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Abstract 
 

In this letter we present a reorganization method to 
protect against data loss when one or two disks fail in a 
RAID level 5. The main advantage of the proposed method 
is that it is robust against a second failure if a first failed 
disk has not been replaced yet. Our proposal is motivated by 
the fact that new disks have a high possibility to fail during 
their first year of operation and during this period there is 
enough free space to rebuild the lost data in the failed disk 
and store it by a reorganization in the remaining disks.  

Keywords: Data Survability, Disk Array, Storage 
System 
 
1. Introduction 
 

Current organizations of any kind base their 
operation and competitiveness on one of their most 
valuable resources:  information. As such,  information 
must be available at any moment and the risk of losing 
it due to flaws in the devices where it is stored should 
be eliminated.  

At the present time an ever increasing number of 
organizations satisfy these two requirements using disk 
arrays as their online storage devices.  This trend 
results from the convergence of several factors.  First, 
advances in magnetic storage technology have 
considerably reduced the cost of storing data online.  
Second, regulatory requirements now obligate public 
corporations to retain their audit data over longer 
periods of time than in the past and to keep them 
immediately accessible. Finally, the rate at which 
digital data are produced keeps increasing in nearly all 
organizations [Lyman & Varian, 2000]. 

Given the above, we can affirm that the design of a 
storage system should be focused to ensure the 
survival of its data over periods that can span decades. 
Techniques like mirroring and erasure codes are two of 
the most used.   Mirroring maintains multiple 
redundant copies of the stored data. Erasure codes, 
such as the well-known m-out-of-n codes, store data on 

n distinct disks along with enough redundant 
information to allow access to the data in the event n–
m of these disks fail.  The best-known organizations 
using these codes are RAID level 5, which uses an (n–
1)-out-of-n code, and RAID level 6, which uses an (n–
2)-out-of-n code. 

In the case of RAID level 5 when one disk fails the 
lost data can be recovered and the storage system will 
be able to keep working, provided none of the 
remaining disks fail before the failed disk has been 
replaced and the system is completely restored to its 
normal configuration. Otherwise, some data will get 
lost. Then, when using RAID level 5 we must consider 
two issues that greatly compromise its data when 
functioning after one disk failure:  a) disk infant 
mortality and b) the bad batch problem.  Disks have 
much higher failure rates—between two and three 
times higher than those indicated by their mean time to 
failure—during their first year of operation.  In 
addition, most failures resulting from a bad batch of 
disks also show up sometimes during that year.  The 
traditional solution of burning in devices before 
actually using them would not help much since a 
prudent burn-in period would take one year and use up 
one fifth to one sixth of the disk lifespan [Elerath, 
2000, Xin et al. 2005].  We are thus forced to use disks 
drives while they are still in their period of high infant 
mortality, and are still subject to bad batch failures.  

We must take into consideration the high possibility 
that some of the previous problems can happen during 
the first year of operation of a RAID level 5, and could 
lead to a permanent data loss.  

A solution to avoid the risk of data loss due to a 
second disk failure before the replacement of a first 
failed disk exists. This solution must allow us to 
restore the information contained in the second failed 
disk only using data previously stored in the free space 
in the remaining disks. Also, the number of XOR 
should be maintained to the minimum to increase the 
disks’ overhead as little as possible. The main idea 
consists of storing the data of the first failed disk, after 



its restoration, in the area where the redundant 
information was stored and the free space will be used 
to store the new redundant data, corresponding to the 
new configuration and a few copies of some of the data 
blocks. The data stored in the free space will be used if 
another disk fails and the first failed disk has not been 
replaced. 

To evaluate the benefits of this new disk 
organization, we have analyzed the behavior of a small 
RAID level 5 system consisting of five disks. Our 
results indicate that our technique can reduce the 
probability of a data loss during the first year of 
operation of the system by at least 75 percent.1 

The rest of the paper is organized as follows: 
Section 2 surveys previous relevant work.  Section 3 
introduces our technique and Section 4 evaluates its 
performance.  Finally, Section 5 has our conclusions. 
 
