
Evolving class for SVM’s incremental learning

Ahmed Benzerrouk, Brigitte Chebel Morello, Noureddine Zerhouni
Laboratoire d’automatique de Besançon, France.

25, rue Alain Savary.25 000 Besançon, France

ahmed.benzerrouk@lasmea.univ-bpclermont.fr

{bmorello, zerhouni}@ens2m.fr

Abstract

The good generalization performance of support

vector machines (SVM) has made them a popular tool

in artificial intelligence community. In this paper, we

prove that SVM multi class algorithms are not

equivalent for all classification problems. we present a

new approach for incremental learning using SVM that

create a rejection class which would be interesting for

fault diagnosis where fault classes usually evolve with

time: It is when some new samples may be rejected by

all the current classes. Hence, these samples may

correspond to a new fault (a new class) which may

appear after the first training step.

1. Introduction

Most of artificial intelligence methods used in fault

diagnosis have some disadvantages such as local

optimal solution, low convergence rate, and poor

generalization performance especially when database

contains few samples. The lack of these one leads to

wrong diagnosis or make it impossible.

Vapnik’s work in statistical learning theory [1] leads

to a new machine learning called Support Vector

Machines. This one solves the problem of local optimal

solution, convergence rate and has a good

generalization performance even if the database has not

a big number of samples. In the last case, incremental

learning is used to improve the model when samples

still arrive. In fault diagnosis, we notice that fault

classes may change with the age of a machine. Hence,

the current model will not be able to classify some new

samples because they do not belong to any of the

current classes already learned. In this paper, we

propose to create a rejection class in evolving problems

for samples that they have not been classified in any

class of the current classifier.

The paper is organized as follows: the next section,

section 2, reviews the SVM theory as its original form

which is a binary classifier: we take the big lines from

section 2 of [2]. In section 3, we see how SVM were

generalized to multi class problems. We give a state of

art on SVM incremental learning in section 4. Our idea

is introduced in section 5 and we conclude in section 6.

2. Support Vector Machine (according to [2])

The idea of the pattern recognition with SVM is to

project sample space into a high-dimensional

eigenspace to find optimal separating hyper-planes of

the original sample set without increasing calculation

complexity. In this section we briefly describe the

SVM algorithm and its motivation. A more detailed

description of SVM can be found in [1].

We start from a simple case of two classes that is

linearly separable.

Assuming that we have a data set:

 D = {(xi, yi)} (i = 1… l), yi∈ {-1, 1} (1)

Where xi is input sample and yi is output class, yi has

two values (-1 or +1) that stand for two classes, l is the

sample number. We wish to determine, among all

linear separating planes that separate the input samples

into two classes, which separating plane will have the

smallest generalisation error. As shown in Figure 1,

rings and diamonds stand for these two classes of

sample points respectively; H is a separating plane. H1

and H2 are the planes that are parallel to H and

respectively pass through the sample points closest to

H in these two classes, the distance between H1 and H2

is defined as margin. The optimal separating plane that

has the smallest generalisation error is the one that not

only correctly separates all sample points into these

two classes but also leaves the largest margin between

H1 and H2.

If the two classes are not perfectly linearly separable

we can still look for an optimal separating plane that

maximizes the margin between H1 and H2 and

minimizes the classifying error. The optimal separating

plane is a linear classifier that has the classifying

function as follows:

∑
=

=

l

i

ii yxf
1

..)(α x
T

.xi + b (i=1, …, l)

H has as equation: f(x) =0 where as H1 and H2 have as

equations f(x) =1 and f(x) = -1 respectively.

To know the class of a sample xi, we calculate f (xi),

the Lagrange coefficient αi is the solution of the

following quadratic programming (QP) problem:

lR∈α

max +αα GT

2

1
1
T.

α

 Subject to yT .α = 0.

 0≤ αi ≤ C

 Where (α) = αi, 1i = 1, Gij = yiyjxi
T
xj

C is a penalty constant for those sample points

misclassified by the optimal separating plane. Its role is

to strike a proper balance between the calculation

complexity and the classifying error. When C� ∞+ ,

it is the ideal case in which all samples are theoretically

correctly separated by the optimal separating plane and

there is no classifying error at all, but the calculation

complexity is the biggest. It is found that only a few

coefficients αi are not zero, and since every coefficient

αi corresponds to a particular sample point, this means

that only the sample points whose corresponding αi are

not zero determine the optimal separating plane. Only

these few sample points, that are called support vectors,

affect the classification result; while other sample

points could be removed from the sample set and the

optimal separating plane would be almost unaltered.

