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Abstract

A Lagrangian Controller for the stabilization of the in-
verted pendulum cart system is presented in this paper. The
control strategy consists of �nding a controller that trans-
forms the closed-loop system into another Euler-Lagrange
system with a �xed inertia matrix. This was done by solving
two matching conditions related with the total energy of the
closed-loop system. The resulting control strategy turns out
to be locally asymptotically exponentially stable with a very
large domain of attraction.

1. Introduction

A classic and challenging problem in control theory
is the stabilization of the inverted pendulum cart system
(IPC). This device consists of a free vertical rotating pen-
dulum with a pivot point mounted on a cart. The cart can be
moved horizontally by means of a horizontal force, which
is the control of the system. Since the angular accelera-
tion of the vertical pendulum cannot be directly controlled.
The IPC has attracted the attention of several researchers
as a benchmark for nonlinear control design (see [1] and
references therein) and it is an interesting example of an
under-actuated mechanical system. As consequence, many
standard control strategies not are unable to control it. For
example, the IPC is not input-output linearized by means
of static feedback [2]. Besides, the system loses control-
lability and other geometric properties while the pendulum
moves through the horizontal plane [3]. Fortunately, this
system is locally controllable around the unstable equilib-
rium point, therefore the stabilization problem can be solved
locally by a direct pole placement procedure [4]. In gen-
eral, the stabilization problem of the IPC consists in bring-
ing up the pendulum to the upright vertical position, with
the cart resting at the origin. A detailed review of the state
of the art of the problem here treated is beyond the scope
of this work. However, we refer the interested reader to the

following references: [5], [6], [7], [8], [9] and [10].
In this paper we develop a Controlled lagrangian for

bringing the pendulum to the top position and the cart to
the zero position, simultaneously. The proposed controller
has two main advantages: the domain of stability can be as
large as desired. As a matter of fact, this set is constituted
for almost states for which the pendulum is initialized over
the horizontal plane. The closed-loop system is robust with
respect to small damping forces since the obtained closed-
loop system is locally exponentially stable. Our main con-
tribution is to solve, in an easy way, the two needful match-
ing conditions, necessary to �nd one stabilizing controller
for the IPC, without the necessity of solving a set of more
complex PDE, as would be necessary if we used another
kind of model matching [11] and [12]. The main differ-
ence between the presented model matching and the previ-
ous work presented by [8], is that we force the closed-loop
system to behave like a stable Euler-Lagrange system with
�xed inertia matrix, eliminating the need to solve a set of
three nonlinear differential equations to get the variable in-
ertia matrix, as was done in [8]. Furthermore, in that work
the inertia matrix cannot be obtained explicitly.

The organization of this paper is as follows. Section
2 presents the dynamic model of the IPC. In section 3 a
suitable model matching and the solution of the two match-
ing conditions are presented. Section 4 depicts the stability
analysis of the closed-loop system and Section 5 presents
some computer simulations. Finally the conclusions are
given in Section 6.

2. The inverted pendulum cart system

Consider a traditional IPC (see Figure 1), which is de-
scribed by the following normalized set of differential equa-
tions

cos θq̈ + θ̈ − sin θ + βθ̇ = 0,

(1 + δ)q̈ + cos θθ̈ − θ̇2 sin θ = f,
(1)

where q is the cart normalized displacement, θ is the an-
gle that the pendulum forms with the vertical, f is the force



Figure 1. The inverted pendulum cart system.

applied to the cart, acting as the control input. βθ̇ is the lin-
ear damping force acting directly on the non-actuated co-
ordinate θ1. δ is one structural parameter related with the
mass of the cart and the pendulum, respectively [4]. After
applying the following feedback

f = cos θ sin θ − θ̇2 sin θ + v(2 + sin2 θ + δ)

into system (1), we obtain ,

θ̈ = sin θ − cos θv − βθ̇,
q̈ = v.

