: complexity 
F4: mean of auto correlation (AC) 
F5: standard deviation (STD) of (AC) 
F6: correlation integral (CI) 
F7: spectral power (SP) in delta band (< 4 Hz) 
F8: spectral power (SP) in theta band (4-8 Hz) 
F9: spectral power (SP) in alpha band (8-13 Hz) 
F10: spectral power (SP) in beta I band (13- 20 Hz) 
F11: spectral power (SP) in beta II band (20-36 Hz) 
F12: spectral power (SP) in gamma band (36-44 Hz) 

Please note that parameters F1 through F6 were 
extracted from the signal’s time domain, whereas the 
rest of the parameters were computed from the 
frequency spectrum of the signal.  

Other interesting parameters are used in EEG 
processing in seizure studies, such as the Lyapunov 
exponent which is a complex mathematical quantity in 
which the amount of chaos in the brain is measured 
[10]. This exponent is somehow computationally 
intensive, however, it contains in its formula a quantity 
called correlation integral, which also deals with the 
signal chaos. This quantity was included in the 
parameter’s list. 

Some of the most studied parameters such as 
mobility and complexity are known as Hjorth 
parameters [11]. The activity (Ax) is defined as the 
variance xσ  of the signal. The mobility (Mx) is 
computed as the square root of the ratio of the activity 

of the first derivative of the signal '
xA to the activity of 

the original signal xA : 
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where 'x represents the first derivative of the input 
EEG signal x .  

Mobility gives a measure of deviation of the voltage 
changes with respect to deviation of the EEG voltage 
amplitude. Complexity (C) is defined as the ratio of the 
mobility of the first derivative of the signal to the 
mobility of the signal itself: 
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where ''x stands for the second derivative of the input 
EEG signal.  

The complexity of a sinusoidal wave is unity; other 
waveforms have complexity values increasing with the 
extent of variations present in them. Complexity 
represents the deviation from the sine shape of the 
EEG signal. 

Correlation integral was also computed and it is 
mostly used to detect randomness in data.  It is given 
by: 
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where N is the total number of samples in the EEG data 
segment inside the sliding window, θ(.) is the step 
function, and | xi  - xk | is the distance between xi and xk. 
The vector xi used in the correlation integral is a point 
in the embedded phase constructed from the input EEG 
signal as a single time series according to the 
following:  
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where m is the embedding dimension and τ is a delay. 
The correlation integral can be interpreted as the 
number of point pairs inside a hyper-ball of radius r. 

Initially, only different groups of electrodes were 
employed for the pattern extraction analysis. The 
behavior of the parameters for the group of electrodes 
leading to seizure and not leading to seizure has been 
previously studied [12, 13]. However, for the detection 
purpose, it was more suitable to use all electrodes 
because at the time of the seizure all of them 
synchronize with each other and the behavior of every 
parameter at the seizure time was similar.   

After extracting the parameters for each electrode 
and patient, further data reduction was necessary for 



 

the following reasons: (1) there were too many 
electrodes per patient; (2) not all patients had the same 
amount of electrodes, and (3) not all electrodes were 
placed at the same position from patient to patient. 
This situation lead to a large database that would also 
make impossible to create a model for seizure 
detection that would work regardless of the number of 
electrodes and their position. A solution to contend 
with both the large data base and the different number 
and locations of electrodes was to compute the average 
of all parameters across all electrodes for each time 
window.  

 
 2.3. Construction of the seizure detectors 
 

The procedure implemented for creating seizure 
detectors was based on establishing 4 thresholds for 
each parameter that could be used to automatically 
detect a seizure. These 4 thresholds consist of the 
mean, standard deviation, minimum, and maximum of 
the parameter that is applied to the EEG data. Since, 
we are implementing 12 parameters, and each 
parameter is subdivided into 4 statistical features, we 
ended up with 48 (4*12) parameters to be analyzed. In 
this study, the procedure was performed inter and intra 
patient, and therefore, 50% of the patient files were 
used as reference files or baseline to extract the 
thresholds. The remaining files were kept for testing.   

A procedure was applied to the reference files in 
order to obtain thresholds that would maximize 
classification accuracy. These thresholds were used to 
test the remaining files. The classification results 
obtained were then compiled in order to perform an 
ROC-based analysis. 

Throughout this paper, classifier names will be 
simplified by numbers according to the parameter that 
they are based on. For example, the classifier based on 
parameter 1 will be named “classifier 1”, and so on. 
 
2.4. Seizure classification results 

 
2.4.1. Evaluation criteria. Performance evaluation of 
the classifiers was conducted based on the (ROC) 
terminology [14]. An ROC analysis is initiated with a 
confusion matrix [15] which contains information 
about actual and predicted classifications done by a 
classification system. Table 1 shows the entries of the 
confusion matrix for a two class classifier.  