These support vectors are usually few in the sample set.

Since practical problems are generally not linearly

separable, SVM has to be developed for the

classification of nonlinear problems. By projecting the

original sample space into a high-dimensional

eigenspace with a kernel function K(x,xi), the nonlinear

separable problem becomes linearly separable in the

eigenspace. The SVM classifier in the eigenspace has

the classifying function as follows:

 f (x) = ∑
=

l

i

ii y
1

..α k(x,xi) + b (i=1, …, l),

In Table 1, some kernel functions K(x,xi) proposed by

Vapnik are listed. Polynomial and Gaussian are the

most used one.

Table 1. Some possible kernel functions and the

type of classifiers they define.

3. The SVM multi class algorithms

3.1 State of art

3.1.1 The one-to-one algorithm [7]. This algorithm

proposes to make a binary classifier between every two

classes. It is to train every class with all the other

classes one by one. With n classes, n.(n-1)/2 binary

classifiers are made (Figure 2.a).

3.1.2 The one-to-rest algorithm [8]. This algorithm

proposes to make a binary classifier with each class

against all the other classes. With n classes, n binary

classifiers are made (Figure 2.b).

The disadvantage of these algorithms is the

ambiguous regions where samples in “?” are classified.

These samples have not been classified in any of the 3

possible classes.

There are some solutions to compensate these

ambiguous regions like the vote where the sample is

classified according to the number of times it occurred

in each class (one-to-one) or the distance where the

sample is classified in the closest class (one-to-rest).

Type of classifier Kernel functions

Polynomial of degree d K(x,xi)= (x
T
.x + n)

d

Gaussian K(x,xi)= exp(-||x-xi||²/2σ²

Multi-layer perceptron K(x,xi)= tanh (x
T
.x + θ)

Margin Margin

Figure 1. A separating plane with small

margin (a) and with a larger margin (b)

(a) (b)

3.1.3 The one to others algorithm [2]. Yuan and al,

proposed an algorithm where there is no ambiguous

regions. This algorithm is described as follow: take a

top-priority class from the k classes of the problem as a

category, take the rest (k - 1) classes as another

category, construct a two-class SVM classifier; Next,

this top-priority class is excluded, and then we have a

case of (k-1) classes, take a top-priority class from

those (k-1) classes as a category, and take the rest (k-

1)-1 classes as another category, and construct a second

two-class SVM classifier, and so on till the last two-

class SVM classifier is constructed (Figure. 3).

3.2 Comparison

Many toolboxes were developed for SVM such

LibSVM by Chang and Lin (2003) and simpleSVM

developed by Loosli (2004) on MATLAB that we use

to compare results of different algorithms. However,

one-to-others algorithm does not exist on this toolbox:

we had to implement it distinguishing the two

following cases:

1. One-to-others algorithm respecting points’

distribution so that the most frequent class is

categorized at first (however, in fault diagnosis the

most critical class can be considered as a top-priority

[2]).

2. One-to-others algorithm without respecting points’

distribution.

Results are summarized in Table 2.

Table 2. Comparison of different multi class SVM

algorithms

Data Base SVM multi class

algorithm

SVM

prameters

Recogniti

on rate

One-to-one. C=1

Kernel

function :

polynomial of

degree 2.

90.09%

One-to-rest. C=1

Kernel

function :

polynomial of

degree 2.

93.75%

One-to-others

without respecting

points’

distribution. Order

of categorization:

1-2-3.

C=1

Kernel

function :

polynomial of

degree 6.

94.71%

Balance-Scale:

3 class problem,

242 training

samples of class

2,

134 training

samples of class

3,

39 training

samples of class

1,

208 testing

samples.

 One-to-others

respecting points’

distribution. Order

of categorization:

2-3-1.

C=1,

Kernel

function :poly

nomial of

degree 3.

97%

One-to-one. C=1

Kernel

function :

polynomial of

degree 2.5.

98%

One-to-rest. C=1

Kernel

function :

polynomial of

degree 2.

96%

Iris plant:

3 class problem,

 35 training

samples of class

1,

 35 training

samples of class

2,

 30 training

samples of class

3,

 50 testing

samples.