(2)

Clearly, the above system may be expressed as:

ẍ = −F (θ)−Bẋ + G(θ)u, (3)

where

F (θ) =
[ − sin θ

0

]
, B =

[
β 0
0 0

]
,

G(θ) =
[ − cos θ

1

] (4)

and x stands for xT = (θ, q).
Remark 1: The latter model (3), known as a partial
feedback linearization, does not retain the original mechan-
ical structure of the IPC, because we canceled important
nonlinearities like the Coriolis force, and is no longer a
Euler-Lagrange system. This is important because it differs
from the methods of Controlled Lagrangians and Con-
trolled Hamiltonians, where the original system structure
is always preserved [7]. We emphasize that canceling the
nonlinearities might potentially make the matching process
dif�cult. However, in our control strategy it is easy to
accomplish the feasible energy matching conditions related
to the structure of the proposed target system (closed-loop
system). The target system is shaped as an asymptotic
stable Euler-Lagrange system with �xed inertia matrix.

1As the damping force in the actuated coordinate q can be easily com-
pensated, we do not include this term.

Comment 1: It is worth mentioning that the dissipation
force can make the closed-loop system unstable [10]. In
general, this force cannot be compensated by the action of
a convenient control law u. However the undesirable effect
of damping can be partially eliminated by using a robust
stabilizing controller.

3. Control strategy

The control objective is to bring the pendulum to the
up right position with the cart at the origin, assuming that
the position angle of the pendulum is initialized over the
horizontal plane. To this end, we propose a simple model
matching for solving it. This method consists of �nding one
controller u that transforms the system (3) into another non-
linear system, with some desired stability properties. That
is, we are looking for control law u such that the closed
loop system can be written in the form

Mdẍ = −Kd(x)ẋ− ∂

∂x
Vd(x), (5)

where Md and Kd(x) are symmetric positive de�nite matri-
ces. Vd(x) is a strictly positive function2. Systems (3) and
(5) match, for some convenient control law u, if the solution
of both systems are the same. That is, (x,u) is a solution of
(3), if and only if x is a solution of (5). Therefore, we assure
that systems (3) and (5) match, if we have

−F (θ) + G(θ)u = −M−1
d Kd(x)ẋ−M−1

d

∂

∂x
Vd(x). (6)

It should be noticed that if G3 is invertible, then we can
obtain directly the desired controller u, for any given Kd

and Vd. However, since G is single column then u can only
act in the range space of G. This fact leads to the following
constrain equation

0 = G⊥
([

M−1
d

∂

∂x
Vd(x)− F (θ)

]
+

[
M−1

d Kd(x)
]
ẋ
)

.

(7)
This is followed by multiplying both sides of (6) by the an-
nihilator of G.4 Consequently, if the unknown functions
Kd and Vd are obtained for a given F , then control u can be
computed directly by,

u = − GT

GT G

[(
M−1

d

∂

∂x
Vd(x)− F (θ)

)
+ M−1

d Kd(x)ẋ
]

.

(8)
2Later we discuss why (5) is asymptotically stable
3For simiplicity we use G to denote G(θ).
4Due to the fact that GT = [−cosθ, 1], then its left annihilator is given

by G⊥ = δ(x, ẋ)[1, cosθ], where δ is any strictly positive function, but
for simplicity we select δ = 1.



Finally, the control strategy is summarized as follows: we
need to solve the matching conditions (7), which evidently
can be separated in the following two matching conditions

0 = G⊥
[
M−1

d

∂

∂x
Vd(x)− F (θ)

]
, (9)

and
0 = G⊥

[
M−1

d Kd(x)
]
ẋ, (10)

Thus, control u is obtained via relation (8).
Comment 2: In this section, we do not consider the damp-
ing force effect, since it is possible to show, by using sim-
ple linear algebra that we cannot compensate this force.
This means that there is no additional control variable that
preserves the stability properties of the target system, and,
simultaneously, assures the necessary matching condition.
This is because the damping force breaks the symmetric
properties of the target Lagrange or Hamiltonian System
[10]. However, this effect can be partially avoided and an-
alyzed by using simple linearization of the closed-loop sys-
tem, instead of looking for a convenient Lyapunov function
for the damping system.

