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Abstract

Forecasting is an important activity in physics, eco-
nomics, commerce, marketing and various branches of sci-
ence. This article is concerned with a new forecasting
method based on the information obtained from the image
axes of a time series. A time series is a collection of ob-
servations made sequentially through time, for instance, the
temperature at a particular location. In order to obtain an
interesting result in time series forecasting we implement
a new input representation of the data and also we gener-
ate a new learning technique which through probabilistic
mechanism this learning could be applied to the interest-
ing forecasting problem. The result indicate that using the
methodology proposed in this article it is possible to obtain
forecasting results with good enough accuracy.

1. Introduction

The time series (TS) are principal used when the phe-
nomena are not calculated or measure by mathematical
models but relying on observation or experiment. In other
words, a time series is a sequence of values over the time of
a systemx (t) which registers a sequence of experimental
values [3][2]:

x (t1) , x (t2) , x (t3) , ..., x (tn) (1)

for some intervalt = n with t0 < t1 < ... < tn [1].
Many natural phenomena can be represented as time series
such as temperature, electronical signals, economical data,
social data among others.

In fact, for time series forecasting there exist many
nonlinear techniques such as Artificial Neural Networks
(ANNs) [6], Support Vector Machine (SVM) [7] among
others. Those learning techniques has some incovenients,
for example in ANNs we need to decide the optimal archi-
tecture and the optimal function to train the network [5]. In
the other hand, in SVM it is necesary to decide the type of
kernel function either linear or nonlinear [3]. It is important
to notice that an incorrect choice of either in the input data
representation or in the learning process should affect the
final result. A complete review about this nonlinear tech-
niques can be found at [4].

In this article, we present a new methodology to obtain
the input data using the image information [10] and a new
learning technique based on statistical procedures is also
implemented. These methods are implemented to perform
time series forecasting from the information obtained from
the image axes of the time series.

2. Input data representation

This new input data representation is based on the prin-
ciple coined “subgoals” [8] as follows: we divide the image
of time series into small sections and this new divisions are
called “boxes”. That is because, is easier to learn the be-
haviour of small amplitude intervals of time series than try-
ing to learn the behaviour of the whole time series. In order
to do that we implement the definition of intervals.

An interval is a set that contains every real number be-
tween two defined numbers and may contain the two num-
bers themselves. i.e., ify1, y2 ∈ ℜ then the interval[y1, y2]
is defined as the following subset ofℜ :



[y1, y2] = {y | y1 ≤ y ≤ y2} (2)

wherey1 is the lower bound of the interval andy2 is the up-
per bound of an interval[y1, y2]. In order to enclose points
between the two dimensions (i.e. the x and y axis) it is nece-
sary to use the next interval real vector definition.

An interval real vector ([Box]) is a subset ofℜn that can
be defined as the cartesian product ofn intervals[y1, y2]:

[Box] = [x1, x2] × [y1i, y2i] ∀i = 1, 2, 3, ..., n (3)

Then it is possible to make the next definition:
Definition 1: Given the following functionareaf =

[Box] → N ∪ {0} ∪ {∞} it is possible to define it as:

areaf [Box] = card ([y1, y2] ∩ {f (x) | x ∈ [x1, x2]})

wherecard (∗) means the cardinality of the set(∗). This
area function indicates the nunmber of points contained in
one box (see Fig. )

Figure 1. The box is defined by the upper and
lower image limits y1 and y2, and the upper
and lower time limits x1 and x2 respectivelly.
It is also observe that the areaf within this
box is equal to 86 points.

3 Learning process

Firstly, it is necessary to define the term of learning we
used in this article as follows [11]:

Definition 2: Learning is the process of acquire and
acumulate knowledge about some task through experience,
which allows to execute the same task better in the future
than the last time.

