
Protecting Data Against Consecutive Disk Failures in RAID-5

Miguel S. Suárez-Castañón
ESCOM – IPN

Av. J. de Dios Bátiz s/n
México, D.F., 07738, México,
 +(52)5555796000 xt. 52028

sasuarez@prodigy.net.mx

Jehan-François Pâris
Dept. of Computer Science

University of Houston
Houston, TX 77204-3010

JehanParis@aol.com

Carlos Aguilar-Ibañez
CIC – IPN

Av. J. de Dios Bátiz s/n
México, D.F., 07738, México,
 +(52)5555796000 xt. 56568

caguilar@cic.ipn.mx

Abstract

In this letter we present a reorganization method to
protect against data loss when one or two disks fail in a
RAID level 5. The main advantage of the proposed method
is that it is robust against a second failure if a first failed
disk has not been replaced yet. Our proposal is motivated by
the fact that new disks have a high possibility to fail during
their first year of operation and during this period there is
enough free space to rebuild the lost data in the failed disk
and store it by a reorganization in the remaining disks.

Keywords: Data Survability, Disk Array, Storage
System

1. Introduction

Current organizations of any kind base their
operation and competitiveness on one of their most
valuable resources: information. As such, information
must be available at any moment and the risk of losing
it due to flaws in the devices where it is stored should
be eliminated.

At the present time an ever increasing number of
organizations satisfy these two requirements using disk
arrays as their online storage devices. This trend
results from the convergence of several factors. First,
advances in magnetic storage technology have
considerably reduced the cost of storing data online.
Second, regulatory requirements now obligate public
corporations to retain their audit data over longer
periods of time than in the past and to keep them
immediately accessible. Finally, the rate at which
digital data are produced keeps increasing in nearly all
organizations [Lyman & Varian, 2000].

Given the above, we can affirm that the design of a
storage system should be focused to ensure the
survival of its data over periods that can span decades.
Techniques like mirroring and erasure codes are two of
the most used. Mirroring maintains multiple
redundant copies of the stored data. Erasure codes,
such as the well-known m-out-of-n codes, store data on

n distinct disks along with enough redundant
information to allow access to the data in the event n–
m of these disks fail. The best-known organizations
using these codes are RAID level 5, which uses an (n–
1)-out-of-n code, and RAID level 6, which uses an (n–
2)-out-of-n code.

In the case of RAID level 5 when one disk fails the
lost data can be recovered and the storage system will
be able to keep working, provided none of the
remaining disks fail before the failed disk has been
replaced and the system is completely restored to its
normal configuration. Otherwise, some data will get
lost. Then, when using RAID level 5 we must consider
two issues that greatly compromise its data when
functioning after one disk failure: a) disk infant
mortality and b) the bad batch problem. Disks have
much higher failure rates—between two and three
times higher than those indicated by their mean time to
failure—during their first year of operation. In
addition, most failures resulting from a bad batch of
disks also show up sometimes during that year. The
traditional solution of burning in devices before
actually using them would not help much since a
prudent burn-in period would take one year and use up
one fifth to one sixth of the disk lifespan [Elerath,
2000, Xin et al. 2005]. We are thus forced to use disks
drives while they are still in their period of high infant
mortality, and are still subject to bad batch failures.

We must take into consideration the high possibility
that some of the previous problems can happen during
the first year of operation of a RAID level 5, and could
lead to a permanent data loss.

A solution to avoid the risk of data loss due to a
second disk failure before the replacement of a first
failed disk exists. This solution must allow us to
restore the information contained in the second failed
disk only using data previously stored in the free space
in the remaining disks. Also, the number of XOR
should be maintained to the minimum to increase the
disks’ overhead as little as possible. The main idea
consists of storing the data of the first failed disk, after

its restoration, in the area where the redundant
information was stored and the free space will be used
to store the new redundant data, corresponding to the
new configuration and a few copies of some of the data
blocks. The data stored in the free space will be used if
another disk fails and the first failed disk has not been
replaced.