3.1. Solving the two matching conditions:

Now our goal is to try to �nd the unknown matrices Md,
Kd and the unknown function Vd in order to achieve the
aforementioned two matching conditions. To this end, we
establish the following lemma:

Lemma 1: If the symmetric matrices M−1
d and Kd(θ) are

taken as:

M−1
d =

[
1 −µ2

−µ2 µ3

]
;

Kd(θ) = γMdG(θ)GT (θ)Md,

(11)

where the coef�cients of matrix M−1
d satis�es the in-

equalities
µ2 > 1 ; µ3>µ2

2, (12)
and γ is a positive constant and function Vd(x) is selected
as

Vd(x) =
1
µ2

ln(−1 + µ2)− 1
µ2

ln(−1 + µ2 cos θ) +
kp

2
s2

(13)
where

s = q − µ3
µ2

θ + 2(µ3−µ2
2)

µ2

√
−1+µ2

2

arctanh

(
1+µ2√
−1+µ2

2

tan θ
2

)
,

(14)
then the two matching conditions (9) and (10) are simulta-
neously ful�lled, for all θ ∈ Iµ = (−θµ, θµ), with

θµ = cos−1

(
1
µ2

)
. (15)

Notice that, if θ ∈ Iµ and µ3>µ2
2 then Kd(θ) > 0 for all

θ ∈ Iµ.
Proof: We �rst verify the �rst matching conditions related
with the potential energy Vd, substituting the values of M−1

d

and F (θ), de�ned previously in the �rst matrix of (??) and
the �rst matrix of (4) respectively, by the �rst matching con-
dition (9). We have, after recalling that G⊥ = (1,cos θ), the
following

G⊥
[
M−1

d
∂
∂xVd(x)− F (θ)

]
= ∂Vd

∂θ (−1 + µ1 cos θ)
+∂Vd

∂q (µ1 − µ2 cos θ) + sin θ = 0 .

(16)
Easily, we can check that the following function

Vd(x) = k1 − 1
µ2

ln(−1 + µ2 cos θ) + Φp(s) (17)

is one solution of the PDE given in (16), where k1 is a con-
stant, s is an auxiliary variable given in (14), and Φp is any
arbitrary function .5 To guarantee that the potential energy
Vd is locally positive de�nite, in a neighborhood of x = 0,
it is enough that,

Vd(0) = 0, ∂Vd

∂x

∣∣
x=0

= 0, ∂2Vd

∂x2

∣∣∣
x=0

> 0. (18)

Applying the above conditions (18) in (17), we obtain

k1 = ln(−1+µ2)/µ2,Φ
′
p(0) = 0, Φ

′′
p (0) > 0 , µ2 > 1, µ3 > µ2

2 .
(19)

Thus, a convenient Φp is given by

Φp(z) =
kp

2
z2, (20)

with kp > 0. That is, we have validated the expression of
Vd, given (13), which is strictly positive and well de�ned, if

−1 + µ2 cos θ > 0. (21)

Evidently, the above inequality is satis�ed for all θ ∈
(−θµ, θµ); with θµ de�ned in (15). Consequently, the
proposed Vd satis�es the �rst matching condition, for all
θ ∈ Iµ. That is, the proposed Kd(θ) satis�es the second
matching condition.
As we can see, the aforementioned matching conditions
have been easily solved. As a matter of fact, we only have
solved a single PDE and a single algebraic equation, both
related with the structure of the shaped target system. It is
worth mentioning that if we employ the methodology based
on the matching conditions of the controlled Lagrangians, it
is necessary to solve three ordinary differential equations re-
lated to the kinetic energy shaping, and one nonlinear partial
differential related with the potential energy [6], [7], [12].
A similar number of equations are needed to be solved if

5This PDE was solved by means of MathematicaTM program.



we use another approach as presented in [11]. The simplic-
ity of the two matching solutions presented here are a direct
consequence of the structure of the desired closed-loop sys-
tem (5). That is because the major dif�culty to carry out the
model matching depends largely on the ability to choose the
desired closed-loop system.