In order to learn the behaviour of a TS, firstly we divide
the image of the TS inton boxes, for this purpose we gen-
erated a new mechanism as follows:

• Firstly, it is necessary to identify the corresponding
box belonging to the original point of the TS i.e.,
x (i), following the next condition:if x (i) > yj and

x (i) ≤ yj+1 then x (i) ∈ Box (j). For instance, see
the Fig. 2a) wherex (6) = 0.68 and 0.68>0.6 and
0.68≤0.8then x (6) ∈ Box(4).

• Then, we must determine the tendency of the points
according to the following conditions:

– if x (i) < x (i − 1) then band = 0 (i.e., the
points are decreasing).

– if x (i) > x (i − 1) then band = 1 (i.e., the
points are rising).

For example, if we observe again the Fig. 2a) the point
x (6) > x (5) this means that the pointx (6) is rising
therefore it band is equal to 1.

• After, the point that track the dynamical behaviour of
the observed point is calculated by a bounded random
between the lower and upper bound of the image box,
i.e., trackPoint (i) = rand(yj , yj+1] we can observe
the Fig. 2b) wherex (6) ∈ Box (4) and the image in-
terval of that box is equal to(0.6, 0.8] then the track
point is calculated by randomly between the image in-
terval of the Box(4) which supossed is equal to 0.681.
Then, in order to verify if this random point is closed
to the observe point it is necesary to calculate the error
between the original and calculated point.

• Finally, it is necessary to save the calculated points as
well as its errors in order to learn from its experience.
This information is saved into two matrices calledUa

andUe, the first one stores the tracking points and the
second one stores its corresponding error. As we can
observe from the Fig. 2c) there are two matrices where
the rows correspond to the number of sequence points
into a specific box (the columns). For example, the
tracking point equals to 0.681 is stored inUa(1, 4) and
its error inUe(1, 4).

4 Time Series Forecasting

One of the goals of forecasting techniques is to extract
the biggest amount of information from the behavior of time
series during the learning process and from this information
predict the behavior of next points in the future [3].

On the basis of the learning process, we generate the ma-
tricesUa andUe but those matrices are not the only ex-
tracted information from the learning process. During the
implementation of the learning process we could notice that
when we use the boxes representation we can define and
extract the following additional information:



Figure 2. Example of the learning process. In
a) is observed the identification of the ob-
served point (black dots) to an specific box
and its tendency. In b) is shown how to com-
pute the tracking points (light dots) and its
error. Finally, in c) is observed how to store
the information from this learning process.

Thelength of points indicate the sequence of points that
belong to an specific box and this following one of the next
conditions:

• if the points are rising these should achieve
that trackPoint (1) < trackPoint (2) < ... <

trackPoint (l)

• if the points are decreasing these should achieve
that trackPoint (1) > trackPoint (2) > ... >

trackPoint (l)

If one set of points follows the above conditions then we
say that these points have a length equals tol (see Fig. 3b).

TheJumps refers to a characteristic of some points that
moves from one box to another box as long as these points
do not change its tendency, i.e. the Jumps measure the leap
that some points do when some pointx (i) is in one box and
the next pointx (i + 1) just jumps another box without to
change its tendency (see Fig. 3c).

The information obtained from the above definitions is
stored into two matrices calledlongs andjumps respec-
tivelly (see Fig. 4a) and b)) and from these matrices it is
possible to extract the following information:

• the length of some points during one box and in the
same visit

• how many times some boxes are being visited

• the next box the points go after visiting some box

Figure 3. Ilustration of the definitions of
length and jumps. In a) we observe that the
firts points are rising therefore in b) is shown
the length belonging to those points and in c)
we observe the jumps the points do.

If we analize the matriceslongs and jumps we can
notice that if we merge these two matrices then it is posi-
ble to multiply the information. This new matrix is called
longJump defined as:

longJump := longJumpi,j,k,l (4)

∀1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ o, 1 ≤ l ≤ p, wherem

is the length of some points during a visit,n is the visited
box, i.e., the jump,o is the actual box andp is the sense of
the points. The values that the matrixlongJump (i, j, k, l)
contain are the frequency of points which has the length
i, jump to the boxj from the boxk and those have the
same tendencyl. To ilustrate the merge between the ma-
triceslongs andjumps observe the Fig. 4.