To evaluate the benefits of this new disk
organization, we have analyzed the behavior of a small
RAID level 5 system consisting of five disks. Our
results indicate that our technique can reduce the
probability of a data loss during the first year of
operation of the system by at least 75 percent.1

The rest of the paper is organized as follows:
Section 2 surveys previous relevant work. Section 3
introduces our technique and Section 4 evaluates its
performance. Finally, Section 5 has our conclusions.

2. Previous Work

To reduce the possibilities of losing data stored in
magnetic devices or disks, making copies has been a
comon practice and may be the oldest data loss
protection mechanism. Recently, with the appearance
of redundant arrays of inexpensive disks, known as
RAID [Patterson et. al, 1988] and the constant price
reduction and increment of capacity and reliability of
disk, the survability data levels have been considerably
increased. Maybe the most used RAID comfigurations
are RAID level 5 and RAID Level 6. These disk
configurations are based on erasure coding, where
RAID 5 uses (n – 1)-out-of-n codes [Chen et al., 1994,
Patterson et al., 1988, Schwars and Burkhard, 1992,
Schulze, et al., 1989] and RAID 6 uses (n – 2)-out-of-
n codes to protect data against double disk failures
[Burkhard and Menon, 1993].

Self-organizing fault-tolerant disk arrays have been
considered as a mechanism to protect data against disk
failures. As an example, the HP AutoRAID [Wilkes et
al., 1996] automatically and transparently manages
migration of data blocks between a replicated storage
class and a RAID level 5 storage class as access
patterns change. Its main objective is to save disk
space without compromising system performance by
storing data that are frequently accessed in a replicated
organization while relegating inactive data to a RAID
level 5 organization. As a result, it reacts to changes in
data access patterns rather than to disk failures.

1 Even better results could be achieved by taking advantage
of the failure prediction capabilities of the new S.M.A.R.T.
disks [Hughes et al., 2002].

Much less work has been dedicated to self-
organizing fault-tolerant disk arrays. The HP
AutoRAID [Wilkes et al., 1996] automatically and
transparently manages migration of data blocks
between a replicated storage class and a RAID level 5
storage class as access patterns change. Its main
objective is to save disk space without compromising
system performance by storing data that are frequently
accessed in a replicated organization while relegating
inactive data to a RAID level 5 organization. As a
result, it reacts to changes in data access patterns rather
than to disk failures.

More related to our proposal, as it provides
reorganization of remaining disk in the presence of a
disk failure, is sparing. Having an extra disk in an
array of disks allows us to use it as a failed disk
replacement. Distributed sparing [Thomasian and
Menon, 1997] gains performance benefits in the initial
state and degrades to normal performance after the first
disk failure.

In [Pâris et al., 2006] a disk array organization that
adapts itself to successive disk failures is presented.
When all disks are operational, all data are mirrored on
two disks. Whenever a disk fails, the array reorganizes
itself, by selecting data by their exclusive or (XOR)
with the other copy of the data contained on the disk
that failed. Once the failed disk is replaced, the array
returns to its original configuration. Since this scheme
operates by replacing existing data by their XOR, with
other data, it does not require any spare space. Its main
drawback is a more complex recovery as the data that
were overwritten need then to be restored.

Creating copies of data to be used to recover lost
data due to disk failures was introduced in [Pu et al.,
1988], where the regeneration algorithm was
presented.

3. Our Technique

Our goal is to increase the reliability of a RAID
level 5 storage system during its first year of operation,
a period during which it experiences higher disk
failure rates than during the remainder of its useful
lifetime. In addition, we wanted a solution that would
not require any additional hardware. The solution we
propose satisfies these two requirements since:

1. It uses the free space that normally exists on
recently deployed drives to increase the
redundancy of the stored data.

2. It brings no changes to the storage system as
long as all disks are operational: new parity
blocks and some copies of the stored data are
only created in response to a disk failure and

are deleted as soon as the failed drive has been
replaced.

Fig. 1. A RAID level 5 consisting of five disks with free space.

