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Abstract 
 

The good generalization performance of support 

vector machines (SVM) has made them a popular tool 

in artificial intelligence community. In this paper, we 

prove that SVM multi class algorithms are not 

equivalent for all classification problems. we present a 

new approach for incremental learning using SVM that 

create a rejection class which would be interesting for 

fault diagnosis where fault classes usually evolve with 

time: It is when some new samples may be rejected by 

all the current classes. Hence, these samples may 

correspond to a new fault (a new class) which may 

appear after the first training step.  

 

1. Introduction 
 

Most of artificial intelligence methods used in fault 

diagnosis have some disadvantages such as local 

optimal solution, low convergence rate, and poor 

generalization performance especially when database 

contains few samples. The lack of these one leads to 

wrong diagnosis or make it impossible. 

Vapnik’s work in statistical learning theory [1] leads 

to a new machine learning called Support Vector 

Machines. This one solves the problem of local optimal 

solution, convergence rate and has a good 

generalization performance even if the database has not 

a big number of samples. In the last case, incremental 

learning is used to improve the model when samples 

still arrive. In fault diagnosis, we notice that fault 

classes may change with the age of a machine. Hence, 

the current model will not be able to classify some new 

samples because they do not belong to any of the 

current classes already learned. In this paper, we 

propose to create a rejection class in evolving problems 

for samples that they have not been classified in any 

class of the current classifier.  

 

The paper is organized as follows: the next section, 

section 2, reviews the SVM theory as its original form 

which is a binary classifier: we take the big lines from 

section 2 of [2]. In section 3, we see how SVM were 

generalized to multi class problems. We give a state of 

art on SVM incremental learning in section 4. Our idea 

is introduced in section 5 and we conclude in section 6.   

 

2. Support Vector Machine (according to [2]) 
 

The idea of the pattern recognition with SVM is to 

project sample space into a high-dimensional 

eigenspace to find optimal separating hyper-planes of 

the original sample set without increasing calculation 

complexity. In this section we briefly describe the 

SVM algorithm and its motivation. A more detailed 

description of SVM can be found in [1]. 

We start from a simple case of two classes that is 

linearly separable.  

Assuming that we have a data set: 

    D = {(xi, yi)}   (i = 1… l),   yi∈  {-1, 1}       (1) 

Where xi is input sample and yi is output class, yi has 

two values (-1 or +1) that stand for two classes, l is the 

sample number. We wish to determine, among all 

linear separating planes that separate the input samples 

into two classes, which separating plane will have the 

smallest generalisation error. As shown in Figure 1, 

rings and diamonds stand for these two classes of 

sample points respectively; H is a separating plane. H1 

and H2 are the planes that are parallel to H and 

respectively pass through the sample points closest to 

H in these two classes, the distance between H1 and H2 

is defined as margin. The optimal separating plane that 

has the smallest generalisation error is the one that not 

only correctly separates all sample points into these 

two classes but also leaves the largest margin between 

H1 and H2. 

If the two classes are not perfectly linearly separable 

we can still look for an optimal separating plane that 



maximizes the margin between H1 and H2 and 

minimizes the classifying error. The optimal separating 

plane is a linear classifier that has the classifying 

function as follows: 
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H has as equation: f(x) =0 where as H1 and H2 have as 

equations f(x) =1 and f(x) = -1 respectively. 

 

 

 
To know the class of a sample xi, we calculate f (xi), 

the Lagrange coefficient αi is the solution of the 

following quadratic programming (QP) problem: 
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                             0≤ αi ≤ C 

 

  Where (α) = αi, 1i = 1, Gij = yiyjxi
T
xj 

 

C is a penalty constant for those sample points 

misclassified by the optimal separating plane. Its role is 

to strike a proper balance between the calculation 

complexity and the classifying error. When C� ∞+ , 

it is the ideal case in which all samples are theoretically 

correctly separated by the optimal separating plane and 

there is no classifying error at all, but the calculation 

complexity is the biggest. It is found that only a few 

coefficients αi are not zero, and since every coefficient 

αi corresponds to a particular sample point, this means 

that only the sample points whose corresponding αi are 

not zero determine the optimal separating plane. Only 

these few sample points, that are called support vectors, 

affect the classification result; while other sample 

points could be removed from the sample set and the 

optimal separating plane would be almost unaltered. 