The matrixlongJump store the frequency of the length
and jumps at the end of the learning process. For in-
stance,longJump (7, 2, 1, 1) = 1 means that the points
have length equals to 7 these points jump to the box 2 when
they where in box 1 when they have rising tendency and
the frequency of that pattern is equal to one and that means
that during the learning process only once that pattern is re-
peated.

When the learning process is finished, the last learned
points determine the following information:

• the last tracking point

• the last box this point visited

• the tendency of that point and

• the its length.

In order to forecast the next points of the TS first is
necessary to estimate the next box which this future points



Figure 4. Example of the merge of the matri-
ces longs and jumps. In a) is observed the
matrix longs, in b) is observed the jumps ma-
trix and finally in c) we can observe the merge
of both matrices.

are going to jump and after that we must also estimate the
length of this new points.

Firstly, in order to estimate the following box, we ex-
tract from the matrixlongJump the vector that follows the
information of the last tracking point. For instance, ob-
serve the Fig. 5a) where the last point visited the box=2
the length of this point is equal to 4 and it has a de-
crearising tendency. Then using that information we ex-
tract the corresponding vector from thelongJump matrix,
i.e., vector=longJump (4, :, 2, 0) see Fig. 5b) as we can
observe the columns of this new vector contain information
of the box we want to estimate and inside this vector is the
frequency of the points that jumped in the past to that box
and as we observe from this vector extracted we realize that
there are two future boxes to choose either the box 1 or the
box 2. Therefore, in order to decide the next box we pro-
cede to compute a probabilistic table of each future box. For
example, see Fig. 5b) and observe the rows of this table of
the probabilities where row(1)= box(1) and row(2)=box(2)
and from this probabilistic table it is posible to choose the
next box by executing a random value between 0 and 1 and
suposse that this value is equal to 0.123 and observe that
this value correspond to box=1.

Secondly, it is necesary to determine the tendency of the
next points when they jump to this new box as follows:

• it is important to notice that the tendency of this future
points vary according to the nex box compute above,
because if this next box is the same that the last visited
box, then its tendency change.

• On the other hand, if the last tracking point has a rising
tendency and the next estimated box is bigger than the
last box visited then the tendency of the next points re-
mains the same and viceversa. For instance, supposed
that the last visited box is equal to 2 and those points
has decreasing tendency and the next box is equal to 1
then the tendency of future points remains decreasing.

• When the last tracking points has a rising point and the
next estimated box is smaller than the last visited box
then the tendency of the future points change because
they start to decrease and viceversa. For instante, sup-
posed that the last visited box is equal to 3 and the
points have rising tendency and also supposed that the
next estimated box is equal to 2 then the tendency of
the future points is now decreasing.

Once we estimate the next box it is necessary to estimate
the length of the next points in the following terms:

1. From the matrixlongJump we extract a submatrix
which has the information of the last tendency of the
last tracking points and the next box calculated above.

2. The columns from the new matrix are summed and we
get a new vector in which each row represent the next
length of the future points.

3. As in association with the estimation of the next box
the procedure used to estimate the next length of points
is very alike. This means that we generate a table of
probabilities about the frequent lenghts and then ran-
domly choose one, also each lenght has its weight (fre-
quency) (see Fig. 5c).

Finally, after the estimation of the next box, the next ten-
dency and the next length it is necesary to determine the
values of those next points by designing an indexing mech-
anism of the matrix computed during the learning process
calledUa. This indexing process is as follows:

• Identify the rightUa matrix by the tendency estimated
above then, from thisUa matrix is necesary to find the
estimated box which correspond to a column of that
Ua matrix. Once, the column of this matrix is identify
then the estimated length indicate how many points is
necesary to recover from theUa matrix and this points
are ploted as the forecasting points (see Fig. 5 d) y e)).

