
A PC-based Grid for Medical Visualization

Yu Kang Xiang-guo Yan Chong-xun Zheng Chi-yu Zheng
The Key Laboratory of Biomedical Information Engineering of Ministry of Education

Xi’an Jiaotong University, Xi’an 710049, China

ky98132@163.com xgyan@mail.xjtu.edu.cn cxzheng@mail.xjtu.edu.cn zcyu180@163.com

Abstract

With grid’s potential computing capability and

flexibility, many applications needing to run on HPC

(High Performance Computing) platform previously

can be transplanted on it. To validate the feasibility of a

PC-based grid for medical visualization, a hybrid P2P

PC-based grid testbed is presented in this paper. The

sharp-warp based volume rendering algorithm is

adopted for volume rendering. The rendering algorithm

is decentralized for the grid. A load balancing method

is introduced to improve the rendering efficiency. Two

volume data sets are used for experiments. The results

show that the computing capability of the P2P mode

grid is almost the same as a cluster with similar

computing resources. The load balancing mechanism

can make the whole visualization procedure more

efficient. Finally, to improve the performance further,

several possible approaches are addressed for future

work.

1. Introduction

With the rapid developments on informat ion

technologies and imaging sensor technologies ,

visualizat ion technique is used as an important mean

by doctors and surgeons in hospital. With the help of

medical visualizat ion, surgeons can investigate the

virtual model of the anatomy of a patient that will

greatly benefit the preoperative p lans and provide a

navigational guidance during surgery [1] and also

doctors can make much accurate diagnoses. Normally

such visualizat ion procedures require HPC

approaches，for example a cluster system will be

necessary. So the associated funds and space for a HPC

platform will need to be considered. However, widely

spreading applications of information technologies in a

hospital make personal computers (PC) popular and

these PCs are often idle during operating time. A ll the

computing resources could be integrated, the total

capability would fully satisfy the needs for

visualizat ion. Grid is just such a technology for such

demands.

Grid computing has been rapidly spreading as a

technical foundation in many areas. A grid integrates

all kinds of resources (computing resource, storage

resource, network, online hardware, etc.) to satisfy

various needs. One of grid’s important goals is to play

as an internet cluster for science computing. The main

idea is called peer-to peer(P2P) [2],[3] technique that is

to composite (not just sum) all the resources, especially

computing power currently in free t ime at their owner

sides as a whole to serve others. Napster, a website

used to let music fans share music files from all over

the world, and SETI@home [4], which uses vast

available computer power at home and office to

analyze rad io signals from space, are such systems

using P2P. The situation in a hospital is matching the

needs for constructing a grid that will not only save

funds and space but also provide a convenient way for

further integration of different medical informat ion

systems.

In order to realize this grid-based visualizat ion

system by compositing ordinary PCs of d ifferent

ownership in a hospital, the P2P mode arch itecture and

parallel visualizat ion technique [5] were used. To

validate this intended grid is efficient for substituting

the cluster for v isualization, we developed a g rid

testbed. Additionally a cluster (with the same number

of nodes) is built for comparing the visualizat ion

performance differences between them and we try to

prove this grid-based attempt is feasible.

This paper is organized as follows. Section 2

reviews related works of grid -enabled visualization.

Section 3 proposes the architecture, volume rendering

decentralization, and a load balancing method. The

experimental results of the grid based testbed will be

presented in Section 4, while Section 5 delivers the

discussion of the performance of the PC-based grid and

addresses the area of future work. Finally, conclusions

are given in Section 6.

2. Related works

There are several works on grid-based visualizat ion.

OpenGL Vizserver [6] and VizGrid [7] are grid systems

being realized as client-server architecture. In

Vizserver, the visualization requests are sent to a

remote HPC server to make volume rendering and then

send images back with data compression to the clients

to decompress and display. VizGrid provides

interactive visualization of data. Patras/ITBL [8]

grid-based visualizat ion system added more clusters.