2. Previous Work 
 

To reduce the possibilities of losing data stored in 
magnetic devices or disks, making copies has been a 
comon practice and may be the oldest data loss 
protection mechanism. Recently, with the appearance 
of redundant arrays of inexpensive disks, known as 
RAID [Patterson et. al, 1988] and the constant price 
reduction and increment of capacity and reliability of 
disk, the survability data levels have been considerably 
increased. Maybe the most used RAID comfigurations 
are RAID level 5 and RAID Level 6. These disk 
configurations are based on erasure coding, where 
RAID 5 uses (n – 1)-out-of-n codes [Chen et al., 1994, 
Patterson et al., 1988, Schwars and Burkhard, 1992, 
Schulze, et al., 1989] and RAID 6 uses (n – 2)-out-of-
n codes to protect data against double disk failures 
[Burkhard and Menon, 1993]. 

Self-organizing fault-tolerant disk arrays have been 
considered as a mechanism to protect data against disk 
failures. As an example, the HP AutoRAID [Wilkes et 
al., 1996] automatically and transparently manages 
migration of data blocks between a replicated storage 
class and a RAID level 5 storage class as access 
patterns change. Its main objective is to save disk 
space without compromising system performance by 
storing data that are frequently accessed in a replicated 
organization while relegating inactive data to a RAID 
level 5 organization. As a result, it reacts to changes in 
data access patterns rather than to disk failures. 

                                                           
1 Even better results could be achieved by taking advantage 
of the failure prediction capabilities of the new S.M.A.R.T. 
disks [Hughes et al., 2002]. 

Much less work has been dedicated to self-
organizing fault-tolerant disk arrays. The HP 
AutoRAID [Wilkes et al., 1996] automatically and 
transparently manages migration of data blocks 
between a replicated storage class and a RAID level 5 
storage class as access patterns change. Its main 
objective is to save disk space without compromising 
system performance by storing data that are frequently 
accessed in a replicated organization while relegating 
inactive data to a RAID level 5 organization. As a 
result, it reacts to changes in data access patterns rather 
than to disk failures. 

More related to our proposal, as it provides 
reorganization of remaining disk in the presence of a 
disk failure, is sparing. Having an extra disk in an 
array of disks allows us to use it as a failed disk 
replacement. Distributed sparing [Thomasian and 
Menon, 1997] gains performance benefits in the initial 
state and degrades to normal performance after the first 
disk failure. 

In [Pâris et al., 2006] a disk array organization that 
adapts itself to successive disk failures is presented. 
When all disks are operational, all data are mirrored on 
two disks. Whenever a disk fails, the array reorganizes 
itself, by selecting data by their exclusive or (XOR) 
with the other copy of the data contained on the disk 
that failed. Once the failed disk is replaced, the array 
returns to its original configuration. Since this scheme 
operates by replacing existing data by their XOR, with 
other data, it does not require any spare space. Its main 
drawback is a more complex recovery as the data that 
were overwritten need then to be restored. 

Creating copies of data to be used to recover lost 
data due to disk failures was introduced in [Pu et al., 
1988], where the regeneration algorithm was 
presented. 

 
3. Our Technique 
 

Our goal is to increase the reliability of a RAID 
level 5 storage system during its first year of operation, 
a period during which it experiences higher disk 
failure rates than during the remainder of its useful 
lifetime. In addition, we wanted a solution that would 
not require any additional hardware. The solution we 
propose satisfies these two requirements since: 

1. It uses the free space that normally exists on 
recently deployed drives to increase the 
redundancy of the stored data. 

2. It brings no changes to the storage system as 
long as all disks are operational: new parity 
blocks and some copies of the stored data are 
only created in response to a disk failure and 



are deleted as soon as the failed drive has been 
replaced. 

 

 

Fig. 1.  A RAID level 5 consisting of five disks with free space. 

Consider the RAID level 5 system in Fig. 1. It 
consists of five disks. We will assume that each disk 
has at least 2/7 of free space, a reasonable assumption 
for a disk array that has been recently deployed. 