One-to-others. C=1,

Kernel

function :poly

nomial of

degree 2.

100%

It can be observed that one-to-others algorithm

categorizing the most frequent class (of the training set)

at first, gives better results than one-to-others algorithm

generating randomly hyper planes between classes (see

balance-scale database’s result). Iris plant database has

a homogenous distribution on classes and the class

order in categorizing does not affect the model’s

performance.

Generally, all these algorithms give satisfactory

results, but according to the problem, the algorithm’s

choice is very important to have the optimal and the

best model.

1. In none evolving class problems, one to others

algorithm has no ambiguous zone and gives the best

recognition rate. We note, however, that when classes

are hierarchic (in fault diagnosis, the most dangerous

fault is the superior class [2]) it’s advisable to start by

?

?

Vs ?
the

rest

 VS

 the rest

 VS

the rest

VS

VS

VS

?

(a) (b)

?

Figure 2. Classification with one to

one algorithm (a) and one to rest

algorithm (b)

Figure 3. One-to-others

algorithm for a 3 class problem

categorizing the top-priority one. Otherwise, frequency

of classes in the training set is considered as the

hierarchical criterion as seen in balance scale database.

2. In evolving class problems, one-to-rest algorithm

seems more suitable thanks to its common ambiguous

zone. We see in section 4 and 5 how to use this feature

as an advantage.

4. Incremental learning algorithm

Incremental SVM learning is frequently used to

reduce the storage cost by discarding useless samples

(generally samples which are not support vectors)

especially for huge databases, but also to speed up

successive learning by using historical learning results.

Syed and al [3] used an incremental learning by

partitioning the training datasets into subsets. At each

incremental step, only support vectors are added to the

next subset for the next training step. He showed that

this incremental learning gives the same results as a full

training.

Mitra and al [4] developed an incremental learning

for SVM motivated from the condensed nearest

neighbour classification technique: it is to condensate a

data by choosing randomly a small number of samples

to train SVM. Both a percentage of classified and

misclassified data (taken from the remaining set) are

retained with previous support vectors for the next

training.

Exceeding margin technique given in [5] trains

SVM and when new data {(xi, yi)} arrives it is loaded

in memory. The algorithm checks if (xi, yi) exceeds the

margin of the previous SVM, ie, if yi.f(xi)≤ 1. If the

condition is satisfied, the point is kept, otherwise it is

discarded. When a given number n of points exceeding

the margin is collected: SVM is updated using the

support vectors of the current model and the n points.

Wenhua and Jian developed an incremental SVM

learning based on Karush Kuhn and Tucker

conditions:(KKT) when a new set (incremental set) is

available and should be used to update the current

model, a second SVM is trained by the incremental set.

Then, samples in the old set which violate the KKT

conditions (Table 3) of the new SVM classifier and

samples in the incremental set and violate the KKT

conditions of the old classifier form the new training

set of the updated model of SVM. More information on

the use of KKT conditions in this algorithm is available

in [6].

Table 3. Karush Kuhn and Tucker conditions

yi.f(xi)>1 αi= 0

yi.f(xi)<1 αi=C

yi.f(xi)=1 0<αi<C

Diehl and Cauwenberghs [7-8] used KKT

conditions to increment a new example l. In [7],

Cauwenberghs increments this point by increasing αl

until one of the KKT conditions relative to this point is

violated or old points KKT conditions are perturbed by

the incremented point. Diehl [8] increments the

unlearned example preserving the KKT conditions of

previous data. The KKT conditions are maintained by

varying the support vector coefficients in response to

the perturbation imparted by the incremented new

coefficients.

In fault diagnosis, the training set may be initially

poor. Hence, SVM is trained with this dataset and

incrementally updated when new samples are available.

These samples will be classified by the current model.

However, we propose to keep new points classified in

the common ambiguous zone in a rejection class

instead of reviewing immediately our model (section

5).

5. Our proposal: the rejection class

algorithm

5.1 Rejection class algorithm

When new samples are rejected by all the current

classes, they are classified in the common ambiguous

zone that we propose to consider as a rejection class.

These samples may correspond to a new fault (a new

class) which may appear with time because they do not

really belong to any class of the current classifier. If

these samples’ number reach a threshold, the current

model need to be updated according to the evolution of

the machine faults because the old model is not valid

any more since a possible new class is not considered

in its previous training step.