Users can use a Web browser to login to the system

and select one HPC p latform and corresponding

functions. In these systems all the computing tasks are

completed on server’s side which makes the number of

users limited and requires high-bandwidth data

connections between server and clients. Grid

visualizat ion system designed by Alan Norton and

Alyn Rockwood [9] has a novel improvement to

reduce the amount of data communicat ion between

server and client. In this system volume data is

preprocessed by a server using wavelet data

compression technique and stored in a data server. The

rendering action is taken place on client’s side. When

the client needs new data the wavelet-encoded data

will be transferred from the data server and decoded at

the client side. However, the system still has the

limited number of users because the maximum

capability of a server or servers is fixed.

Theoretically P2P mode can support more users

than client-server mode because every user added

means a server participated at the same time. In [10],

Taylor, I., Shields, M., Wang, I., and Philp, R,

introduce a distribute P2P computing for galaxy

visualizat ion test and in [11], C. Zunino and A. Sanna,

introduce a rendezvous-edge peer mode for

visualizat ion test. Currently we could not find

publications that describe P2P mode visualizat ion

applications in a hospital with normal PCs of d ifferent

ownership.

3. Methods

3.1. Architecture Overview

We use a hybrid P2P model (see figure 1) for our

grid testbed. There are about six steps to complete one

task.

 Data pre-partit ion: an init ial peer, as a task

requestor, communicates with information server to

get the target data source informat ion (data node

location and target data size) and resource

informat ion of available peers in the index service.

And then using these information to decide how to

divide the target data, but not really to div ide it;

 Parameter transmission: the initial peer send those

parameters, that will tell a peer where to get the

target data, what size should a peer be download

and how to run the sub-task on the chosen peer;

 Data distribution: every chosen peer downloads the

part of the target data according to the parameters

received. If user still work on this target data next

time, this step will be skipped;

 Sub-task processing: every chosen peer begins

running the sub-task until to get an intermediate

data;(from this step to the last procedure will be

described in more detail in section 3.2)

 Data collection: all the intermediate data is

transmitted to the initial peer;

 Intermediate data composition: the in itial peer do

the final procedure for the intermediate data

composition and output the final result.

The grid testbed is built with Globus Toolkit

4.0(GT4) [12],[13] which is an open source software

toolkit used for building grid systems and applications.

The resource information service is implemented using

MDS (the Monitoring and Discovery System). MDS is

one of Globus Toolkit components, which is a suite of

web services to monitor and discover resources and to

provide services on grid. This system allows users to

discover what resources are considered and to monitor

those resources. The realization pattern is as figure 2.

We use Index service, which is a MDS WSRF-based

service, and aggregator service as our resource register

GirdFTP Server

(Data node)

Information Server

peer

Peer

(requestor)

peerpeer

(3)Data

distribution

(4)sub-task

processing

(1)Data pre-partition

(5)Data

collection

(6)Intermediate

Data

composition

(2)Parameter

transmission

Figure 1. Hybrid P2P model.

and data collector to provide users or the job scheduler

resource information about every machine available in

the grid. The aggregator service collects informat ion

via the aggregator source which is a Java class that

implements an interface to collect XML-formatted data.

An index is self-cleaning that each registration has a

lifetime. If a reg istration is not refreshed before it

expires, the associated data and registration itself are

removed from the server. Every machine has its own

index service and aggregator source to complete their

local resource collection and registry.

Aggregate Framework

……

Register Resources Register Resources

Node 1 Node 2 Node N

Upstreaming the Registered Resource

Query Aggregator

Source

Query Aggregator

Source

Query Aggregator

Source

Index Service

Local Index Service Local Index Service Local Index Service

Resource 1...M

Register Resources

Resource 1...N Resource 1...L

Figure 2. Resource aggregation pattern.

For job submission and data transfer, two d ifferent

systems are used for performance comparison in grid

application category. One is GRAM, the execution

management service of GT4. The other is a g rid

visualizat ion service which we call Visual-Grid service,

programmed by us based on web service technique.

The data transfer function in these two systems are

based on Gridftp both.

In this project, the peer(requestor) initiating a

visualizat ion request can extract computing resource

informat ion from index service and select some of

them that fit their application request to submit jobs.

According to the nodes’ resource in formation (CPU

rate, free memory, and disk space) extracted from

index service, the visualizat ion request will be div ided

into several parts. During tasks distribution, only the

parameters of task size, its starting position in the

volume data array, and steering message are sent. The

distributed computing will t ransform 3-D volume data

into 2-D intermediate image data and sent back to the

requesting peer for compositing and generating final

image. In this architecture every peer can be a

visualizat ion requestor.