 

 

Fig. 2.  The same RAID5 level 5 after the failure of disk 2. 

Assume now that one disk, let us say disk 1, fails. 
As shown in Fig. 2, the new configuration holds the 
data blocks of disk 1 in the blocks where the parity 
blocks were originally stored.  However, the array will 
become vulnerable to a second disk failure until the 
first failed disk is replaced. Although the arrangement 
maintains all the data that were stored before the first 
failure occurred, waiting for the replacement of disk 1 
is not an attractive option as the process may take 
several days. Then, the internal organization of the 
array must be modified to be tolerant to another disk 
failure. To do this the parity blocks will be 
immediately computed as follows: 
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And each of them will be stored in the first free 

block of each disk, as shown in Fig. 3. As can be seen 
from Fig. 3 and the expressions in (1), blocks A1, B0, 

B2, B3, B4, C1, D1 and E1 are not protected yet. 
Thus, we need to perform some extra XOR’s using 
some of these blocks and make copies of the remaining 
blocks, as follows: 
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Finally, we need to store the values of Y0, Y2, Y3 

and Y4 in the remaining free space in the array of 
disks, as shown in Fig. 4. Then, after these operations 
have been performed every data block is protected 
against the failure of any of the four remaining disks. 
In order to show that our proposed RAID system 
reorganization after one of its disks fail is still tolerant 
to a second disk failure, we present the tables in Fig. 5. 
Each table is related to each possible failed disk in our 
RAID system. These tables are divided in three parts: 
a) the new organization after the failure, b) which X’s 
or Y’s are needed to restore the blocks contained in a 
second failed disk and c) how the X’s and the Y’s were 
estimated. Here is an example to see how to interpret 
these tables. Let us suppose that disk 0 fails and our 
RAID system is reorganized as shown in Fig. 5A. 
While we wait for the replacement of disk 0, disk 1 
also fails (this disk is represented by the shaded 
column in Fig. 5A.). Then, blocks B0, A1, B2, B3 and 
B4, contained in disk 1, will be lost. However from 
Fig. 5A we can see that using blocks Y4, Y2, X2, X3 
and X4 respectively, they can be reconstructed. Finally, 
in Fig. 5A we can find how Y4, Y2, X2, X3 and X4 
were computed. In a similar fashion we can verify, 
using the tables in Fig.5, that no matter what pair of 
disks fail in our RAID system, we will always be able 
to reconstruct the lost data.  

 

 

Fig. 3.  The same RAID level 5 array after the parity blocks 

1X , 3X , 4X  and 5X  have been computed and stored . 



 

Fig. 4.  The same RAID level 5 array after the parity blocks 1Y , 

3Y , 4Y  and 5Y  have been computed and stored . 

 
Fig. 5.  Tables A, B, C, D and E show how to reconstruct the lost 
blocks if a second disk failure occurs before the first failed disk is 
replaced.  

 
The previous discussion on how to rearrange a 

RAID level 5 system after one of its disk fails and 
keep it protected against a second failure while we 
wait for the replacement of the first failed disk, can be 
formally generalized with Algorithm 1 to any number n 
of disks, provided n>=5 and the blocks of the first 
failed disk are already reconstructed and stored, as 
shown in Fig. 2. 

Algorithm 1 is divided in three sections. The first 
section determines which blocks will be used to 
estimate the X’s values, that is, the new parity blocks. 
The second section determines which blocks will be 
used to estimate the Y´s values that they involve OR-
Exclusive operations. The last section determines 
where the remaining unprotected blocks will be 

copied. The three sections determine where, inside the 
array, the X’s and Y’s values will be stored. 