We resume in figure 4 the reject zones of one-to-rest

algorithm numbered from 1 to 4. It can easily be

observed that future points classified in zones 1, 2, and

3 are not completely rejected. For example, points in

zone 1, are one time classified as diamonds by f1(x)

and one time as black rings by f2(x). So, it can be

classified as a diamond or a ring according to the

closest class. The same reasoning can be applied to

zone 2 and 3.

Figure 4. The one-to-rest algorithm with numbered

reject zones

However, points in zone 4 are not classified in any

class of the current model. Figure 5 shows how a point

xi can be rejected by all the classes and will be

classified in zone 4.

Figure 5. A rejected point by the current classifier

5.2 Experimental results

We work on wine recognition and iris plant

databases. In each data, we train a one-to-rest SVM

classifier. After that, we create new samples and

classify them by the current classifier. We keep those

who were classified in the common ambiguous zone as

points of a rejection class.

Results are summarized in Table 4.

Table 4. Rejection class results

6. Conclusion

We have seen how to use the properties of an SVM

binary classifier for multi class problems. In non

evolving classes, we checked that one-to-others

algorithm gives better results since there are no reject

zones and points are classified in their suitable classes.

However, to enhance its result, we have to start by

categorizing classes according to the hierarchical

criterion (dangerous fault, frequent class…).

But, evolving class problems, like fault diagnosis,

drive us to think for a SVM classifier able to predict

even the evolution of the classes: the one-to-rest

algorithm has a common ambiguous zone that we

consider as a rejection class which allow us to control

the classes’ evolution and help expert to predict new

classes. When new points came in droves in this

rejection class, we can warn the expert that a possible

new class has been created. We avoid by this way

updating unnecessarily and maybe wrongly the model:

this can be a huge waste of time.

We have seen that our algorithm makes possible not

only fault diagnosis but also new class prediction so

that the expert can be warned early, before that he

realizes it himself taking more time. Hence, we

minimize the risk that the machine breaks completely

down due to this unknown new fault.

If the expert confirms that a new class has been

created, a new SVM should be training taking the new

class into account.

7. References

[1] V.N. Vapnik, The Nature of Statistical Learning Theory,

Springer, New York, USA, 1999.

Data Base SVM

parameters

Recognition

rate

Rejected

points

Wine

recognition:

 3 class

problem,

119 training

samples,

 59 testing

samples.

C= 1,

Kernel

function:

polynomial of

degree 2.

96.67%

The 5

new

points.

Iris plant:

3 class

problem,

100 training

samples,

 50 testing

samples.

C = 1

Kernel

function:

Polynomial of

degree 2.

100 %

4 of the 8

new

points.

4

3 2

f1(x) f2(x)

f3(x)

1

Not white rings

Sign f1 (xi)

(Diamonds vs the rest)

Not diamond

Sign f2 (xi)

(Black rings vs the rest)

Not black rings

Sign f3 (xi)

(White rings vs the rest)

xi is rejected by all the classes of the current classifier. It

is not to be classified but to be kept in the rejection

class.

A new point xi is available and

waits to be classified

[2] Sheng-Fa Yuan, Fu-Lei Chu, “Support vector machines-

based fault diagnosis for turbo-pump rotor”, Mechanical

Systems and Signal Processing, May 2006, pp. 939-952.

[3] N. Syed, H. Liu, and K.Sung, “Incremental learning with

support vector machines”, Proceedings of the workshop on

Support Vector Machines at the International Joint

Conference on Artificial Intelligence, IJCAI-99, Stockholm,

Sweden, 1999, pp. 352-356.

[4] P. Mitra, C. A. Murthy, S. K. Pal, “Data Condensation in

Large Databases by Incremental Learning with Support

Vector Machines”, International Conference on Pattern

Recognition (ICPR2000), Barcelona, Spain, 2000, pp. 712-

715.

[5] C. Domeniconi, D. Gunopulos. “Incremental Support

Vector Machine construction”, Proceedings IEEE

International Conference on data mining, San Jose, USA,

2001, pp. 589 - 592.

[6] B. Dubuisson, Diagnostic et reconnaissance des formes,

Hermès, Paris 1990.

[7] U.Krebel, “Pairwise classification and support vector

machines”, Kernel Methods – Support Vector

Learning, Cambridge, MA, 1999. pp. 255-268.

[8] V.N. Vapnik, The Nature of Statistical Learning Theory,

Springer Verlag, New York, 1995.