3.2. Volume Rendering Decentralization

Volpack is a portable software library for volume

rendering written by Ph ilippe Lacroute. Its main idea is

based on a factorizat ion of the viewing matrix into a

3D shear parallel to the slices of the volume data, a

projection to form a distorted intermediate image, and

a 2D warp to produce the final image [14]. The

algorithm chooses a coordinate system called “sheared

object space” in which all viewing rays are parallel to

the third coordinate axis. Mapping from the object

coordinate system, the “sheared object space” allows

efficient projection to a 2D image. So the algorithm of

intermediate image rendering can be described as

follows[14]:

for z0 = 1 to VolumeDepth

for yi = 1 to ImageHeight

for xi = 1 to ImageWidth

foreach y0 in ResamplingFilter(xi,yi)

foreach x0 in ResamplingFilter(xi,yi)

add contribution of Voxel[x0,y0,z0]

toImagePixel[xi,yi] (1)

At last the 2D intermediate image is transformed

into final image. Th is procedure is less expensive

because the data is 2D image which is much smaller

than 3D volume data.

We use data parallelis m technique here making a

large dataset being partitioned into many independent

subsets that can be processed in parallel. We apply data

parallelism to the procedure when the volume data are

projected to a distorted intermediate 2D image. The

volume data are d ivided along z-axis into M parts. So

the formulation 1 is modified like this:

for z0 = Part_beg(j) to Part_end(j)

for yi = 1 to ImageHeight

for xi = 1 to ImageWidth

 foreach y0 in ResamplingFilter(xi,yi)

 foreach x0 in ResamplingFilter(xi,yi)

add contribution of Voxel[x0,y0,z0] to

IntermediateImagePixel[xi,yi] , (2)

where Part_beg(j) and Part_end(j) represent the jth

begin-index and the jth end-index respectively along

z-axis, j is from 0 to M-1. The M data subsets will be

processed in different nodes. The “over operation” [14]

is used for volume rendering. The “over operation” is

written as follows:
11

0 0

0 1 0 2 0 1

1 0 2

0 1 2 1

() * 1

(1) (1)(1) ...

(1)...(1)

...

in

i j

i j

n n

n

L x c

c c c

c

c over c over c over over c



  

 



 

 



 

      

  



 
(3).

i is the opacity of sampling i. If icolor is defined as

the color of sampling i, ic is the premultip lied color

which is equal to i multip lying icolor . L(x) is the

combination result alone a ray. This equation is used in

two stages. Every node uses it for volume rendering

operation to create an intermediate image data and then

these intermediate image data are collected to a node

on which this equation is reused for intermediate image

composition. Finally the composite image is

transformed into final image.

3.3. Load Balancing

Generally the performance of the nodes in a grid is

different and their resources available are time -varying.

A Load balancing method is used in our Visual-Grid

service to improve the visualizat ion efficiency. Th is

load balancing schema is used at “data pre-partition”

stage (see section 3.1). We define

 i

idlei CPUtRtC)()( (4)

as the rendering capability of the ith node on the time t.

In Equation (4):

i

i

usage

i

idle cpuspeedCPUCPU)1(

where
i

usageCPU is the mean CPU usage rate in 1

minute on node i and the sampling rate is one second.

The icpuspeed
is the speed of CPU computing float

point per second on node i.)(tR is the weight

of
i

idleCPU .)(tR will be changed according to history

record, which will be described later. A visualizat ion

job will be divided according to)(tCi . The percentage

of sub-job to the total on every node is







)(

1

)(

)(
)(

tni

i

i

i

i

tC

tC
tp

, (5)

where n(t) is the number of nodes currently chosen to

do a visualizat ion job. We define

iii FreeMemoryMaxMemory S3

as the maximum free physical memory can be used on

node i.
iFreeMemory

is the mean value of the size of

free physical memory and
iS is the sample standard

deviation of memory usage on node i in 1 minute and

the sampling rate is one second. When the target data

distributed according to)(tpi
, three situations will

occur:

 If the memory needed for target data on every

node dose not exceed
iMaxMemory, the nodes

will begin to download the data;

 If
iMaxMemoryof some nodes, assuming j nodes,

do not satisfy the memory need, the total memory

needed size o f the job,)(tyTotalmemor ,will cut off






ji

i

iMaxMemory
1

and use Equation (5) to

re-compute the portion among the rest nodes until

all nodes satisfy the memory need. Otherwise the

finally remained data will again be d ivided among

all the chosen nodes according to Equation (5);

 If the memory needs on all the chosen nodes

exceed the available physical memory, the nodes

will begin to download the data and the virtual

memory on the node may be used.