Algorithm 1: Let k be the first failed disk, n the 
number of disks in the array, matrix r[0..n-1,0..n-1] 
the representation of a RAID level 5 system and 
operator % denote the modulus operation. 
 
 
nD ← n 
fD ← k 
 
/* Section 1: X’s  values estimation*/ 
 
row ← fD+1%nD; 
while(row<>fD) 
    col ← row+1 nD; 
    while(col<>row) 
       if(col<>fD) 
          r(nD,row) ← r(nD,row) ⊕ r(row,col); 
       col ← col + 1%nD; 
    row ← row+1%nD; 
   
/* Section 2: Ys values estimation */ 
 
col ← fD+1; 
while(col+1<> fD) 
   r(nD+1,fD+nD-1%nD) ← r(nD+1, fD+nD-1%nD)⊕ 
r(fD,col); 
   
r(nD+1,fD+1%nD)←r(nD+1,fD+1%nD)⊕r(col+1%nD,col+1%n
D); 
   col ← col+1%nD; 
 
/* Section 3: Protecting the last two unprotected blocks 
*/ 
r(nD+1,fD+nD-2%nD) ← r(fD,col);  
 
r(nD+1,fD+2%nD) ← r(fD+1,fD+1); 

 
Roughly speaking, Algorithm 1 works as follows. 

Since we know the number of disks (nD) and which 
one failed (fD), we use these values as a starting point 
to perform, in section 1, a shift rotate for every row to 
compute the new parity blocks. For every shift rotate, 
we read all blocks in the corresponding row, except the 
block whose column coincides with that of the parity 
block we are computing. Once we finish with one row 
we move to the next along the main diagonal. Section 
2 works analogous to section 1, but here we move 
simultaneously through the main diagonal and through 
the row that does not have parity block; in both cases 
we skip one block, for the same reason as in section 1. 



Finally, in section 3 we made copies of the skipped 
blocks in the previous section to protect them. 

Figures 6 and 7 show graphically how Algorithm 1 
works. 

It is worth mentioning that as the number of disks 
become greater than five, we will have for six disks 
one block free in the Y’s section, two blocks for seven 
disks and so on. Then we have a tradeoff on the 
number of extra XOR’s and the remaining free space. 
That is, we can slightly reduce the number of 
performed XOR’s increasing the number of 
unprotected blocks to be copied to the free space, or 
we can keep the free space unused and in two the 
number of unprotected blocks to be copied. Fig. 8 
shows the difference between these two options for the 
case of six disks and disk cero failed. In this figure we 
can see that leaving free the unused block we need to 
perform three XOR’s, but if we copy there one block, 
the one not included in Y1,  we reduce one XOR 

 

 
Fig. 6.  After disk 1 fails, the new parity blocks X2, X3 and X4 are 
estimated. In this figure we illustrate the order in which the 
blocks are read by the section 1 of the proposed algorithm. 

 
Fig. 7 This figure illustrates the order in which the blocks are 
read in section 2 of our algorithm to estimate Y0 and Y1, and 
which blocks are copied to Y3 and Y4 in section 3.  

 
Fig. 8 This figure illustrates how we can reduce the number of 
XOR´s needed to protect all blocks after a disk failure, when the 
number of disks in the array is greater than five..  

 
4. Reliability Analysis 
 

To estimate the reliability of a storage system we 
must compute the probability R(t) that the system will 
operate during an interval [0, t] provided that it 
operated correctly when t = 0. To do it we must solve 
a system of linear differential equations, which 
eventually becomes an unmanageable task as the 
complexity of the system grows. An easy way to 
obtain R(t) is to estimate the mean time to data loss 
(MTTDL), which is the approach we will take here. 

The system consists of an array of disks with 
independent failure modes. If a disk fails, we 
immediately start a repair process. When more than 
one disk fails the repair process starts in parallel on the 
failed disks’ drives. 

The disk failures are independent events 
exponentially distributed with rate λ, and the repairs 
are exponentially distributed with rate μ. Almost 
always the repair time is consumed by ordering and 
scheduling delays and the actual replacement of a 
failed disk only takes a few hours. Reorganization 
transitions consisting of the creation of additional 
copies of the stored data are equally assumed to be 
exponentially distributed with rate κ>μ. 