These support vectors are usually few in the sample set. 

Since practical problems are generally not linearly 

separable, SVM has to be developed for the 

classification of nonlinear problems. By projecting the 

original sample space into a high-dimensional 

eigenspace with a kernel function K(x,xi), the nonlinear 

separable problem becomes linearly separable in the 

eigenspace. The SVM classifier in the eigenspace has 

the classifying function as follows: 

  f (x) = ∑
=

l

i
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1

..α k(x,xi) + b  (i=1, …, l), 

In Table 1, some kernel functions K(x,xi) proposed by 

Vapnik are listed. Polynomial and Gaussian are the 

most used one. 

 

Table 1. Some possible kernel functions and the 

type of classifiers they define. 

 

 

3. The SVM multi class algorithms 
 

3.1 State of art 
 

3.1.1 The one-to-one algorithm [7]. This algorithm 

proposes to make a binary classifier between every two 

classes. It is to train every class with all the other 

classes one by one. With n classes, n.(n-1)/2 binary 

classifiers are made (Figure 2.a). 
 

3.1.2 The one-to-rest algorithm [8]. This algorithm 

proposes to make a binary classifier with each class 

against all the other classes. With n classes, n binary 

classifiers are made (Figure 2.b). 

 

The disadvantage of these algorithms is the 

ambiguous regions where samples in “?” are classified. 

These samples have not been classified in any of the 3 

possible classes. 

There are some solutions to compensate these 

ambiguous regions like the vote where the sample is 

classified according to the number of times it occurred 

in each class (one-to-one) or the distance where the 

sample is classified in the closest class (one-to-rest). 

 

 

Type of classifier Kernel functions 

Polynomial of degree d K(x,xi)= (x
T 
.x + n)

d
 

Gaussian K(x,xi)= exp(-||x-xi||²/2σ² 

Multi-layer perceptron K(x,xi)= tanh (x
T 
.x + θ) 

Margin Margin 

Figure 1. A separating plane with small 

margin (a) and with a larger margin (b) 

(a) (b) 



 
3.1.3 The one to others algorithm [2]. Yuan and al, 

proposed an algorithm where there is no ambiguous 

regions. This algorithm is described as follow: take a 

top-priority class from the k classes of the problem as a 

category, take the rest (k - 1) classes as another 

category, construct a two-class SVM classifier; Next, 

this top-priority class is excluded, and then we have a 

case of  (k-1) classes, take a top-priority class from 

those (k-1) classes as a category, and take the rest (k-

1)-1 classes as another category, and construct a second 

two-class SVM classifier, and so on till the last two-

class SVM classifier is constructed (Figure. 3). 

 
3.2 Comparison 
 

Many toolboxes were developed for SVM such 

LibSVM by Chang and Lin (2003) and simpleSVM 

developed by Loosli (2004) on MATLAB that we use 

to compare results of different algorithms. However, 

one-to-others algorithm does not exist on this toolbox: 

we had to implement it distinguishing the two 

following cases: 

1. One-to-others algorithm respecting points’ 

distribution so that the most frequent class is 

categorized at first (however, in fault diagnosis the 

most critical class can be considered as a top-priority 

[2]). 

2.    One-to-others algorithm without respecting points’ 

distribution. 

Results are summarized in Table 2. 

 

Table 2. Comparison of different multi class SVM 

algorithms 

 
Data Base SVM multi class 

algorithm 

SVM 

prameters 

Recogniti

on rate 

One-to-one. C=1 

Kernel 

function : 

polynomial of 

degree 2. 

90.09% 

One-to-rest. C=1 

Kernel 

function : 

polynomial of 

degree 2. 