We also define

)()(

)(
)(

tTotaltp

tRT
tK

i

i

i  (6)

where)(tRTi
 is the rendering time used on node i in

the time t .)(tTotal is the total size of the job in the

time t. Every time the total size of a job submitted may

be different. We use)(tKi
 to adjust)(tR .

























)1()2(|)2()1(|

),.1()1(

)1()2(|)2()1(|

),.1()(1

)(

1

1

1

tKtKTHRtKtK

iftR

tKtKTHRtKtK

iftR

tR

iiii

iiii





 (7)

Where THR is a threshold,  (0< <1) is the

adjusting coefficients for)(tR .

)1()2(|)2()1(|  tKtKTHRtKtK iiii

 means that the load on the node i is heavy. So the

)(tR is decreased, which causes)(tCi
 decreased. And

smaller sub-job will be distributed on node i.

)1()2(|)2()1(|  tKtKTHRtKtK iiii
means that the load on the node i is light. So the

)(tR is increased, which causes)(tCi
 increased. And

bigger sub-job will be distributed on node i.

When a user wants a visualization for a certain

image set, he often works on a image set with rather

long time, which will result in many continually task

submissions for a same data set. So this load balancing

schema is used for this situation and  will be

decreased to zero when the t ime interval between two

submissions is rather long.

3.4. Security

Security is a primary concern in the context of any

grid computing applicat ions. The security of the

PC-based grid presented covers not only system itself

but also the privacy of patients. So the system security

involves privacy of patients, authentication,

communicat ion privacy and integrity, and

authorization.

Privacy of patients is guaranteed by the anonymous

data mechanis m. Before the data distributed among the

nodes, all the privacy related information such as name,

address is shield off, and that having someone

eavesdrop on a communicat ion does not pose a privacy

risk.

GRAM uses GSI Transport schema for system

security.

For our Visual-Grid service, considering that a user

may work with the same data set repeatedly for certain

time interval, such that a doctor may want to observe a

3D image of a patient from d ifferent angles of view. So

the GSI secure conversation schema is used as the

authentication method. This method establishes a

context after an in itial exchange of messages . All the

following messages can reuse that context, resulting in

a better performance. Public-key cryptography based

on asymmetric algorithm makes the authentication

easily for a user with private-key and almost

impossible for an unauthenticated one. And digital

signature is one part of public-key system. It is a piece

of data which is attached to a message and could be

used to find out if the message is tampered with during

a conversation for data integrity verification.

Because every node used here has the ownership

corresponding to a specified person, a doctor for

example, the node must verify that only those

authorized ones can use the local v isualization service

to run other sub-jobs. Currently the Grid-map

authorization is used, and only the users added in the

grid map file are the authorized ones who can use the

visualizat ion service deployed on this node.

4. Experimental results

The cluster and the two kinds of P2P PC-based grid

services in the experiment were made up of four 256M

RAM 2.80GHz-Pentium4 PCs, and a Dell Precision

650Xeon 2.8GHz 1024M workstation. So the test

environment has nodes with d ifferent computing

capacities.

The implementation of the cluster is

distributed-memory mode based on MPICH1.2.7. The

nodes are connected with 100Mbit/s Ethernet. The

cluster uses SSH (Secure Shell) protocol.

Three kinds of testing method are used in this test.

The first is MPI-cluster test. The second is the grid test

using GRAM to submit visualizat ion task. The third

method is our Visual-Grid service. We have two ways

of data distribution. One is mean data distribution that

the data is divided equally among nodes. The other is

guided by the load balancing schema.