We consentrate our analysis on the first year of 
operation of the small disk array of Fig. 1. We will 
consider the case where none of its five disks is more 
than five sevenths full and we do not receive any early 
warning of future disk failures. Fig. 9 displays the state 
probability transition diagram of that array. State <0> 
is the normal state of the array when its five disks are 
operational. 

When one of its five disks fails the system goes from 
state <0> to state <1>, that is the state of the array 
depicted in Fig. 2. This state is a less than desirable 
state as the array is not reorganized yet. Hence a failure 
of one of the remaining disks containing redundant 



data would result in a data loss. To avoid that 
possibility, the array will restore the data 
corresponding to the failed disk using the parity blocks 
of the remaining disks, using Algorithm 1. This will 
move the array to state <1’>. State <1’> is the state of 
the array depicted in Fig. 3 and 4. A failure of any of 
the four remaining drives will bring the array into state 
<2’> where each of the remaining disks has enough 
redundant data blocks to restore all data after replacing 
the two failed disks. A failure of any of these three 
disks will therefore result in a data loss. 

Repair transitions go from states <1> and <1’> to 
state <0> and, from states <2’> to state <1’>.  

The Kolmogorov system of differential equations 
describing the behavior of the array is 
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where pi(t) is the probability that the system is in state 
<ij> with the initial conditions p0(0) = 1 and pi(0) = 0 
for all other states. 
 

The Laplace transforms of these equations are 
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Observing that the mean time to (MTTDL) of the 

array is given by 
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we solve the system of Laplace transforms for s = 0 
and use this result to compute the MTTDL and the 
mean failure rate (1/MTTDL). The expressions we 
obtain are quotients of two polynomials that are too 
large to be displayed.  

We assumed that the disk failure rate λ during the 
first year was one failure every one hundred thousand 
hours, that is, slightly less than one failure every 
eleven years. We let the average disk repair times vary 
between one half-day and one week and considered the 
two cases where the reorganization process could 
either take one or four hours. 

From Fig. 10 we can see that the data loss 
probabilities achieved by our self-adaptive technique 
are significantly lower than those achieved by 
conventional RAID. The best results are obtained for a 
combination of a fast reorganization process (high κ) 
and a long repair time (low μ) as the reorganization 
process keeps the data protected during most of the 
repair process. Conversely, the reorganization process 
has much less impact on the array data loss probability 
when we have both a relatively slow reorganization 
process and a relatively fast repair process. Even then, 
the benefits of the reorganization process remain clear: 
our technique will always reduce the probability of a 
data loss during the first year of operation provided the 
the reorganization process takes at most 12 hours. 
 

A last issue to consider is the applicability of our 
technique to larger disk arrays. We have only 
considered so far a very small array consisting of five 
disks. However, we can reasonably expect our 
proposed reorganization algorithm will work as well, if 
not better; in larger disk arrays as these arrays will be 
more likely to have spare spaces not involved in some 
previous reconfiguration process. 
 

Fig. 
9 State transition diagram for a self-adaptive array of five drives 
when none of its drives is more than five sevenths full. 
 



 
Fig. 10 Array failure rates during its first year of operation 
assuming that each disk drive is at most five seventh full. 
 
5. Conclusions 
 

We have presented a new technique for protecting 
data against the increased risk of disk failures during 
their first year of operation. When all disks are 
operational, all data are protected on five disks because 
all the parity blocks were constructed and stored in the 
corresponding places. Whenever a disk fails, the 
system reorganizes itself, by reconstructing the lost 
data contained in the failed disk and computes the new 
parity blocks. This new reorganization guaranties that 
in the event that a second disk fails before the fist one 
is replaced, no data will be lost. To evaluate the 
benefits of this new disk organization, we have 
analyzed the behavior of a small system consisting of 
five disks under standard Markovian assumptions. Our 
results indicate that our technique can reduce the 
probability of a data loss during the first year of 
operation of the system.  

More work is still needed to evaluate the 
performance of our technique on larger disk arrays, 
investigate more realistic repair time distributions and 
measure the impact of our technique on the data 
survival rate over the whole lifetime of a disk array. 
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