Consider the RAID level 5 system in Fig. 1. It
consists of five disks. We will assume that each disk
has at least 2/7 of free space, a reasonable assumption
for a disk array that has been recently deployed.

Fig. 2. The same RAID5 level 5 after the failure of disk 2.

Assume now that one disk, let us say disk 1, fails.
As shown in Fig. 2, the new configuration holds the
data blocks of disk 1 in the blocks where the parity
blocks were originally stored. However, the array will
become vulnerable to a second disk failure until the
first failed disk is replaced. Although the arrangement
maintains all the data that were stored before the first
failure occurred, waiting for the replacement of disk 1
is not an attractive option as the process may take
several days. Then, the internal organization of the
array must be modified to be tolerant to another disk
failure. To do this the parity blocks will be
immediately computed as follows:

.4444
,3333
,2222
,0000

DCAX
CAEX
AEDX
EDCX

⊕⊕=
⊕⊕=
⊕⊕=
⊕⊕=

 (1)

And each of them will be stored in the first free

block of each disk, as shown in Fig. 3. As can be seen
from Fig. 3 and the expressions in (1), blocks A1, B0,

B2, B3, B4, C1, D1 and E1 are not protected yet.
Thus, we need to perform some extra XOR’s using
some of these blocks and make copies of the remaining
blocks, as follows:

.14
,23

,0432
,1110

AY
BY

BBBY
EDCY

=
=

⊕⊕=
⊕⊕=

 (2)

Finally, we need to store the values of Y0, Y2, Y3

and Y4 in the remaining free space in the array of
disks, as shown in Fig. 4. Then, after these operations
have been performed every data block is protected
against the failure of any of the four remaining disks.
In order to show that our proposed RAID system
reorganization after one of its disks fail is still tolerant
to a second disk failure, we present the tables in Fig. 5.
Each table is related to each possible failed disk in our
RAID system. These tables are divided in three parts:
a) the new organization after the failure, b) which X’s
or Y’s are needed to restore the blocks contained in a
second failed disk and c) how the X’s and the Y’s were
estimated. Here is an example to see how to interpret
these tables. Let us suppose that disk 0 fails and our
RAID system is reorganized as shown in Fig. 5A.
While we wait for the replacement of disk 0, disk 1
also fails (this disk is represented by the shaded
column in Fig. 5A.). Then, blocks B0, A1, B2, B3 and
B4, contained in disk 1, will be lost. However from
Fig. 5A we can see that using blocks Y4, Y2, X2, X3
and X4 respectively, they can be reconstructed. Finally,
in Fig. 5A we can find how Y4, Y2, X2, X3 and X4
were computed. In a similar fashion we can verify,
using the tables in Fig.5, that no matter what pair of
disks fail in our RAID system, we will always be able
to reconstruct the lost data.

Fig. 3. The same RAID level 5 array after the parity blocks

1X , 3X , 4X and 5X have been computed and stored .

Fig. 4. The same RAID level 5 array after the parity blocks 1Y ,

3Y , 4Y and 5Y have been computed and stored .

Fig. 5. Tables A, B, C, D and E show how to reconstruct the lost
blocks if a second disk failure occurs before the first failed disk is
replaced.

The previous discussion on how to rearrange a

RAID level 5 system after one of its disk fails and
keep it protected against a second failure while we
wait for the replacement of the first failed disk, can be
formally generalized with Algorithm 1 to any number n
of disks, provided n>=5 and the blocks of the first
failed disk are already reconstructed and stored, as
shown in Fig. 2.

Algorithm 1 is divided in three sections. The first
section determines which blocks will be used to
estimate the X’s values, that is, the new parity blocks.
The second section determines which blocks will be
used to estimate the Y´s values that they involve OR-
Exclusive operations. The last section determines
where the remaining unprotected blocks will be

copied. The three sections determine where, inside the
array, the X’s and Y’s values will be stored.