• Finally, it is necesary verify the performance of this
forecasting approach between the original and the pre-
dicted point and the measure that we implemented is
the root mean square error (RMSE):

√

√

√

√

√

n
∑

i=1

(xo − xp)
2

n
(5)



wherexo means the original points from the time se-
ries,xp means the forecasted points from the time se-
ries andn means the total number of the both time se-
ries [2]. This procedure is repeated until the forecast-
ing points are equal to the total of points we want to
predict.

Figure 5. a) shown the last learning (track-
ing) information extracted from the TS, in b)
is shown the procedure to estimate the next
box, in c) is possible to observe the process
to estimate the next length, in d) is shown the
procedure to recovery the estimated points
and finally, in e) this new points are ploted
and this process is repeated (g) until the
number of estimated points are equal to the
number of point we want to estimate (f).

5 Experimental Results

In this article we presented a new approach to obtain new
information from the image of the time series and this new
information could be applied to the problem of forecasting.

In order to verify the performance of this new forecast-
ing approach we prove this technique with time series from
different behaviours such as: periodical, quasiperidodic,
chaotic and stochastic systems [3]. To all of them we pre-
dict the next 100 points and we calculate the RMSE. We are
going to show some of the obtained results1.

1The software used in our simulations was Matlab 7.0R©and the spec-

Firstly, in Figure 6 the time series ploted shows a
quasiperiodic behavior which means that the time evolu-
tion could be decompose into different sections which ap-
pear to be periodic themself but at different times. The
prediction as we can see is very accuracy with an error
RMSE = 0.0012

Figure 6. Results for a quasiperiodic time se-
ries. In a) is observed the plot of the whole
time series and in b) is shown the 100 points
predicted.

Then, in Figure 7 it is shown the lorenz time series which
has a chaotic behavior that means that it describes the be-
havior of certain nonlinear dynamical systems that under
certain conditions exhibit dynamics that are sensitive to ini-
tial conditions (popularly referred to as the butterfly ef-
fect). As a result of this sensitivity, the behavior of chaotic
systems appears to be random, because of an exponential
growth of errors in the initial conditions. Despite of its
behavior the results indicate that this new forecasting ap-
proach it is possible to be predicted and the RMSE obtained
is equal to 0.0082.

Figure 7. Results from the lorenz time series.
In a) we observe the whole time series and in
b) we observe the 100 predicted points.

Finally, in Figure 8 we observe the results obtained from
the White Noise time series wich has a stochastic behav-

ification of the hardware we used is a CPU Pentium 4 with 3.0 GHzand
512MB of RAM.



ior. A stochastic process is one whose behavior is non-
deterministic in that a state does not fully determine its next
state. Therefore, in this figure we observe that the fore-
casting is accuracy due its behavior with a RMSE equal to
0.1554.

Figure 8. Results of the White Noise time se-
ries. In a) we observe the whole time series
and in b) we observe the predicted points.

All the result indicates that it is possible to predict some
points from the time series from different behaviors obtain-
ing in all the cases a low error between the original and the
predicted points from the time series with the RMSE.

6 Conclusions

We have presented in this paper a new approach to fore-
cast time series through the information from its image.
This new approach can predict points from time series with
different behaviors from the easiest time series (periodical)
to a more complex behavior (chaotic).

The errors obtained with our technique demonstrated
that the predicted points from the time series has good ac-
curacy. However, this error measure only indicates the pre-
dicted amplitude of the time series but not the tendency of
these predicted points which as we can observe from the re-
sults the predicted points preserve the original tendency and
this is an interesting characteristic of this new approach.

The results that we presented in this paper are from the
first stage of the whole investigation in which we only used
the local information to predict some points. To future work
we are going to use also global information in order to get
better results than this first stage.

Using the information obtained from the training process
we can also use that information to expand these results to
complex networks. It is important to keep in mind that any
natural phenomena can be able to be represented as a time
series, and then it is possible to apply this approach in sev-
eral phenomena.

References

[1] Ramı́rez-Amaro, K., Figueroa-Nazuno, J.G.:Empleo
de la T́ecnica Mapa Recurrente en el Análisis de
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