• TP (true positives) is the number of correct 
predictions that an instance is positive  

• FN (false negatives) is the number of 
incorrect predictions that an instance is 
negative 

• FP (false positives) is the number of incorrect 
predictions that an instance is positive, and 

• TN (true negatives) is the number of correct 
predictions that an instance is negative. 

Table 1. Entries of a confusion matrix 
 Detected as 
 Positive Negative 
Positive TP FN Actual Negative FP TN 

 
Positive and negative refers to the outcome given by 

the classifier, whereas true and false refers to the 
correctness of this outcome (i.e. right or wrong with 
respect to the actual state of the patient). 

Important quantities can be extracted from the 
confusion matrixes, namely the TP rate (also known as 
sensitivity, hit rate or recall), the FP rate (also known 
as false alarm rate, or 1 - specificity), the precision and 
the accuracy, among others. The use of such measures 
is widely used in pattern recognition for test evaluation 
purposes.  

The TP rate is the proportion of the number of TP to 
the total number of positive instances. It is expressed 
as: 

FNTP
TPTPr +

=                       (5) 

The PF rate is the proportion of the number of TN to 
the total number of negative instances and it is 
computed as: 

TNFP
FPFPr +

=                         (6)   

The precision is the proportion of the number of TP 
to the total number of positive detections as given 
below: 

FPTP
TPPrecision
+

=                    (7) 

Accuracy is the proportion of the number of correct 
detections to the total number of detections, and it is 
computed as follows: 

FNFPTNTP
TNTPAccuracy
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At inter-patient level, an analysis was performed in 
order to show the relationship of the accuracy values of 
all parameters for across all patients. As opposed to 
this type of analysis, many types of medical studies are 
often performed intra-patient, to avoid comparing 
results from patients that are naturally supposed to be 
different. This is why inter-patient analysis can be 
regarded as a challenging task depending on the 
specific situation. Varying a classifier threshold can 
have contradictory effects. Increasing the TP rate can 
also increase the FP rate, which is an undesired 
collateral effect. Therefore, an answer is found in the 
so-called ROC curves. These are parametric curves 



 

that are constructed based on the values of the TP rate 
and the FP rate.  

Two major reasons hindered us from using ROC 
curves: Firstly, the classifiers were tested on different 
patients; and secondly, the test thresholds were not 
varied within each patient. Due to the inability to rely 
on ROC curves, classifiers were ranked according to a 
simple criterion: the highest level of accuracy. The TP 
and FP rate values allowed us to calculate the accuracy 
of each parameter implemented. The best parameter is 
said to be the one that produces the highest accuracy 
value. 

In this study, all classifiers were tested for all 
patients, thus 96 (12 parameters * 8 patients) different 
confusion matrixes were obtained and the 
corresponding accuracy values were calculated. 

At an intra-patient level, 12 classifiers (one for each 
parameter) were created and tested for each patient.  
 
2.4.2. Parameter analysis. A grey scale map 
illustrating the accuracy of the parameters is depicted 
in Figure 1, this way the parameters across all patients 
with the highest accuracy values will be located. Note 
that the highest accuracy levels are observed to belong 
to classifier 6 and patient number 5. 

 
Figure 1. Grey scale map displaying the  

accuracies of all classifiers 
 
As illustrated in Table 2, patient 1, the classifiers 3 

and 8 had a performance higher than 0.5, whereas for 
patient 2, the best performing classifiers were numbers 
5, 7, 8, 10, and 11. All of them were higher than 0.5 
(e.g. 50%). By comparing the results across all 
patients, no consistency was observed.  

The detection algorithm was able to be performed 
for each patient with a high accuracy within the same 
patient; nevertheless, when a good classifier (based on 
one patient) was applied to any other patient, results 
were not as good as expected. An example of the 
results of the best parameter (CI) is illustrated for 
visual analysis in Figure 2. 

 
 
 

Table 2. List of classifiers with more than  
80% accuracy 

Patient # Classifiers over 80% accuracy (in 
descending order) 

1 3, 9 
2 5, 8, 9, 11, 12 
3 6, 7, 11 
4 1, 2, 6, 9, 10 
5 10, 11, 2, 3, 4, 5, 6, 8, 9, 12 
6 3, 2, 8, 6, 9, 10 
7 6 
8 6, 2, 3 

 

 
Figure 2. Correlation integral (CI) versus time for 

seizure 1, 2 and 3 for patient 1 
 
Figure 2 illustrates the behavior of the correlation 

integral over time for three different seizures within the 
same patient. As it can be observed, the magnitude of 
the correlation integral abruptly changes at the time of 
the seizure for all electrodes with an evident decrease 
of the standard deviation. The vertical line represents 
the seizure onset, previously labeled at the observation 
room by the EEG technician. The shrinking of the CI 
plot around the three seizures is highly noticeable. 