Because a user often works on a certain image set

rather long time, the divided data on every node for the

sub-job will only d istributed in the first time and it will

be reused until the user changes to the other data set.

So in our experiments the volume data distributing

time are not counted.
iRT is the rendering time on

node i.
ijT is the intermediate image data transmission

time for data collection from node i to node j. In the

experiment once a user define the final image size

(256x256 etc.), the size of intermediate image data will

be the same. We assume that bandwidth among nodes

is same and all the intermediate image data is collected

to one node. In the experiment, the node for final

composition and coordinate transformation is always

the same one. So the
ijT will be a same value, defined

as a constant TR when a user submits a v isualization

job.
iCT is the intermediate images composition and

coordinate transformat ion time on node i. So all the

figures below show the time:

ii CTTRRTMAXFT )((8)

The volume data used are two sets. One is

384*384*252 voxels and the other is 512*512*360

voxels, which all derived from the data set named
“brainsmall” in VolPack using upsampling method.

Figure 3. Time consumption bar plot for
384*384*252 volume data set.

Three kinds of result bars are displayed in the

figure 3 without using load balancing schema. Every

node is distributed with one part of jobs evenly. When

the number of nodes for visualization is one, the

workstation is not chosen here. “MPIMidrender” bar is

the time FT in MPI-cluster test and the rest are ones in

gird test. “ContainerMidRender” bar means the time

FT of v isualization managed by GRAM.

“NocontainerMidRender” bar is the time FT of

visualizat ion managed by our job submission system.

GRAM was used firstly for job submission. But we

found that the rendering time increased severely on the

nodes with 256M memory while involved in the

512*512*360 volume data test. There are two reasons

to bring on this result. One is because GRAM needs

more memory consummation during a job execution

for job state monitoring than our self-make job

submission service. The other is large data loading.

These two reasons cause insufficiently available

memory and influence the volume rendering procedure.

So we on ly display the test result of the 384*384*252

voxel data set in figure 3. From figure 3, it can be seen

that the rendering performance is approximately equal

between the cluster and grid with the simple job

submission system. And it will take more time when

using GRAM for the more memory consumption than

the simple one during job processing.

In figure 4, the GRAM was not used for job

submission and execution due to insufficiently

available memory mentioned above. Comparing

“MPIBigrender” bars with “NocontainerBigRender”

ones using mean date distribution schema, we can also

find out a similar result as in figure 3. To simulate

resources unbalancedness in a PC-based grid, two

kinds of PCs are utilized when the number of nodes is

5. The “BalanceNocontainerRender” bar shows that a

load balancing strategy adopted can improve the

performance effect ively.

Figure 5 shows the composition procedure when

visualizat ion is decentralized into 5 parts. The first five

images are intermediate images created by each node

or peer and the last one is the final image.

Figure 4. Time consumption bar plot for

512*512*360 volume data set.

Figure 5. Composition procedure of 5

intermediate images and final image

5. Discussions

The experimental results demonstrate that the

performance on a P2P PC-based grid is almost the

same as a cluster with similar computing resources for

our visualization application. The sharp-warp volume

rendering algorithm presented by Philippe Lacroute et

al is an effective volume rendering method and can be

modified for a grid application. Considering that free

resources on each PC are time-varying, load balancing

is a good choice to achieve better performance.

From the experimental results, we also find that

there are several aspects that can make the system

much efficiency except those usually considered (such

as data transmission speed, decentralizing task and

related resources, data compression, etc.):

Predict performance. Because every PC is

autonomous, we could not grasp the amount of free

computing resources on each peer in the next durat ion

of time even though we get the current states from the

informat ion server. In order to achieve the most

efficient services as quickly as possible, we can use a

performance predict ing mechanism that will guide us

for fast searching candidate resources based on the

analysis of historical records.

Reduce link establishment time. With the number

of nodes increasing, one complex function may involve

many PCs. Hardware and software conditions may

cause an asynchronous job preparation which will

influence the whole system efficiency. So reducing this

time is very important for improving system

performance. We try to reduce this delay in our job

submission system in the experiment above. The job

submission delay is about 2 seconds in our system.