Remark 2: We show that the obtained closed-loop sys-
tem is also locally exponentially asymptotically stable; so,
the closed-loop system is robust with respect to small un-
modeled dynamics. That is, if the damping force is small
enough and the system is initialized close to the origin, then,
even in this case, we can expect that the system achieves the
desired unstable equilibrium point. We show it with numer-
ical simulations.

4. Closed-loop stability analysis

First of all, we note that the stability of system (3) in
closed-loop with the controller u (8), is equivalent to the
stability of the desired closed-loop system (5). This is a
direct consequence of the de�nition of the matching con-
dition. Then, the stability analysis is carried out over the
desired closed-loop system (5). To this end, we propose the
following Lyapunov function:

E(x, ẋ) =
1
2
ẋT Mdẋ + Vd(x), (22)

where Md and Vd(x) are de�ned in (5) and (13), respec-
tively. Then, computing the time derivative of E, with re-
spect to the desired closed-loop system (5), we obtain

Ė(x, ẋ) = ẋT Mdẍ + ẋT ∂Vd(x)
∂x

= −ẋT
(
Kd(x)ẋ + ∂

∂xVd(x)
)

+ ẋT ∂Vd(x)
∂x

= −ẋT Kd(θ)ẋ.
(23)

Note that the sign of E and Ė given in (22) and (23) are well
de�ned, while the angle θ belongs to the set Iµ (see Lemma
1). To assure this, it is suf�cient that the initial condition
(x0, ẋ0) with θ0 ∈ Iµ, belonging to a neighborhood of the
origin such that

E(x0, ẋ0) < Vd(θµ, 0) = Cµ, (24)

where θµ was de�ned previously.

Remark 3 : The above inequality de�nes a stability region
for the closed-loop system, that is, if the initial condition
ful�lls the inequality E(x0, ẋ0) < Cµ, with θ0 ∈ Iµ. Then
necessarily θ(t) ∈ Iµ. Given this fact, we can de�ne a
compact set Ω as:6

6This set will be used more latter to apply LaSalle's invariance Theo-
rem.

Ω =
{
(x, ẋ) : E(x,

.
x) < Cµ

}
(25)

The set Ω has the property that all solutions of the closed-
loop system (5) that start in Ω remain in Ω for ever.

Continuing with the stability analysis, we claim that the de-
sired closed-loop system (5) is locally stable, with stabil-
ity region de�ned by the inequality (24). Of course, the
unknown M−1

d , Kd and Vd have to be selected according
to Lemma 1. In other words, the closed-loop solution is
bounded, for any initial condition satisfying the inequality
(24).

To guarantee that the closed-loop solution asymptoti-
cally converges to zero, it is necessary to use LaSalles's
Theorem. To this end, we de�ne the set

S = {(x, ẋ) ∈ Ω : −ẋT MdGGT Mdẋ = 0}, (26)

and let M be the largest invariant set in S. LaSalle's theo-
rem guarantees that every solution starting in a compact set
Ω approaches M as t →∞ [13].

Let us then compute the largest invariant set M in S.
From (26), it follows that

S = {(x, ẋ) ∈ Ω : GT Mdẋ = 0}, (27)

which is equivalent to

(−µ3 cos θ + µ2)
.

θ +(−µ2 cos θ + 1)
.
q= 0 (28)

But, on set S we have that θ ∈ Iµ. Therefore, variables θ̇
and q̇ do not change their sign, as established by the pre-
vious Lemma. Now, if variables θ̇ and q̇ are different from
zero and they have the same sign inside of the set S, then
(θ, q) tends to go out of the invariant set Ω. This is a contra-
diction, because we have assumed that (x, ẋ) ∈ Ω. There-
fore, we have that ẋ = 0 and x is a �x constant vector on
set S. Now, let us de�ne x = x7.Then x is one of the two
equilibrium points of system (3). In other words x = (0, 0)
or x = (θ = π, q = 0). However, from de�nitions of the
invariant set Ω, given in (25), necessarily x = 0. Conse-
quently, the largest invariant set M = 0.