Algorithm 1: Let k be the first failed disk, n the
number of disks in the array, matrix r[0..n-1,0..n-1]
the representation of a RAID level 5 system and
operator % denote the modulus operation.

nD ← n
fD ← k

/* Section 1: X’s values estimation*/

row ← fD+1%nD;
while(row<>fD)
 col ← row+1 nD;
 while(col<>row)
 if(col<>fD)
 r(nD,row) ← r(nD,row) ⊕ r(row,col);
 col ← col + 1%nD;
 row ← row+1%nD;

/* Section 2: Ys values estimation */

col ← fD+1;
while(col+1<> fD)
 r(nD+1,fD+nD-1%nD) ← r(nD+1, fD+nD-1%nD)⊕
r(fD,col);

r(nD+1,fD+1%nD)←r(nD+1,fD+1%nD)⊕r(col+1%nD,col+1%n
D);
 col ← col+1%nD;

/* Section 3: Protecting the last two unprotected blocks
*/
r(nD+1,fD+nD-2%nD) ← r(fD,col);

r(nD+1,fD+2%nD) ← r(fD+1,fD+1);

Roughly speaking, Algorithm 1 works as follows.

Since we know the number of disks (nD) and which
one failed (fD), we use these values as a starting point
to perform, in section 1, a shift rotate for every row to
compute the new parity blocks. For every shift rotate,
we read all blocks in the corresponding row, except the
block whose column coincides with that of the parity
block we are computing. Once we finish with one row
we move to the next along the main diagonal. Section
2 works analogous to section 1, but here we move
simultaneously through the main diagonal and through
the row that does not have parity block; in both cases
we skip one block, for the same reason as in section 1.

Finally, in section 3 we made copies of the skipped
blocks in the previous section to protect them.

Figures 6 and 7 show graphically how Algorithm 1
works.

It is worth mentioning that as the number of disks
become greater than five, we will have for six disks
one block free in the Y’s section, two blocks for seven
disks and so on. Then we have a tradeoff on the
number of extra XOR’s and the remaining free space.
That is, we can slightly reduce the number of
performed XOR’s increasing the number of
unprotected blocks to be copied to the free space, or
we can keep the free space unused and in two the
number of unprotected blocks to be copied. Fig. 8
shows the difference between these two options for the
case of six disks and disk cero failed. In this figure we
can see that leaving free the unused block we need to
perform three XOR’s, but if we copy there one block,
the one not included in Y1, we reduce one XOR

Fig. 6. After disk 1 fails, the new parity blocks X2, X3 and X4 are
estimated. In this figure we illustrate the order in which the
blocks are read by the section 1 of the proposed algorithm.

Fig. 7 This figure illustrates the order in which the blocks are
read in section 2 of our algorithm to estimate Y0 and Y1, and
which blocks are copied to Y3 and Y4 in section 3.

Fig. 8 This figure illustrates how we can reduce the number of
XOR´s needed to protect all blocks after a disk failure, when the
number of disks in the array is greater than five..

4. Reliability Analysis

To estimate the reliability of a storage system we
must compute the probability R(t) that the system will
operate during an interval [0, t] provided that it
operated correctly when t = 0. To do it we must solve
a system of linear differential equations, which
eventually becomes an unmanageable task as the
complexity of the system grows. An easy way to
obtain R(t) is to estimate the mean time to data loss
(MTTDL), which is the approach we will take here.

The system consists of an array of disks with
independent failure modes. If a disk fails, we
immediately start a repair process. When more than
one disk fails the repair process starts in parallel on the
failed disks’ drives.

The disk failures are independent events
exponentially distributed with rate λ, and the repairs
are exponentially distributed with rate μ. Almost
always the repair time is consumed by ordering and
scheduling delays and the actual replacement of a
failed disk only takes a few hours. Reorganization
transitions consisting of the creation of additional
copies of the stored data are equally assumed to be
exponentially distributed with rate κ>μ.

We consentrate our analysis on the first year of
operation of the small disk array of Fig. 1. We will
consider the case where none of its five disks is more
than five sevenths full and we do not receive any early
warning of future disk failures. Fig. 9 displays the state
probability transition diagram of that array. State <0>
is the normal state of the array when its five disks are
operational.