Each individual has a peculiar and different EEG 
behavior. If the results were to be represented in a 



 

graph, a chaotic behavior would be observed. This is 
best expressed with a plot of the detection statistics for 
each patient (see Figure 3). Observe that the plot 
circles (representing individual patients) are scattered 
in a relative big area of the chart range. Another fact is 
that there is no a clear relationship between average 
and STD. The scattering in the plot results from 
including all features in the statistics. However, for 
more valuable information one would need a feature-
based representation.  

 
Figure 3. Average vs. STD plot for the  

accuracy values of all patients  
 

Once the intra-patient analysis was finished, the 
analysis was continued by parameters across all 
patients. To assign a performance value to each 
classifier across all patients, we looked at the average 
and standard deviation of the accuracy values obtained. 

 
Table 3. Average and STD of the classifier  

accuracy sorted by average in descending order. 
Classifier # Average STD 

6 0.86 0.19 
9 0.82 0.18 
2 0.76 0.24 
3 0.74 0.22 

11 0.72 0.26 
8 0.71 0.26 

10 0.67 0.27 
5 0.66 0.25 

12 0.65 0.22 
7 0.59 0.27 
1 0.58 0.25 
4 0.45 0.31 

 
As previously mentioned, the highest average value 

would be used as criterion to select the best candidate 
parameters for seizure detection across all patients. A 
sorting in descending order reveals that the classifier 
that performed best across all patients was the 
correlation integral (0.7071) and the worst the AC (-
0.0941). Table 3 shows a compilation of the results. 

The results obtained in this section served to prove 
that no parameter consistently predominated across all 
patients. 

If we assign a range based on the average classifier 
accuracy, it can be concluded that, from the list of 12 
parameters and based on 8 different subdural EEG data 
files, the correlation integral is the most appropriate to 
be used for seizure detection purposes. However, one 
may also look at low STD values to pick also a 
classifier whose accuracy does not change much, 
provided that it has a high average accuracy. An 
optimum classifier would be one whose average 
accuracy is high and whose STD is low. In Figure 4 the 
numbers in circles denote the classifier. The figure 
shows that the best classifiers are #6 and #9. They 
perform with the highest accuracy and the smallest 
variation among all classifiers. 

 
Figure 4. Average vs. STD plot for the 

 accuracy values of all classifiers  
 

Notice that classifiers #6 (CI) and #9 (SP in the 
alpha band) perform very similar and distinct from the 
rest. This served to conclude that these classifiers had 
the best performance when compared to the rest of the 
group. It is also interesting to note that these two 
classifiers operate not only in time (#6) but also in 
frequency domain (#9). Combinations of these two 
classifiers should be further analyzed to create better 
seizure detectors [16].  

A closer look at the plot of Figure 3 also reveals an 
interesting trend: STD decreases with higher average. 
This tendency is very helpful, since it points to an ideal 
case: performance with high average and low STD. It 
is expected that better seizure detectors based on other 
EEG parameters might produce better results that 
continue the tendency illustrated in Figure 3. This 
serves to conclude that in this study, it is the proper 
parameter selection (and not the patient) what 
generates better accuracies in seizure detection. 

 
 



 

3. Conclusions 
 

In this study, a total of 26 EEG files recorded at least 
ten minutes before a seizure were scrutinized in order 
to extract information through the application of 
different parameters. The uniqueness of this algorithm 
is in the establishment of a mathematical foundation 
capable of detecting an epileptic seizure from different 
EEG datasets. In order to accentuate the influence of 
the different parameters, an inter-patient analysis was 
conducted by applying each classifier-type to all 
different patients with their own thresholds. As a 
result, it has been found that the correlation integral 
and the spectral power in the alpha band are the best 
parameters to detect a seizure, once the specific 
thresholds have been set. In terms of the accuracy 
value, the correlation integral has the highest accuracy 
percentage (86%) value.  

The clinical success of this study consists in 
detecting seizures from long duration subdural EEG 
data. This achievement makes the method suitable for 
real-time detection applications. It is the hope of the 
authors that this research advances the extensive 
knowledge about the seizure detection endeavor and 
helps to disguise the seizure prediction problem.   

As this research will involve a higher number of 
epileptic patients as they become available, additional 
results will provide more weight to our findings. 
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