Finally, we conclude that the largest invariant set M , con-
tained in S, is constituted by the single equilibrium point
(x = 0, ẋ = 0). And, according to LaSalles's theorem, all
the closed-loop solutions starting in Ω asymptotically con-
verge towards the largest invariant set M, which is given by
(x = 0, ẋ = 0).
Summarizing the above discution, we present the main
proposition of this paper:

7We use the symbol y to indicate that the variable y is a constant.



Proposition 1: Consider the non-lineal model of (3) in
closed-loop with (8), where Md,Kd and Vd are selected ac-
cording to Lemma 1. Then the origin (x = 0, ẋ = 0) of
desired closed loop system is locally asymptotically stable
with its domain of attraction de�ned by the set Ω (25).

Notice that if the constant kp, related to the potential en-
ergy (13) is large, then domain of attraction Ω is increased.
That is, we can enlarge the domain of attraction for almost
all states starting above the ho

5. Simulations Results

In order to test the performance of the obtained control
law we have carried out some numerical simulations using
the MATLABTM system.
In the �rst experiment we show the in�uence of the control
parameter kp on the transient behavior. We test it for two
different values, given by kp = 1 and kp = 2. We �xed the
control parameters as µ2 = 2.5, µ3 = 7. The set of initial
conditions were set as θ0 = 1.1[rad], θ̇0 = 0.1[rad/sec],
q0 = 0 and q̇0 = 0, while the damping coef�cient was �xed
as β = 0. Figures 2 and 3 shows the transient behavior
of the position variables and the velocity variables, respec-
tively. As we can see, the larger the values of kp, more os-
cillations are produced and all the states slowly converge
to the desired equilibrium point. Intuitively, the controller
injects more potential energy to the system, so that the sys-
tem must dissipate all initial potential energy by means of
oscillatory movements.
In the second experiment we have used the same control
parameters and the same initial conditions as we did it in
the previous one. To illustrate the robustness of the obtained
closed-nonlinear-system, we considered a dissipative force
in the unactuated direction. Figure 4 shows the closed-loop
behavior of the two position variables, when the damping
coef�cient was �xed by β = 0.1 and β = 0. As we can see,
the effect of the dissipation force tends to destabilize the
closed-loop system; that is, the system converges slower to
the origin. Contrarily, when the dissipation force is absent,
the system converges faster to the origin.

6. Conclusions

A control strategy for the stabilization of the IPC around
its unstable equilibrium point, assuming that the pendulum
is initialized above the horizontal plane, has been presented
in this paper. The control strategy is based on a partial feed-
back linearization of the IPC, followed by the application
of a suitable model matching. The idea behind it is to �nd
a feedback control law that transforms the partial feedback
linearization model in a desirable target system, which has
some stability properties. To carry it out, we need to solve

Figure 2. Closed-loop behavior of both posi-
tion variables, for two different values of kp

Figure 3. Closed-loop behavior of both veloc-
ities variables, for two different values of kp

two matching conditions, both related to the structure of the
desirable target system. The obtained matching conditions
are very easy to solve in comparison to others matching con-
trol strategies. The resulting control strategy turns out to be
locally asymptotically stable and locally exponentially sta-
ble around the origin, with a very large domain of attraction.
To show that the closed-loop is locally asymptotically sta-
ble we used LaSalle's theorem and to show that it is locally
exponentially stable we used a simple linearization. Con-
sequently, the closed-loop system is robust with respect to
small external forces, like the undesirable damping effect in
the non-actuated coordinate.
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Figure 4. Robustness of the proposed con-
troller to the damping effect.
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