93.75% 

One-to-others 

without respecting 

points’ 

distribution. Order 

of categorization: 

1-2-3. 

C=1 

Kernel 

function : 

polynomial of 

degree 6. 

94.71% 

 

 

 

Balance-Scale:  

3 class problem, 

242 training 

samples of class 

2, 

134 training 

samples of class 

3, 

39 training 

samples of class 

1, 

208 testing 

samples. 

 One-to-others 

respecting points’ 

distribution. Order 

of categorization: 

2-3-1. 

C=1,  

Kernel 

function :poly

nomial of 

degree 3. 

97% 

One-to-one. C=1 

Kernel 

function : 

polynomial of 

degree 2.5. 

98% 

One-to-rest. C=1 

Kernel 

function : 

polynomial of 

degree 2. 

96% 

        

Iris plant: 

    

3 class problem, 

 35 training 

samples of class 

1, 

 35 training 

samples of class 

2, 

 30 training 

samples of class 

3, 

 50 testing 

samples. 

 

One-to-others.  C=1,  

Kernel 

function :poly

nomial of 

degree 2. 

100% 

 

 

It can be observed that one-to-others algorithm 

categorizing the most frequent class (of the training set) 

at first, gives better results than one-to-others algorithm 

generating randomly hyper planes between classes (see 

balance-scale database’s result). Iris plant database has 

a homogenous distribution on classes and the class 

order in categorizing does not affect the model’s 

performance.  

Generally, all these algorithms give satisfactory 

results, but according to the problem, the algorithm’s 

choice is very important to have the optimal and the 

best model. 

1. In none evolving class problems, one to others 

algorithm has no ambiguous zone and gives the best 

recognition rate. We note, however, that when classes 

are hierarchic (in fault diagnosis, the most dangerous 

fault is the superior class [2]) it’s advisable to start by 

? 
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Vs ?   
the 

rest 

              VS  

       the rest 

 VS  

the rest 

VS 

VS 

VS 

? 

(a) (b) 

? 

Figure 2. Classification with one to 

one algorithm (a) and one to rest 

algorithm (b) 

Figure 3. One-to-others 

algorithm for a 3 class problem 



categorizing the top-priority one. Otherwise, frequency 

of classes in the training set is considered as the 

hierarchical criterion as seen in balance scale database. 

2. In evolving class problems, one-to-rest algorithm 

seems more suitable thanks to its common ambiguous 

zone. We see in section 4 and 5 how to use this feature 

as an advantage.  

 

4. Incremental learning algorithm 

 

Incremental SVM learning is frequently used to 

reduce the storage cost by discarding useless samples 

(generally samples which are not support vectors) 

especially for huge databases, but also to speed up 

successive learning by using historical learning results.  

Syed and al [3] used an incremental learning by 

partitioning the training datasets into subsets. At each 

incremental step, only support vectors are added to the 

next subset for the next training step. He showed that 

this incremental learning gives the same results as a full 

training. 

Mitra and al [4] developed an incremental learning 

for SVM motivated from the condensed nearest 

neighbour classification technique: it is to condensate a 

data by choosing randomly a small number of samples 

to train SVM. Both a percentage of classified and 

misclassified data (taken from the remaining set) are 

retained with previous support vectors for the next 

training.  

Exceeding margin technique given in [5] trains 

SVM and when new data {(xi, yi)} arrives it is loaded 

in memory. The algorithm checks if (xi, yi) exceeds the 

margin of the previous SVM, ie, if yi.f(xi)≤ 1. If the 

condition is satisfied, the point is kept, otherwise it is 

discarded. When a given number n of points exceeding 

the margin is collected: SVM is updated using the 

support vectors of the current model and the n points. 

Wenhua and Jian developed an incremental SVM 

learning based on Karush Kuhn and Tucker 

conditions:(KKT) when a new set (incremental set) is 

available and should be used to update the current 

model, a second SVM is trained by the incremental set. 