When one of its five disks fails the system goes from
state <0> to state <1>, that is the state of the array
depicted in Fig. 2. This state is a less than desirable
state as the array is not reorganized yet. Hence a failure
of one of the remaining disks containing redundant

data would result in a data loss. To avoid that
possibility, the array will restore the data
corresponding to the failed disk using the parity blocks
of the remaining disks, using Algorithm 1. This will
move the array to state <1’>. State <1’> is the state of
the array depicted in Fig. 3 and 4. A failure of any of
the four remaining drives will bring the array into state
<2’> where each of the remaining disks has enough
redundant data blocks to restore all data after replacing
the two failed disks. A failure of any of these three
disks will therefore result in a data loss.

Repair transitions go from states <1> and <1’> to
state <0> and, from states <2’> to state <1’>.

The Kolmogorov system of differential equations
describing the behavior of the array is

)()1()()2)2((
)(

)()(2)())1((
)(

)()())1((
)(

))()(()(
)(

'1'2
'2

1'2'1
'1

01
1

'110
0

tpntpn
dt

tdp

tptptpn
dt

tdp

tpntpn
dt

tdp

tptptpn
dt

tdp

λμλ

κμμλ

λμκλ

μλ

−++−−=

+++−−=

+++−−=

++−=

where pi(t) is the probability that the system is in state
<ij> with the initial conditions p0(0) = 1 and pi(0) = 0
for all other states.

The Laplace transforms of these equations are

)()1()()2)2(()(

)()(2)())1(()(

)()())1(()(

))()(()()(

'1

*

'2

*

'2

*
1

*

'2

*

'1

*

'1

*
0

*
*

1

*

1

*

*

'1

*

1

*

00

*

spnspnsps

spspspnsps

spnspnsps

spspspnsps

λμλ

κμμλ

λμκλ

μλ

−++−−=

+++−−=

+++−−=

++−=

Observing that the mean time to (MTTDL) of the

array is given by

∑=
i

ipMTTDL)0(
*

we solve the system of Laplace transforms for s = 0
and use this result to compute the MTTDL and the
mean failure rate (1/MTTDL). The expressions we
obtain are quotients of two polynomials that are too
large to be displayed.

We assumed that the disk failure rate λ during the
first year was one failure every one hundred thousand
hours, that is, slightly less than one failure every
eleven years. We let the average disk repair times vary
between one half-day and one week and considered the
two cases where the reorganization process could
either take one or four hours.

From Fig. 10 we can see that the data loss
probabilities achieved by our self-adaptive technique
are significantly lower than those achieved by
conventional RAID. The best results are obtained for a
combination of a fast reorganization process (high κ)
and a long repair time (low μ) as the reorganization
process keeps the data protected during most of the
repair process. Conversely, the reorganization process
has much less impact on the array data loss probability
when we have both a relatively slow reorganization
process and a relatively fast repair process. Even then,
the benefits of the reorganization process remain clear:
our technique will always reduce the probability of a
data loss during the first year of operation provided the
the reorganization process takes at most 12 hours.

A last issue to consider is the applicability of our
technique to larger disk arrays. We have only
considered so far a very small array consisting of five
disks. However, we can reasonably expect our
proposed reorganization algorithm will work as well, if
not better; in larger disk arrays as these arrays will be
more likely to have spare spaces not involved in some
previous reconfiguration process.

Fig.
9 State transition diagram for a self-adaptive array of five drives
when none of its drives is more than five sevenths full.

Fig. 10 Array failure rates during its first year of operation
assuming that each disk drive is at most five seventh full.

5. Conclusions

We have presented a new technique for protecting
data against the increased risk of disk failures during
their first year of operation. When all disks are
operational, all data are protected on five disks because
all the parity blocks were constructed and stored in the
corresponding places. Whenever a disk fails, the
system reorganizes itself, by reconstructing the lost
data contained in the failed disk and computes the new
parity blocks. This new reorganization guaranties that
in the event that a second disk fails before the fist one
is replaced, no data will be lost. To evaluate the
benefits of this new disk organization, we have
analyzed the behavior of a small system consisting of
five disks under standard Markovian assumptions. Our
results indicate that our technique can reduce the
probability of a data loss during the first year of
operation of the system.