Keep connected channel during a request

processing. This aspect is aiming at minimizing the

frequency of link establishment. Owing to various

computing resources are hidden behind firewalls with

all kinds of rules, keeping connection can also reduce

the time of package filtering by firewalls. When

visualizat ion especially for a visualizat ion session

begins, the peers will keep their connective status until

users exit. So the link establishment only occurs at job

preparation stage and after that the performance are

only related with processing capability and

transmission speed.

6. Conclusions

In this paper a hybrid P2P PC-based grid testbed for

medical visualization is presented. The grid testbed is

established with Globus Toolkit. The resource

informat ion service is implemented using MDS4.

Index service and aggregator service are used as

resource register and data collector to provide users or

the job scheduler resource informat ion about each

machine availab le in the grid. The aggregator service

collects information via the aggregator source. Privacy,

authentication, and data integrity are guaranteed by the

anonymous data mechanis m, public key cryptography,

and digital signature respectively.

We modify the sharp-warp volume rendering

algorithm for parallel visualizat ion. The experimental

results show that the computing capability of a P2P

PC-based grid is almost the same as a cluster with

similar computing resources for our visualizat ion

application. Considering the condition of free resources

on each PC being time-vary ing and the nodes’

performance being different, the load balancing

mechanis m can make the whole visualizat ion

procedure more efficient even the load balancing

method is relatively simple.

7. Acknowledgment

The authors would like to thank Stanford computer

graphics laboratory for providing the VolPack and

volume test sets.

8. Reference

[1] B. Ma and R. E. Ellis, “Robust registration for

computer-integrated orthopedic surgery: Laboratory validation

and clinical experience,” Med Image Anal., vol. 7, no. 3, Sept.

2003, pp. 237-250.
[2] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.

Pruyne, B. Richard, S. Rollins, and Z. Xu.,

“Peer-to-peer computing”, Technical Report

HPL-2002-57, HP Lab, 2002

[3] Shirky, C. (2001). “What is P2P... and what Isn’t,” An article
published on O’Reilly Network. Availible:

www.openp2p.com/lpt/a//p2p/2000/11/24/shirky1-whatisp2p.ht

ml.

[4] David P. Anderson, Jeff Cobb, Eric Korpela, Matt
Lebofsky, and dan werthimer , “SETI@home An

Experiment in Public-Resource Computing”,

COMMUNICATIONS OF THE ACM, vol. 45, no. 11,

Nov. 2002, pp. 56-61

[5] J. Ahrens et al., “Large Scale Data Visualization Using Parallel
Data Streaming,” IEEE Computer Graphics and Applications,

vol. 21, no. 4, July/Aug. 2001, pp. 34-41.

[6] Ohazama, C., “OpenGL Vizserver White Paper”, Silicon

Graphics Inc., USA, CA, 94043 (650) 960-1980, 1999

[7] Matsukura R, Koyamada K, Tan Y, et al., “VizGrid:
Collaborative Visualization Grid Environment for Natural

Interaction Between Remote Researchers”, Fujistu Scientific

&.Technical Journal, vol.40, no. 2, 2004, pp. 205-216.

[8] Suzuki, Y., Sai, K., Matsumoto, N., and Hazama, O.,

“Visualization systems on the
information-technology-based laboratory”, IEEE

Computer Graphics and Applications, vol. 23, no. 2,

2003, pp. 32-39.

[9] Alan Norton, Alyn Rockwood., “Enabling

View-Dependent Progressive Volume Visualization on
the Grid”, IEEE Computer Graphics and Applications,

vol. 23, no. 2, 2003, pp. 22-31.

[10] Taylor, I., Shields, M., Wang, I., and Philp, R.,

“Distributed P2P Computing within Triana: A Galaxy

Visualization Test Case,” IPDPS 2003 Conference, Apr

2003.

[11] C. Zunino and A. Sanna, “A JXTA-based architecture
for 3D distributed visualization: D3D,” Available:

http://sanna.polito.it/Versioni_Postscript/CCCT_2004.p

df.

[12] The Global Grid Forum. http://www.gridforum.org.

[13] The Globus Project. http://www.globus.org.
[14] Philippe G. Lacroute, “Fast volumerendering using a

shear-warp factorization of the viewing transformation”,

Tech. Rep. CSL-TR-95-678, Sep. 1995.