Then, samples in the old set which violate the KKT 

conditions (Table 3) of the new SVM classifier and 

samples in the incremental set and violate the KKT 

conditions of the old classifier form the new training 

set of the updated model of SVM. More information on 

the use of KKT conditions in this algorithm is available 

in [6]. 

 

 

 

 

Table 3. Karush Kuhn and Tucker conditions 

 

yi.f(xi)>1 αi= 0 

yi.f(xi)<1 αi=C 

yi.f(xi)=1 0<αi<C 

 

Diehl and Cauwenberghs [7-8] used KKT 

conditions to increment a new example l. In [7], 

Cauwenberghs increments this point by increasing  αl 

until one of the KKT conditions relative to this point is 

violated or old points KKT conditions are perturbed by 

the incremented point. Diehl [8] increments the 

unlearned example preserving the KKT conditions of 

previous data. The KKT conditions are maintained by 

varying the support vector coefficients in response to 

the perturbation imparted by the incremented new 

coefficients. 

In fault diagnosis, the training set may be initially 

poor. Hence, SVM is trained with this dataset and 

incrementally updated when new samples are available. 

These samples will be classified by the current model. 

However, we propose to keep new points classified in 

the common ambiguous zone in a rejection class 

instead of reviewing immediately our model (section 

5).  

 

5. Our proposal: the rejection class 

algorithm 
 

5.1 Rejection class algorithm 

 

When new samples are rejected by all the current 

classes, they are classified in the common ambiguous 

zone that we propose to consider as a rejection class. 

These samples may correspond to a new fault (a new 

class) which may appear with time because they do not 

really belong to any class of the current classifier. If 

these samples’ number reach a threshold, the current 

model need to be updated according to the evolution of 

the machine faults because the old model is not valid 

any more since a possible new class is not considered 

in its previous training step.  

We resume in figure 4 the reject zones of one-to-rest 

algorithm numbered from 1 to 4. It can easily be 

observed that future points classified in zones 1, 2, and 

3 are not completely rejected. For example, points in 

zone 1, are one time classified as diamonds by f1(x) 

and one time as black rings by f2(x). So, it can be 

classified as a diamond or a ring according to the 

closest class.  The same reasoning can be applied to 

zone 2 and 3. 

 



 
 

Figure 4. The one-to-rest algorithm with numbered 

reject zones 

 

However, points in zone 4 are not classified in any 

class of the current model. Figure 5 shows how a point 

xi can be rejected by all the classes and will be 

classified in zone 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. A rejected point by the current classifier 

 

5.2 Experimental results 
 

We work on wine recognition and iris plant 

databases. In each data, we train a one-to-rest SVM 

classifier. After that, we create new samples and 

classify them by the current classifier. We keep those 

who were classified in the common ambiguous zone as 

points of a rejection class. 

Results are summarized in Table 4. 

 

 

Table 4. Rejection class results 

 

 

6. Conclusion 
 

We have seen how to use the properties of an SVM 

binary classifier for multi class problems. In non 

evolving classes, we checked that one-to-others 

algorithm gives better results since there are no reject 

zones and points are classified in their suitable classes. 

However, to enhance its result, we have to start by 

categorizing classes according to the hierarchical 

criterion (dangerous fault, frequent class…). 

But, evolving class problems, like fault diagnosis, 

drive us to think for a SVM classifier able to predict 

even the evolution of the classes: the one-to-rest 

algorithm has a common ambiguous zone that we 

consider as a rejection class which allow us to control 

the classes’ evolution and help expert to predict new 

classes. When new points came in droves in this 

rejection class, we can warn the expert that a possible 

new class has been created. We avoid by this way 

updating unnecessarily and maybe wrongly the model: 

this can be a huge waste of time. 

We have seen that our algorithm makes possible not 

only fault diagnosis but also new class prediction so 

that the expert can be warned early, before that he 

realizes it himself taking more time. Hence, we 

minimize the risk that the machine breaks completely 

down due to this unknown new fault.  

If the expert confirms that a new class has been 

created, a new SVM should be training taking the new 

class into account. 
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