More work is still needed to evaluate the
performance of our technique on larger disk arrays,
investigate more realistic repair time distributions and
measure the impact of our technique on the data
survival rate over the whole lifetime of a disk array.

6. Acknowledges

This work was supported by CIC-IPN, and by the
Secretaría de Investigación y Posgrado (SIP-IPN)
under research grants 20071088 and 20071109.

Miguel S. Suárez-Castañón wants to thank to the
IPN and to the FIDERH of the Banco de México for
making possible his postdoctoral stay at the University
of Houston. This work was done while M. Suárez
stayed at the University of Houston

6. References

[1] Burkhard W. A. And Menon J., “Disk Array
Storage System Reliability”, Proc. 23rd. International
Symposium on Fault-Tolerant Computing (FTCS-23),
pp. 423-441, 1993.

[2] Chen P. M., Lee E. K., Gibson G. A., Katz H. And
Patterson D. “RAID, High-Performance, Reliable
Secondary Storage”, ACM Computing Surveys, Vol 26,
No. 2, pp. 145-185, 1994.

[3]Elerath J. G., “Specifying Reliability in the Disk
Drive Industry: No More MTBF’s”, Proc. 2000
Annual Reliability and Maintainability Symposium, pp.
194-199, Jan. 2000.

[4]Hughes G. F., Murray K., Kreutz-Delgado and
Elkan C., “Improved Disk-Drive Failures Warnings”,
IEEE Trans. On Reliability, Vol. 5, No. 3, pp. 50-57,
Sep. 2002.

[5] Lyman P. and Varian H. P., “How Much
Information?”, The Journal of Electronic Publishing,
http://www.press. umich.edu/jep, Vol. 6, No. 2, Dec.
2000.

[6] Pâris J.-F., Schwarz T. J. E. And Long D. D. E.,
“Self-Adaptive Disk Arrays”, Proc. 8th. International
Symposium on Stabilization, Safety and Security of
Distribuited Systems (SSS 2006), Dallas, TX., pp. 469-
483, Nov. 2006.

[7] Patterson D. A., Gibson G. A. And Katz R. H., “A
case for Redundant Arrays of Inexpensive Disks
(RAID)”, Proc. SIGMOD 1988 International
Conference on Data Management, pp. 109-116, June
1988.

[8] Pu C., Noe J. D. And Proudfoot A., “Regeneration
of Replicated Objects: A Technique and Its Eden
Implementation”, IEEE Trans. On Software
Engineering, Vol. 14, No. 7, pp. 936-945, July 1988.

[9] Thomasian A. and Menon J., “RAID 5
Performance with Distribuited Sparing”, IEEE Trans.
On Parallel and Distribuited Systems, Vol. 8, No. 6,
pp. 640-657, June 1997.

[10] Schulze M., Gibson G. A., Katz R. H. And
Patterson D. A., “How Reliable Is a RAID?”, Proc.
Spring COMPCON ’89 Conference, pp. 118-123,
March 1989.

[11] Schwars T. J. E. And Burkhard W. A., “RAID
Organization and Performance”, Proc. 12th
International Conference on Distributed Computing
Systems, pp. 318-123, June 1992.

[12] Wilkes J., Golding R., Stealing C. and Sullivan
T., “The HP AutoRaid Hierarchical Storage System”,
ACM Trans. On Computer Systems, Vol. 14, No. 1, pp.
1-29, Feb. 1996.

[13] Xin Q., Schawrs T. J. E. And Miller E. L., “Disk
Infant Mortality in Large Storage Systems”, Proc. 13th
IEEE International Symposium on Modeling, analysis
and Simulation of Computer and Telecommunications
Systems (MASCOTS ‘05), pp. 125-134, Aug. 2005.

